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EXECUTIVE SUMMARY 

This study investigates the validity of Efficient Market Hypothesis (EMH) by taking clusters of 

firms, generated using Self-Organising Maps (SOMs), and comparing their financial 

performance. Clusters were generated using 10 different financial variables as inputs to 

SOMs of different sizes. The effectiveness of the clustering was analysed using Silhouette 

Width, Davies-Bouldin Index and two Dunn’s Index metrics. The financial performance of the 

clusters was investigated using equal and value weighted returns and portfolio standard 

deviation. Market capitalisation was the only variable able to generate statistically significant 

results – in particular larger firms outperformed their smaller counterparts. It was concluded 

that this difference could be attributed to the volatile time frame chosen (2007-2012) which 

resulted in investors favouring larger firms. For future work it is recommended that 

researchers focus more on pre-processing the inputs, using different clustering methods (in 

particular fuzzy clustering) and conduct the analysis over a longer time frame. 
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1. INTRODUCTION 

The following section has been broken down into a brief background where related studies 

have been mentioned. Thereafter, a motivation for the current work has been provided 

followed by a brief outline of this report. A more detailed and thorough literature has been 

completed in Section 2. 

1.1 Background 

Clustering algorithms have been used in a range of studies within the financial sector for data 

exploration. The studies presented here serve to provide a brief background to prior work 

which is necessary for the project motivation. Wang et al. [1] used fuzzy relations for the 

purpose of clustering due to there being no need for a predefined number of clusters. The 

study was designed to cluster financial ratios, thereby providing insight into which ratios 

should be considered the most significant. 

Enke et al. [2] designed a three stage system for stock market prediction using statistical 

analysis, fuzzy type-2 clustering and neural networks. It was concluded that this proposed 

method of stock prediction was an improvement on older models. Gafiychuk et al. [3]  used 

both the self-organising map (SOM) and group method of data handling (GMDH) algorithms 

to perform a cluster analysis using price data for the Dow Jones Index. The results showed 

that the clustering was successful for highlighting relationships between different companies 

and their respective industries. 

Stock market clustering has also been researched on a variety of stock markets. For example 

Nanda et al. [4] completed a stock clustering analysis on the Indian stock market. This 

research required the clustering of stocks for the purpose of creating a diverse portfolio . The 

clustering methods used were K-means, fuzzy C-means and SOM. From this study it was 

concluded that the use of clustering may help with efficient portfolio generation and the K-

means clustering produced the most compact clusters. 

Liao [5] analysed the Taiwan stock market using two data mining algorithms. Initially an 

Apriori algorithm was used for association and the second method employed was K-means 

clustering. Finally the data provided could be used to present possible investment portfolios 

based on the information gathered. The results successfully presented different portfolio 

options and it was concluded that the work should be continued in further research. 
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Stock clustering completed by Wang [6] used K-means clustering to cluster stocks using a 

two stage method. Initially the stocks from the China Shanghai 180 were clustered based on 

their price-earnings ratio and turnover. They were then clustered using eight fundamental 

ratios and based on these results new clusters were formed. Wang concluded that the work 

was successful, however, further investigation into more variables, DuPont analysis and 

different clustering techniques were recommended. 

Using 12 financial ratios Kelvin and Sian [7] clustered 470 stocks from the S&P 500 using the 

SOM algorithm. Two large SOMs (12x9 and 24x18) were used and the clustering was 

completed by visualisation of the U-matrix instead of each neuron defining a new cluster. In 

the results it was found that data normalisation and outlier removal played a significant role 

due to this visual technique. It was concluded that the results obtained would be useful to a 

financial analyst. 

Silva and Marques [8] used a SOM to cluster 48 stock price time series. Missing data was 

interpolated (using the last known value) and normalised. It was found that the SOM was 

robust in terms of outliers and was capable of clustering stocks with only partially similar time 

series. It was concluded that the results could be applied to stock selection for portfolios by 

taking shares from different portfolios in order to diversify the portfolio. 

In addition to the financial sector it is possible to incorporate data mining in other industries 

and much attention has been given to comparing the different clustering methods. Aguado et 

al. [9] completed multivariate data analysis on waste water processes using principal 

component analysis (PCA) and SOMs. These methods were used in order to assist in the 

visualisation of the variables. Afterwards K-means clustering (based on the Davies-Bouldin 

Index) was done and the clustering results achieved proved to be effective for the given data 

set. Aguado et al. also concluded that the visual results from PCA and the SOM were equally 

effective and assisted greatly in providing information regarding the relationships between 

variables.  

Budayan et al. used traditional methods, fuzzy C-means and SOMs for clustering strategic 

groups within the Turkish construction sector. It was concluded that the SOM was visually 

superior to the other methods and fuzzy C-means overcomes the simplistic grouping 

obtained from traditional methods [10]. 
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1.2 Motivation  

The purpose of the proposed research dissertation is to investigate the possibility of using 

data mining and clustering to evaluate Efficient Market Hypothesis (EMH) and portfolio 

generation. The clustering work presented thus far has provided limited insight into the 

choice of financial variables. In comparison financial studies have focused on the predictive 

ability of specific variables and a large body of work exists regarding these variables and 

EMH. The motivation for this research is to provide more insight into the individual financial 

variables and their effect on the clustering process. The methodologies employed in this 

study are intended to provide results to bring together these previous studies in a 

complementary manner. 

Numerous methods of clustering exist, however, the use of neural networks is relatively new. 

More specifically, SOMs are to be used for the purpose of clustering and offer a powerful 

method of reducing multidimensional data to a more manageable scope [11], [12], [13]. 

Neural networks are commonly used for prediction or classification of financial data, however, 

the proposed research is targeted at clustering the data, thereby resulting in a more 

descriptive approach. Recently SOMs have been used for clustering in a wide variety of fields 

and have proved to be relatively successful.  

The majority of work has been completed on stock markets such as the New York Stock 

Exchange (NYSE). It is possible that smaller less developed markets, such as the 

Johannesburg Stock Exchange (JSE), could exhibit different behaviour to more developed 

markets. In addition to this the JSE is relatively smaller and could therefore make a more 

manageable scope for research of this nature, enabling a variety of variables to be analysed 

in more detail. With significant improvements in computing power and data storage the 

amount of available data, regarding share information for the JSE, has become abundant. 

Financial ratios as well as technical analysis are commonly used in an attempt to predict 

market behaviour; however the large number of possible variables creates a situation where 

the data becomes multivariate. For this reason it will be necessary to determine a 

manageable scope, whereby only the most significant input variables are selected and 

analysed in more detail. 
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1.3 Outline of the Study 

The purpose of this study is to evaluate the validity of EMH using clustering. The clustering 

was completed using SOMs with a range of SOM sizes and financial variable inputs. The 

methodologies used are intended to build on traditional techniques while adding insight into 

the variables from a different perspective. The remainder of this report will be structured as 

follows:  

Section 2 provides a review of related studies as well as a theoretical background. In Section 

3 the objectives for this study have been identified. The data used for the purpose of this 

study has been presented briefly in Section 4 along with reasoning behind some of the 

assumptions made. In Section 5 the methodology has been explained and the results from 

the study are then shown in Section 6. In Sections 6 to 8 the results along with a discussion 

and conclusions are presented. Finally in Section 9 recommendations for future work are 

discussed.  
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2. LITERATURE REVIEW 

An overview of the literature related to both finance as well as different aspects of data 

mining and clustering is presented in this section. Particular attention has been given to 

research regarding financial anomalies as well as clustering validity. 

2.1 Stock Analysis 

In order to attempt to profit from the buying and selling of stocks it is necessary to perform an 

analysis of the shares to determine whether they are under-priced or over-priced.  Currently 

there are two main schools of thought on how shares should be analysed, namely 

fundamental and technical analysis. These methods may be employed together or 

independently in an attempt to determine the intrinsic value of shares.  

2.1.1 Fundamental Analysis 

Fundamental analysis refers to the interpretation of the financial ratios used to describe a 

firm’s performance. Once all the financial ratios have been calculated it is necessary to 

compare the results to market benchmarks, past results, as well as industry averages to 

provide a relative scale of comparison. The financial statements required for the ratio 

calculations are broken into three distinct sections, namely the balance sheet, income 

statement and the statement of cash flows [14]. Gibson separates the financial ratios into four 

distinct categories (liquidity, long term debt paying ability, profitability and investor analysis), 

each explaining a different aspect of the firm [15]. 

When calculating the return on shares it is important to note that the dividends received must 

be included (Equation 1) [16]. In this equation   is the return over the chosen time (0 to T); 

  and   are the prices at times 0 and t and    is the dividends paid out over the time frame. 

 
  

        

  

 (1) 

The return shown in Equation 1 may also be referred to as a simple return because it does 

not account for the reinvestment of the interest acquired during time 0-T. Continuous 

compounding return is commonly employed in financial studies [17], and it may be derived 

from simple return using Equation 2 [18], [19]. Here   is the return as calculated in Equation 

1 and   is the continuous compounding return.  

           (2) 
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Continuous compounding returns are commonly used for statistical purposes [18], [19] and 

these returns may be assumed to follow an approximately normal distribution [20]. 

It is also important to note that companies are able to manipulate the income statement and 

balance sheet results [21], [22] however the cash flow statement will reflect these accounting 

inaccuracies. It is for this reason that several ratios compare the income statement and cash 

flow statement results. 

2.1.2 Technical Analysis 

Technical analysis is mostly concerned with the price and volume of shares traded, and 

employs many mathematical tools in the analysis of the share data. Murphy defines technical 

analysis as “the study of market action, primarily through the use of charts, for the purpose of 

forecasting future price trends” [18].  

Trend Analysis 

Trend analysis is considered to be central to technical analysis [23] and the concepts 

employed are relatively simple. In brief there are three directions a trend may move, 

(downward, sideward and upward) all of which are self-explanatory. In addition to this, trends 

may be further classified according to the time frame over which they occur [23], [24].  

Many additional trends exist to explain a wide range of share price phenomena. However, 

this detailed trend examination is beyond the scope of this report. 

Moving Averages 

Moving averages is a technique developed from statistics whereby an average is calculated 

for the last   data points. As new data becomes available the average is updated, hence the 

average is continually changing [25]. By using moving averages unwanted noise may be 

removed and it can assist in defining a trend. These trends do however lag the actual data 

[26]. 

The three most commonly used methods of smoothing are simple, weighted and exponential 

[23], [26]. The simple method weighs all data points evenly. In weighted and exponential 

more significance is given to more recent data and it becomes more responsive [26], [27]. 

The formulas for a simple moving average (   ) and exponential moving average (   ) are 

given below [28]. 
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   (  

 

   
)         (4) 

In Equations 3 and 4   is the number of recorded prices and    is the closing price on day –

similarly    is the closing price on day t. 

Oscillators 

The Relative Strength Index (RSI) is shown in Equation 5. As with moving averages, RSI is 

greatly affected by the chosen time frame. Most technical analysts use 9 or 14 days for the 

calculation [23]. 

 
   

                                       

                                         
 (5) 

   

 
        

   

    
 (6) 

Stochastics is based on the assumption that during downtrends prices close near the bottom 

end of the price range and the converse during uptrends. This oscillator consists of two lines, 

with %D simply being the moving average of the %K line. The %K line equation is shown in 

Equation 6, where the number of days ( ) is typically 14 [23]. 

For Equation 7,   is the latest closing price;    is the lowest price for the previous n periods 

and    is the highest price for the last same period. It is also important to note that the period 

n can be measured in a chosen time frame, i.e. days, weeks, months, etc. 

       [             ⁄ ]    (7) 

Moving Average Convergence Divergence (MACD) is the difference between the long and 

short term EMAs (as shown in Equation 7). The time frames used are usually 12 and 26 days 

and it is used for identifying trends as well as changes in trends [28] , [29], [30]. 

                               (8) 

2.2 Fundamental Financial Theories 

Financial and economic models are constantly being developed in an attempt to explain the 

behaviour of the financial market. Some of the fundamental theories are presented below and 
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serve as an introduction to Section 2.3 where economic anomalies are discussed in more 

detail.  

2.2.1 Efficient Market Hypothesis 

The origin of efficient market hypothesis (EMH) can be found in research completed by Fama 

[31], who concluded that markets followed a random walk model. This is due to the market 

being information efficient and since the information is irregular and random the stock market 

follows a random walk [32], [33].  

In brief EMH states that share prices correct themselves in accordance to any new data so 

rapidly that it is not possible to consistently yield greater than average returns on the stock 

market. The share price encompasses past information regarding the share, therefore 

implying that the market is operating efficiently. Before examining the EMH in more detail it is 

necessary to consider some of the fundamental assumptions related to this theory [34] [35]. 

1. There must be many investors who make rational decisions and they act upon new 

information as it becomes available. 

2. Irrational decisions made by investors are unrelated and cancel out, thus having no 

net effect on the stock price, making the market rational. 

3. New information becomes available randomly and must be independent of past 

information. 

4. There are no taxes or transactional costs. 

EMH can be broken down into three primary forms, namely weak, semi-strong and strong [5]. 

In weak form EMH the stock price is said to contain all the price information related to the 

stock, which includes past price data. In semi-strong form EMH all the public data is 

contained within the current stock price. Finally in the strong form of the EMH all information, 

including private, is contained within the stock price [14].  

Since the development of the EMH there have been numerous studies with many opposing 

opinions on the validity of EMH. Many papers have investigated the use of financial ratios as 

a proxy for stock returns, as well as price patterns and behavioural anomalies. Although EMH 

has undergone extensive studies it still remains relatively robust. More recent studies related 

to behavioural finance have shown support against the validity of EMH [14], [36]. 

2.2.2 Portfolio Theory 

Reilly and Brown define two requirements for an investment portfolio [14]. 
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 It must achieve above average returns for its assumed risk. 

 It must be diverse to avoid unsystematic risk. 

Portfolio theory was initially developed by Markowitz and uses the variance in the return on 

an investment to define its risk [14]. The variance,   , for asset   is defined by Equation 9 and 

the covariance,    (     ), between two assets   and   is shown in Equation 10 [14], [20]. 

 
        [      ]

            ∑       

 

   

 (9) 

   

 
   (     )   [        (      )]

 
           ∑       

 

   

 (10) 

The above equations refer to the ex-ante calculation for the variance and covariance. In 

these equations,       is the probability of an event,    is the possible return and     is the 

expected return for  . This implies that the expected returns, of each investment, are 

determined based on the future expected returns.  In contrast the above calculations can also 

be completed ex-post i.e. based on historic data [20].  

In order to evaluate the standard deviation for a portfolio consisting of numerous investments 

it is necessary to account for the risk of each investment as well as the correlation between 

the investments. By doing so it is possible to define the risk of a portfolio according to the risk 

of returns as well as the degree of diversification (as shown in Equation 11 where        is the 

portfolio standard deviation,    is the weighting for investment   and   is the number of 

investments) [20]. 

 

      √∑∑       (     )

 

   

 

   

             (11) 

As previously mentioned, a portfolio must achieve a greater return for its associated risk. By 

using the above formula for defining risk, it is possible to determine a portfolio’s return in 

relation to its’ associated risk. A commonly used formula for relating the return and risk for a 

portfolio is known as the Sharpe ratio (   in Equation 12 below) [20]. 

 
   

  
̅̅̅̅    

̅̅̅̅

  

 (12) 
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The numerator can be viewed as the portfolio’s excess return (over a risk free investment). It 

should be noted that since the standard deviation of the portfolio (    is measured as a 

percentage, the Sharpe ratio is dimensionless [20].  

2.2.3 Beta and the Capital Asset Pricing Model 

The Capital Asset Pricing Model (CAPM) is a single variable model which is used to relate 

the expected return of an asset with its associated risk. The risk of the asset   is defined as 

beta (  ) and is shown in Equation 13 where   refers to the market portfolio [14]. 

               
  (13) 

Rather than going into the derivation of the CAPM in this paper one can refer to Brown and 

Reilly [14] where a thorough explanation is provided.  

From the CAPM it can be seen that the expected return of asset   above that of the market is 

proportional to market risk (β) [37]. The effectiveness of CAPM has been frequently debated 

and numerous sources argue that it is no longer effective. However, other sources still regard 

it as a useful tool for asset pricing [38].  

2.2.4 Fama and French Three Factor Model 

Work completed by Fama and French evaluated the use of different variables (size, book-to-

market value, leverage, earnings-price and market beta) for the purpose of stock return 

estimation [39]. It was concluded from this work that the asset pricing model (which only uses 

market beta) was valid for the period between 1926 and 1968; however from 1963 to 1990 

there is no relationship. Furthermore firm size and book-to-market value may be used to 

explain stock returns from 1963 – 1990 [40]. In this period there is a negative relationship 

between return and size and a positive relationship between return and the book-to-market 

equity [39]. From this work Fama and French derived a model based on three variables, 

namely market beta (from CAPM), market value (size) and book-to-market value [41].  

2.3 Additional Financial Studies 

Numerous financial and economic relationships have been researched and of particular 

interest is the comparison between value and growth stocks. Value investing (which was 

originally popularised by Benjamin Graham) refers to the method of investing in shares which 

appear to be undervalued. This can be seen by their low price-earnings, market-to-book 
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value and price-cash flow ratios. In contrast growth stocks have high price-earnings, market-

to-book value and price-cash flow ratios [42], [22]. 

Fama and French [43] found that by taking stocks from 13 different markets, between 1975 

and 1995, resulted in the value stocks, on average, outperforming their growth counterparts 

by 7.68% when sorted according to book-to-market values. Although it is widely recognised 

that value stocks have historically outperformed their growth counterparts there is still some 

debate as to why they are able to yield greater returns. 

The following sections expand upon this initial comparison by comparing numerous studies 

which evaluated the various financial ratios and relationships. 

2.3.1 Contrarian Investing and the Overreaction Hypothesis 

As previously mentioned value stocks have generally obtained greater returns than growth 

stocks. It has been speculated that this is due to investors overreacting to positive and 

negative news, thus causing the stock prices, at either end of the spectrum, to overreact to 

information. In addition to this investors often extrapolate past information with little 

understanding, thus compounding the above mentioned overreaction. This forms the basis 

for contrarian investing, which requires investors to invest in contrast to the general market 

(naïve investors) [44], [45]. The overreaction hypothesis states that stocks which have 

performed poorly (losers) achieve greater returns than the market [46]. This has also been 

extended in the evaluation of previously well performing stocks (winners) attaining poor 

results.  

De Bondt and Thaler [47] hypothesized that if the overreaction occurs systematically, then 

based on historic returns (and without the need for accounting data), abnormal movements in 

the stock price should be followed by an opposite price movement. In addition to this, the 

subsequent price movement should be proportional to the abnormality of the original 

movement. De Bondt and Thaler [47] evaluated the effect of choosing portfolios based on 

loser and winner stocks using monthly returns for the NYSE from 1926 to 1982. The results 

showed that the loser stock portfolios outperformed the winners by 25% 3 years later and the 

loser portfolios were also found to be less risky. Furthermore, the loser portfolios achieved 

significant gains over the January period (known as the January effect [48]). Similar results, 

which confirmed the overreaction hypothesis, were again achieved in a later study [49]. 

By analysing the UK market (from 1955 to 1990) Clare and Thomas [46] also found that the 

losers outperformed winner portfolios over the following two year period. When controlling for 
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size it was found that the phenomenon, in the UK market, was simply due to small firm effect. 

This conclusion agreed with the research by Zarowin [50], which concluded that the results 

achieved by De Bond and Thaler can be mostly attributed to small firm effect which is 

discussed in more detail in Section 2.3.2.  

The contrarian investment strategy has also been evaluated in the French and German 

markets where it was found that the contrarian method of investing was more effective over a 

one year time frame than two or three years [51].  

2.3.2 Size Effect 

Various studies on the size effect of stock returns have shown that there is a negative 

relationship between the return and size of the firm [52]. In addition, this effect has been 

evident in developing stock markets such as Singapore [53] and Mexico [54].  It has been 

hypothesized that investors are reluctant to invest in small firms due to a lack of information 

thus enabling them to produce greater returns [52]. In addition to this there is a limited 

ownership of small stocks by institutions, thereby increasing the likelihood for incorrect pricing 

[55]. 

In contradiction to this Horowitz et al. [56] found no evidence to support the hypothesis that 

the small firm effect exists between 1980 and 1996. In agreement with Horowitz, Chan et al. 

[57] noted that between 1984 and 1998 a large-cap index significantly outperformed (18% 

versus 11% annually) its’ small-cap counterpart. Moor and Sercu [58] argue that most of the 

research has ignored the smallest shares, due to a lack of data, and conclusions regarding 

small firm effect are incomplete. This statement is based on prior work completed by Banz 

[52], where it was noted that the size effect is most noticeable amongst the smallest firms.  

2.3.3 Stock Liquidity 

Liu describes liquidity as “the ability to trade large quantities quickly at low cost with little price 

impact” [59]. Acharya and Pedersen [60] expanded on the CAPM model, by including liquidity 

tests on the NYSE and AMEX, and found that constant decreases in liquidity decrease the 

immediate returns, however predict greater returns for a stock over a longer time frame [60]. 

Most studies have been completed in the United States where the stock market is relatively 

stable and liquid. However the Hong Kong stock exchange, which was analysed by Lam and 

Tam [61], provided a different data source with smaller average firm size and increased 

volatility. The results showed that liquidity was a significant factor for the returns on the Hong 
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Kong market and a four factor model, derived by adding liquidity to the Fama and French 

Three factor model, outperformed other models. 

In comparison a study by Lischewski and Voronkova [62] showed that liquidity was not a 

significant factor in asset pricing for the Polish market. Although liquidity had little effect it was 

found that market beta, size and book-to-market values did affect the asset pricing. Chang et 

al. [63] found that a negative relationship existed between stock return and liquidity for the 

Tokyo Stock Exchange. 

2.3.4 Dividends 

Traditionally dividend producing shares have been considered an integral part of a portfolio. 

Dividend paying policies have undergone much research and contradictory theories have 

been developed in order to determine whether they still offer a suitable proxy for share 

returns. Currently there is still little evidence to attribute any correlations between dividend 

payments and share prices. 

LaBarge and Hamilton [64] completed research which compared dividend payments with 

share repurchases. It was concluded that in more recent years the amount of dividend 

yielding companies has been diminishing and more companies are focusing on share 

repurchasing. Similar work by Brav et al. [65] consisted of a survey of 384 companies as well 

as in-depth interviews with 23 companies in order to evaluate the financial executives’ views 

on dividends and share repurchases. The following points briefly summarise some of their 

findings.  

 Often companies are hesitant to begin paying dividends (or increasing them) due to 

the future expectations thereby established and as a result share repurchasing is 

often viewed as a more flexible option. 

 Companies avoid lowering dividends (even at significant costs) due to how it could 

be interpreted. Reducing repurchases is viewed as having fewer consequences. 

 Executives believe that institutions view dividend payments and repurchases equally 

from an investment perspective. 

 Companies repurchase shares when it is felt that the shares are undervalued. 

However, the share price has little effect on the issuing of dividends. 

Work by Fama and French [66] revealed that the proportion of Centre for Research in 

Security Prices (CRSP) industrial companies (from the NYSE, AMEX and NASDAQ) which 

paid dividends dropped from 66.5 % to 20.8 % over the period 1978 to 1999. It was 
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concluded that this declining propensity was partly due to an increase in small listed firms. 

Large firms were also found to have decreased their dividend payments [66]. In contrast to 

this, work by DeAngelo et al. [67] using the same firm database revealed that although the 

proportion of dividend paying firms from 1978 to 2000 decreased, the amount of dividends 

paid increased. This increase in dividends was due to the largest dividend payments 

increasing by such a large degree that the effect of the decrease became insignificant. In 

2000 it was found that the top 25 dividend paying firms accounted for 54.9% of the dividends. 

Furthermore a two tier system within the market existed due to the high concentration of 

earnings and dividend paying firms as well as a significant correlation between a firm’s 

earnings and dividend payments. 

Ferris et al. [68] evaluated the declining propensity of dividend payments in the UK and 

Japan markets from 1990 to 2001, in order to determine whether dividend payment policies 

are market dependent. It was found that there was a marginal decline in dividend paying 

propensity in Japan, however there was little evidence supporting this trend in the UK market. 

Furthermore Japanese firms were found to not exhibit a concentration of dividend paying 

firms. In contrast the UK market was found to have a two tier system (similar to that found by 

DeAngelo et al. [67]) which also exhibited the same correlation between earnings and 

dividend payments. 

Miller and Modigliani [69] hypothesized that in an ideal market a firm’s dividend policy was 

viewed as irrelevant by shareholders. Subsequent studies have revealed opposing results for 

actual markets. Although the above research shows that fewer firms are paying dividends, 

Fuller et al. and DeAngelo et al. [70], [71] concluded that a firm’s dividend policy is not 

considered irrelevant to shareholders and it was found that dividend paying firms 

outperformed their counterparts by a greater margin in a declining market. 

2.3.5 Price-Earnings Ratio 

The price-earnings (P/E) ratio (or inverted as the earnings price E/P ratio) is well known as a 

significant investment tool for the valuation of firms. For this reason, notable research has 

been completed with regards to the effect of the P/E ratio and work completed by Nicholson 

[72], Basu [73] and Reinganum [74] found that low P/E stocks yielded greater returns than 

high P/E stocks. These studies were completed on NYSE and AMEX stocks. Bildersee et al. 

[75] compared the P/E ratios effectiveness when applied to the Japanese equity market and 

it was found that the P/E ratio is less important in Japan. This was mostly attributed to 

different accounting procedures and policies, and once accounted for, the differences are 

reduced. 
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Giannetti [76] used quarterly price-earnings as a proxy for stock returns and found that the 

predictive nature of this ratio declined from 1997 to 2002. Giannetti [76] noted that by using 

daily price-earnings ratios the measure variability would be caused by the price volatility and 

this could be misleading. For this reason quarterly data was chosen for the analysis.  

2.3.6 Cash Flow  

The analysis of a firm’s cash flow continues to grow in popularity [77] and it is often regarded 

as an appropriate measure for a firm’s performance due to a greater robustness to 

misleading accounting manipulations [78]. This is because with accrual accounting the 

various transactions are reflected based on estimates which may differ from the actual 

amounts, whereas the cash flow statement reflects the actual cash flows as they occur. The 

accrual method of accounting has been designed such that it can provide more financial 

information regarding the firm’s performance over the given time frame [79]. By comparing 

the figures obtained from the accrual method of accounting to the results in the cash flow 

statement it is possible for the analyst to determine whether the firm’s results are indicative of 

their actual performance [79]. 

2.3.7 Book-to-Market Value 

The book-to-market (B/M) value of a stock is often considered to be the leading indicator of 

stock performance [80], [81] and it is commonly used to separate value from growth stocks. 

In addition to this B/M is considered to offer a proxy for risk which is not explained by the 

return variance [82].   

In contrast to the above, Daniel and Titman [83] contended that there is no significant 

relationship between the firm’s historic performance and future expectations. Jiang’s [84] 

research revealed that current information has a significant effect on how institutions invest 

and this often leads to an overreaction and contributes to the B/M effect [84]. It has also been 

found that the book-to-market effect is more prevalent in smaller firms. Chen [85]  expanded 

on this and found that the B/M effect was most significant amongst firms which have a short 

life expectation.  

2.3.8 Capital Structure and Leverage 

The capital structure and leverage of a firm are often considered to be very important 

because by changing the leverage the managers affect numerous aspects of the firm’s future 

performance [86]. A simple method of determining whether the effect of the leverage was 

beneficial is by comparing the return on assets and the return on common stockholder’s 
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equity. If the latter is greater than the return on assets then the leverage may be viewed as 

having a positive effect on the firm [87].  

The extent of financial leverage still remains a subject of debate since the additional debt can 

impose overwhelming financial distress. It is also important to consider that there are 

potential benefits from the additional debt by enforcing managers to make appropriate 

financial decisions [88]. Lang et al. [89] concluded that a firm’s level of leverage does not 

necessarily effect its growth if the firm has sufficient investment prospects. If the firm does not 

have adequate investment opportunities, or if it becomes overwhelmed by debt, then 

leverage is negatively related to growth. This implies that firms must be careful when 

considering leverage if adequate investment opportunities are not available.  

Although the above provides a logical explanation with regards to the effects of debt and 

equity there is still much debate with regards to how firms manage their capital structure. One 

of the predominant theories is known as pecking order theory. In this theory it was 

hypothesized that firms choose internal financing over external financing, after which debt is 

chosen over equity. In comparison static trade-off theory assumes that managers make 

financing decisions based on an optimal amount of debt to take advantage of tax benefits, 

while considering the implications of bankruptcy. Based on this, managers set a debt/ equity 

target and work towards achieving the set ratio [90]. Other variables which have been 

considered significant in capital structure are information asymmetry (managers knowing 

more than investors and therefore being able to take advantage of this when issuing debt or 

equity) as well as financial flexibility [90], [91].  
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2.4 South Africa and the Johannesburg Stock Exchange 

The Johannesburg Stock Exchange is the stock market of South Africa and is largely 

comprised of basic resources (as shown in Figure 2-1), and 410 firms were listed as of 31 

December 2009 [92]. 

 

Figure 2-1: JSE Industry Market Capitalisation (Derived from [92]) 

2.4.1 South African Stock Indices 

The JSE has several stock indices which have been selected to simulate market behaviour. A 

brief summary of several commonly used indices is presented below, with the data from 31 

July 2012. 

The JSE All Share Index and the JSE Top 40 have been designed to follow the market in a 

relatively similar manner. The JSE All-Share Index represents 99% of the market, where as 

the JSE Top 40 simply consists of the 40 largest firms, based on market capitalisation. In 

comparison, the net market capitalisation of the JSE All-Share Index is R 5 657 604 million, 

whereas the JSE Top 40 Index is R 4 697 367 million. This shows that the JSE Top 40 

contributes to a significant portion of the JSE All-Share Index [93], [94]. 
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The JSE Research Affiliates Fundamental Index (RAFI) evaluates firms based on four 

fundamental financial factors (dividends, cash flows, sales and book value) for the 

development of the index. The JSE RAFI All-Share Index consists of 137 stocks, of which the 

10 largest stocks constitute over 50% of the value [95]. The JSE Dividend+ Index comprises 

the 30 stocks with the greatest expected dividend yields, and uses this information for the 

weightings. Although this index only consists of 30 stocks the top five only contribute to 

23.3% of the index, which is smaller than the previously mentioned indices [96]. 

In addition to the above mentioned indices there are additional indices which follow other 

aspects of the market such as specific firm sizes, industrial groups as well as value and 

growth indices. 

2.4.2 Risk Free Rate 

The South African risk free rate can be calculated based on numerous government bonds 

and Figure 2-2 compares the bonds used as a proxy for a risk free rate in 2009/ 2010 [97]. 

 

Figure 2-2: Proxies Used for Risk Free Rate (Derived from [97]) 

Table 2-1 lists the different bonds, which are commonly used as a proxy, and compares their 

various aspects. 
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Table 2-1: South African Government Bonds (Derived from [97]) 

Bond 
Maturity 

(yyyy/mm/dd) 

Coupon Rate 

(%) 

Yield on 31 Jan 

2010 (%) 

Median Daily Traded 

Volume (2009) 

R157 2015/09/15 13.50 8.38 11824 

R203 2017/09/15 8.25 9.01 1784 

R207 2020/01/15 7.25 9.19 1982 

R186 2026/12/21 10.50 9.17 5787 

2.5 Data Mining  

Zaïane defines data mining as “the non-trivial extraction of implicit, previously unknown and 

potentially useful information in databases” [98]. In addition to this, other authors [99], [100] 

describe data mining as an automatic (or a semi-automatic) process of obtaining useful 

information. Data mining has been successfully applied to retail, banking, insurance and 

telecommunications as well as many other industries [101].  

In general the results from data mining are either analysed in a descriptive or predictive 

manner. In predictive data mining the variables related to the samples are used to forecast 

future variables which are of importance. In comparison, descriptive data mining is primarily 

focused on highlighting patterns and relationships within the data which can then be further 

analysed by humans [102]. 

To assist with the task of data mining in a logical manner, data mining procedural standards 

have been developed.  
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2.5.1 CRISP-DM 

The Cross-Industry Standard Process for Data Mining (CRISP-DM) is a method of data 

mining and it can be broken into the steps shown in Figure 2-3. Many of the stages are 

iterative and require adequate preparation in order for the results obtained to be meaningful 

[101], [103]. 

1. Business 

understanding

2. Data 

understanding

3. Data 

preparation

4. Model building
5. Testing and 

evaluation
6. Deployment 

 

Figure 2-3: CRISP-DM Process (derived from [101]) 

1. As shown in Figure 2-3 the business understanding is initially required. This is to 

determine what the goals and objectives of the data mining process should be, and 

to assist in developing a project strategy.  

2. Data understanding is completed with a statistical analysis of the data and 

relationships within the data may be identified. It is also essential to understand what 

is required from the data at this stage.  

3. Data preparation must be completed by processing it into an appropriate form for the 

model building.  

4. Model building refers to the use of data mining tools to interpret the data visually and 

with clustering techniques. Initially more basic methods may be employed and more 

advanced methods applied later.  

5. Testing and evaluation requires that the results be evaluated in terms of the goals 

and objectives from the business understanding stage. This process may require that 

the objectives and goals be re-evaluated.  

6. Finally the data may be deployed and features from the data mining process may be 

used within the business and should be constantly re-evaluated since the business 

environment is changing. 
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2.5.2 Data Mining Techniques 

Patel separates data mining techniques into two categories, namely supervised and 

unsupervised techniques (shown in Figure 2-4) [104]. 

Data Mining 

Techniques

Supervised Unsupervised

Classification Prediction Clustering Association

 

Figure 2-4: Data Mining Techniques 

Each section in Figure 2-4 can be further broken down into the various methods employed, 

however only a brief description, of each technique, is presented below. 

Classification 

Numerous methods, such as decision trees, neural networks and support vector machines, 

are used for the purpose of applying a model which classifies data according to which 

predefined group it best matches. Applications of this technique range from fraud detection to 

classifying tumours [99]. 

Predictive 

Predictive techniques, and in particular regression analysis, is a mathematical method which 

uses past data in an attempt to forecast future values. Its application in economics and 

finance has been widely researched and it can be applied to many other fields. 

Association 

Association analysis has been used in a wide range of applications, with one of the most 

common examples being the shopping basket analysis [99], [105]. The basic method of 

association involves computing a support and confidence for the occurrence of variables and 

using these values to predict the likelihood of occurrence   given   [99]. 
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Clustering 

Numerous methods of clustering exist, the most common of which are fuzzy C-means, K-

means, hierarchical and SOMs, all of which have been applied to a variety of fields such as 

finance, biology and multimedia [4].  

Clustering is a commonly used process within data mining and Chang et al. defines it as “an 

important unsupervised technique where a set of patterns, usually vectors in a 

multidimensional space, are used to identify groups (clusters) of similar characteristics” [106]. 

In order to achieve this it is therefore necessary to group the samples which are most similar, 

while maximizing the variation between different clusters [106], [107], [108].  

Rapoport and Fillenbaum [109] note that one must be careful to not erroneously identify 

relationships within the data when in fact there are only random anomalies.  

2.5.3 Data Normalisation 

Data normalisation is required for pre-processing in many data mining applications. Three 

commonly used methods of data normalisation are min-max normalisation, z-score 

normalisation and normalisation by decimal scaling [110]. These three techniques are shown 

in Equations 14 to 16 where    represents the x value after normalisation and   is the original 

value. 

Specifically, in min-max normalisation the data is linearly transformed from an initial range 

(between      and     ) to  be within a new minimum        and maximum       . This is 

shown in Equation 14 [110], [111]. 

 
           (

         

         

)       (14) 

Z-score normalisation (also known as zero-mean normalisation) uses statistical properties of 

the variables for the normalisation process [110], [111] (shown in Equation 15 where   is the 

mean of the population and   is the standard deviation). 

    
   

 
 (15) 

Decimal scaling normalisation reduces the scale by powers of 10 (Equation 16). For the 

purpose of many applications the data range must lie within -1 and 1, therefore |        |     

is used to determine a value for   [111], [112]. 
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 (16) 

2.5.4 Statistical Analysis 

Due to the large amounts of data analysed in data mining it is often necessary to incorporate 

statistical methods. Although numerous statistical tests are available to compare relationships 

between variables this study is primarily aimed at comparing groups or clusters. For this 

reason the statistical analysis methods presented in this section are related to the 

comparison of groups. 

The tests for comparing groups can be broken down into two main categories namely 

parametric and non-parametric tests. In brief, parametric tests make assumptions regarding 

the sample distribution such as normality whereas non-parametric tests are often used for 

samples where the distribution is unknown or the data is ordinal. Some of the more common 

parametric tests are the t-test and ANOVA, which both have non-parametric equivalents such 

as the Wilcoxon Signed Rank test and the Kruskal-Wallis test. 

2.5.5 Cluster Analysis 

In order to interpret the results of the clustering process it is necessary to introduce measures 

of the clustering performance. These measures of clustering effectiveness are often referred 

to as clustering validity indices. Since the purpose of the clustering process is for the 

clustering algorithm to sort similar data points together, while simultaneously separating 

dissimilar points, it is logical to have measures which look at how similar and dissimilar points 

are.  

The compactness or similarity of points within a cluster can be referred to as the homogeneity 

of the cluster. Numerous methods exist for measuring the homogeneity (   ) and Equation 

17 shows a simple method for this [113]. 

 
    

 

 
∑        

 

 (17) 

In Equation 17,    represents a vector in the cluster,    represents the centre for that 

particular cluster and   is the number of vectors in the cluster. Therefore the homogeneity 

may simply be interpreted as the mean distance of the vectors within the cluster from their 

cluster centre [113].  
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The dissimilarity between clusters (   ), also referred to as separation, may be measured 

using Equation 18 [113]. 

 
    

 

∑          

∑              

   

 (18) 

In Equation 28    and    are the centres of clusters and     and     are the number of 

vectors in each cluster.   is again the measure of distance between two vectors (in this case 

   and   ) and     may be viewed as the distance between the centres of the clusters   and  , 

which have been weighted according to the number of samples within each cluster [113]. 

The measures of clustering effectiveness (shown in Equation 17 and 18) provide an insight 

into methods of measuring cluster validity; however more commonly used methods are 

presented below. 

Silhouette Width  

The Silhouette width is a commonly employed method of measuring clustering validity and it 

can be used to provide insight into how effectively each individual vector within a cluster has 

been grouped. Equation 19 shows how the Silhouette Width      for sample   may be 

calculated, where      is the mean distance of sample   to other samples within the same 

cluster and      is the mean distance of sample   to other samples in the closest cluster 

[113].  

 
     

         

               
 (19) 

It can therefore be seen that the greater the numerator the better the clustering process 

[113], with the range of possible values lying between -1 and 1. To better understand this 

Figure 2-5 has been provided, where the Silhouette Width for each sample can be seen, as 

well as the average Silhouette Widths for each cluster and the overall clustering process 

[114]. 
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Figure 2-5: Silhouette Width Comparison [114] 

Davies-Bouldin Index [115], [116] 

The Davies-Bouldin Index (    was developed in 1979 by Davies and Bouldin to assist in 

determining the optimal number of clusters. Equation 20 shows the first step in calculating    

where    represents the individual vectors,    is the centre of cluster   and    is the number of 

vectors belonging to the cluster.    measures the dispersion within a cluster and if   is chosen 

to be 1 then    is the mean of the Euclidean distances of vectors from their cluster centre. 

Alternatively, if   is chosen to be 2, then    is the standard deviation of the distances of the 

vectors from their cluster centroid. 
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The second value, known as the Minkowski metric      , is simply a distance measurement 

between centroids of two clusters (  and  ). Equation 21 shows this measurement where 

each cluster centroid has   dimensions and     simply represents the  
th
 component of the 

centroid for cluster  . By assuming the value of   to be 2,     becomes defined as the 

Euclidian distance between the centres of clusters   and  . 
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 (21) 

Using Equations 20 and 21 it is possible to derive a measure of the effectiveness of the 

clustering for cluster   (defined in Equation 22). 
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 (22) 

This is then maximized (Equation 23) and the mean of all these values is determined – 

shown by  ̅ which is the Davies-Bouldin Index (Equation 24). 

       (   ) (23) 
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By evaluating the above steps it can be seen that optimum clustering will occur when  ̅ is 

minimised.  

Dunn’s Index [117], [118] 

A variety of methods may be employed for determining the Dunn’s Index for a set of clusters. 

However, the one provided here is one of the simpler methods. For defining the diameter ( )  

of cluster   the maximum distance between the vectors from within cluster   may be used, 

where       (Equation 25). 

                  

 
(25) 

To determine the distance between two clusters, defined by       , one may take the 

minimum distance between two vectors from different clusters where     and     

(Equation 26). 

                    

 
(26) 

Dunn’s Index (for   clusters) can then be calculated using Equation 27. 
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(27) 

Care must be taken when interpreting the results from the Dunn’s Index shown in Equations 

25 to 27 because it may become distorted by outliers. To overcome this problem Bezdek and 

Pal [118] derived a general formula for Dunn’s Index (Equation 28) with the following 
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definitions:    is any positive, semi-definite, symmetric set distance function and    is any 

positive, semi-definite diameter function. 
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}} 

 

(28) 

Where           may be defined by one of five distance measures and      ) is defined as 

one of three distance measures. Combining these variations creates 18 possible versions of 

Dunn’s Index (refer to [118] for all the equations). 

2.6 Neural Networks 

The design of neural networks is based on the human brain and nervous system [119], [120]. 

The network consists of input and output layers, which are connected by synaptic weights. As 

data is fed into the network the synaptic weights change in order to better fit the data and the 

network adapts through this training method [119]. 

Figure 2-6 shows a basic schematic for a neural network model. The parallel nature of the 

neural network can be seen as well as the connections (synapses) between each layer within 

the network [121].  

 

Figure 2-6: Basic Neural Network Layout [121] 

2.6.1 Self-Organising Map 

The SOM was created by Kohonen. This type of neural network utilises competitive learning, 

is trained in an unsupervised manner [122], [123] and is commonly used for data clustering. 
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The main reason for its use in data mining and clustering is its ability to compress high 

dimensional data to a low dimension [11], [12], [13].  

Figure 2-7 shows the layout for a SOM, where the synaptic weights and 2D lattice can be 

seen. 

 

Figure 2-7: Basic Self Organising Map Schematic [122] 

The model proposed by Kohonen is capable of managing an input and output space of 

different dimensions. This feature therefore enables the Kohonen model to reduce the 

dimensionality of the data, enabling data compression [13]. 

The learning algorithm completed by the SOM may be broken down into three distinct 

processes, listed below [13]. 

1. Competition: each neuron’s weight is calculated and compared to the input and one 

neuron is chosen as a winner (based on the minimisation of the Euclidian distance 

between the neuron weight and the input vector [13] , [124]). 

2. Cooperation: The neurons surrounding the winning neuron (neighbouring neurons) 

are also excited. The range (or distance) over which the neighbourhood 

encompasses is defined by the Gaussian function (Equation 29).  

 
           ( 

    
 

   
)                      (29) 

In Equation 29,   refers to the winning neuron,   is the excited neuron,         is the topological 

neighbourhood and      is the lateral distance (Euclidean distance between the excited and 

winning neuron). The topological width ( ) decays exponentially with time, as shown in 

Equation 30. In this equation    is the topological width when the SOM is initiated,    is the 
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number of iterations and    is simply a time constant. For two dimensional lattices    is set to 

the lattice radius and    as              .  

        ( 
 

  
)                     (30) 

3. Synaptic Adaption: The excited neurons adapt their respective weights (  ) in order 

to associate themselves more closely with the given input. Equation 31 shows how 

the synaptic weight of a neuron changes. 

                             (       ) (31) 

Where   refers to the time component and   defines the learning rate parameter and 

exponentially decays with time as shown in Equation 32. 

           ( 
 

  

)                      (32) 

The adaptive stage may be further divided into an ordering and convergence or 

tuning stage. The convergence stage occurs first and is responsible for the 

topographical mapping, whereas the tuning stage accounts for the fine tuning of the 

network [13]. Table 2-2 shows a comparison between these two stages. 

Table 2-2: Comparison between Adaptive Stage Process Variables [13] 

Recommended Variable Convergence Stage Tuning Stage 

Initial learning rate                 

Final learning rate                      

Time constant                         

Ultsch and Siemon [125] proposed the unified distance matrix (U-matrix) as a measure of the 

distances between neurons in the SOM. By using a colour scale to distinguish distances it is 

possible to visualise high dimensional data [126]. Wu et al. describes the visualisation of 

clusters, using the U-matrix, whereby when distances are small, clusters are present and are 

separated by regions of large inter neuron distances [123]. 

As it has already been mentioned the neurons in the SOM form a 2D lattice, however D. 

Wijayasekara et al. [127] proposed the use of a 3D output space, rather than the more 
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common 2D mapping. By using a 3D output there should be better information preservation 

when the data is compressed to an output dimension [127]. 

A two-stage clustering process has been investigated in previous studies [123], [128]. The 

process consists of initially using a SOM (with a large number of neurons) on the original data 

and then a second clustering process on the SOM results.  

2.6.2 Neural Network Software 

MATLAB® has a built in Neural Network Toolbox
TM 

[129] which is capable of easily 

implementing a wide variety of neural networks with the use of a basic GUI. A SOM toolbox 

for MATLAB was also developed by Alhoniemi et al. and is free for download at [130]. This 

software has been used in SOM research [131], however it has not been updated since 2005 

[130]. 

2.7 Previous Studies 

The previous studies which have been investigated in this section are related to both data 

mining research as well as purely financial studies. Unfortunately there is limited literature on 

the use of SOMs for clustering firms and many lack a strong financial view on the clustering. 

The work by Jago [22] has been included to provide a South African perspective on EMH. 

Nanda et al. [4] used K-means, SOM and fuzzy C-means algorithms to cluster 106 firms 

using data from 2007 – 2008. The proposed methodology was aimed at using the clustering 

algorithms to generate clusters which would then be optimised using the firm weightings to 

minimise the portfolio variance. The study used the return data over different time frames as 

well as the firm’s price/ earnings, price/ book value, price/ cash flow, earnings per share, 

enterprise value/ earnings before interest, tax, depreciation and amortisation and market 

capitalisation/ sales as inputs. The validity of the clustering was investigated using numerous 

validity measures. It was found that the SOM performed best with seven clusters and 

achieved overall Silhouette widths ranging from -0.1498 to +0.331. The Davies-Bouldin Index 

values ranged from 1.3156 to 1.8038, however the K-means clustering was able to achieve 

more compact clusters. It was concluded that the work could be beneficial to investors 

wishing to develop portfolios and that future work could benefit from analysing additional 

financial variables. 

Using data from the China Shanghai 180, Wang [6] clustered firms in several stages. The 

clustering algorithm used was K-means and the clustering process involved three stages. 
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Initially five clusters were generated using input vectors of five dimensions (primary earnings 

per share, net asset value per share, total assets turnover ratio, principal business growth 

rate and liquidity ratio). In addition to this, five clusters were also generated using price/ 

earnings and turnover as input variables. The firms which then occurred in the same clusters 

in both clustering tests were grouped together into one of eight clusters. The stocks were 

then investigated using technical analysis and it was found that the clustering results were 

beneficial for the purpose of stock selection. Although it was not mentioned in this study the 

cluster sizes which were generated were not necessarily even. In fact the cluster sizes 

achieved using price/ earnings and turnover were 138, 26, 5, 2 and 1. The study focused 

more on the clustering aspect of generating the portfolios and not the financial. As a result 

the financial impact of the small clusters was not looked at. 

Sian and Kelvin [7] used the financial ratios of 470 stocks from S&P 500. The data was taken 

from 2001 and the financial ratios were the current ratio, debt/ equity, dividend yield, earnings 

before interest and tax growth, net income growth, price/ book value, price/ cash flow, price/ 

earnings, price/ sales, return on assets, return on equity and sales growth. Although 470 

stocks were used the SOM dimensions were 12x9 and 24x18. This form of cluster formation 

required that the U-matrix be analysed and groups of neurons with low neighbourhood 

distances were regarded as clusters. Using this methodology however only resulted in 98 

stocks being clustered with the smaller SOM and 278 stocks being clustered with the large 

SOM. In addition to using the U-matrix, Sian and Kelvin [7] visually analysed the resultant 

weights for each of the input planes. The analysis of the weight planes revealed that outliers 

within the data were problematic and resulted in the colour scales becoming distorted by 

these outliers. This rendered the visual analysis of the SOM input weight planes ineffective 

because the majority of the weights would fall into the same colour range, except for a few 

outliers. When the outliers were removed it was found that the SOM still had difficulties and 

these were attributed to the input vectors becoming so similar. This made it difficult for each 

neuron to become unique and led to an increase in quantisation error. The SOM did prove to 

be successful at separating the companies into clusters predominantly comprised of similar 

industries or with similar financial inputs.  

Although not related to finance, the study by Aguado et al. [9] provides insight into the 

benefits associated with using the SOM for clustering. The data consisted of 328 samples, 

each containing 11 variables related to waste water treatment. The component planes of the 

SOM network were analysed in this study to investigate whether the input variables were 

related and the U-matrix used to for generating clusters. This was done by investigating the 
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U-matrix and analysing where similar neurons have been grouped. This was then combined 

with results from the Davies-Bouldin Index to determine an ideal number of clusters.  

Numerous financial studies have been focused on developing portfolios based on financial 

ratios and the work by Fama and French [39] focused on using size, market beta, book-to-

market value and earnings/ price. The study was completed over the 1963 to 1990 period 

and the different year ends of the companies were found to have little impact on the results. 

The portfolios were generated using the individual financial ratios and separating the firms 

into deciles, thus producing 10 portfolios. The financial data was calculated for the previous 

year (t-1) and the returns were determined from July to June of years t and t+1 respectively.  

In some of the tests the top and bottom deciles were split again resulting in 12 portfolios 

being generated. In addition to this, portfolios were generated by using two steps, firstly by 

taking size deciles and secondly taking beta deciles, thus making 100 portfolios. In this work 

it was concluded that market beta does not suitably explain market returns and for the period 

from 1963 to 1990 the market capitalisation and book-to-market values can be used to 

explain returns. In addition to this it was found that these variables account for the 

information contained within the earnings/ price and leverage as well. 

Jago [22] completed a study using JSE financial data from 1990 to 2008. Portfolios were 

generated using both single variables as well as multiple variables. Of particular interest to 

this dissertation is the methodology used for generating portfolios with only one variable. The 

variables used were market capitalisation, book-to-market value, earnings/ price, cash flow/ 

price and dividends/ price. The portfolios were then generated by dividing the firms into two 

groups, with one representing the top 50% and the other representing the bottom 50%. 
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3. OBJECTIVES  

The objectives for this research are aimed at evaluating the SOM clustering process as well 

as various financial variables.  

1. Use the SOM and data mining techniques for the purpose of clustering companies 

from the JSE. 

2. Evaluate the individual variables used for clustering and determine which are 

appropriate for clustering algorithms. 

3. Investigate the variables from a financial perspective to determine whether clusters of 

companies with different performance can be obtained.  

4. Use the results from the SOM clustering to analyse the validity of EMH for the JSE. 
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4. DATA 

The data for this research has been taken from the McGregor BFA Database, a South African 

financial database. The data consisted of both the standardised financial ratios from 

McGregor BFA and the related price data. In the following sections the choice and frequency 

of the variables used, as well as the time frame have been discussed.  

4.1 Financial Variables 

One of the most important aspects of the data is the choice of financial variables to use as 

inputs into the clustering algorithm. When selecting variables it is important to consider their 

availability (on the McGregor BFA Database) as well as their predictive ability. In order to 

evaluate all appropriate aspects of a firm’s performance a variety of financial variables have 

been chosen.  

The literature reveals that financial studies place significant emphasis on the financial 

variables while clustering studies have not investigated the relationship between the 

variables and the clustering process. For this reason the selected variables have been 

chosen to incorporate both previous financial and clustering studies. The number of variables 

has been kept to a minimum in order to reduce redundancy.  

Additional consideration was given to the variety of firms to be analysed which makes the use 

of some variables, such as sales figures, irrelevant to some industries. Sian and Kelvin [7]  

used price/ sales along with other variables and the clusters obtained consisted of companies 

from similar industries. Rather than only choosing ratios, which would transparently cluster 

stocks based on their industry, the purpose of this data mining research is to examine 

underlying factors.  

Dividend yield would have been included in the analysis but many companies did not have 

dividend yield data. This would limit the companies used for clustering and it was decided to 

rather exclude this variable. This lack of dividend yield data is also apparent in the study 

completed by Jago [22] which looked at the JSE. 
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Table 4-1 provides a brief reason for the choice of each financial variable as well as a code 

which will be used to refer to each variable for the remainder of this report.  

Table 4-1: Financial Variables for Clustering Input 

Variable Code Description 

Debt/ Equity DE 

Provides insight into corporate structure, which can be beneficial or 

induce excessive risk [89]. Could also provide interesting insights 

into its relationship with other variables, especially firm size. Was 

also considered in work by Fama and French [39]. 

Price/   

Earnings 
PE 

Often considered a leading indicator for future returns and has 

significant amounts of related information. Traditionally low price/ 

earnings ratios have been used to define value stocks which have 

historically outperformed their growth counterparts [43], [72], [73], 

[74]. Also, since this variable is commonly used by investors it is less 

likely to possess outliers which affect the clustering process. Used in 

various studies [4], [6], [7] for clustering stocks as well as by Jago in 

a financial study [22]. 

Price/ Book 

Value 
PB 

Should be able to separate growth from value stocks [43]. Has been 

considered a proxy for risk, which is not accounted for with volatility 

[82]. Also should provide insight into the relationships between the 

various price ratios. The Fama and French Three Factor model also 

found that the book-to-market value of stocks was successful in 

explaining stock returns [40] and this ratio would underline the same 

features. 

Price/ Cash 

Flow 
PC 

Not as thoroughly researched as other price ratios, however cash is 

more difficult to manipulate and could provide a good proxy for risk 

and underlying behaviour. Could provide a good comparison with 

other price ratios, in particular the price/ earnings ratio. Has been 

used in previous studies related to both clustering [4], [7] and pure 

financial analysis [22]. 
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Quick Ratio QR 

Measures a firm’s ability to pay short term (current) debts, while not 

including the inventories since they are not necessarily liquid [14]. 

This ratio is likely to be highly correlated to the current ratio so it was 

decided to take only this ratio because it is stricter when evaluating 

liquidity. Should therefore also provide a measure of possible risk 

and may be related to leverage. Liquidity was used in the clustering 

completed by Wang [6]. Sian and Kelvin [7] used the current ratio 

however the quick ratio offers a stricter measure of liquidity. 

Return on 

Assets 
RA 

Used by Sian and Kelvin [7] for clustering with a SOM. May provide 

an insight into how specific industries rely on assets. Can be 

compared to the return on equity. 

Return on 

Equity 
RE 

Sian and Kelvin [7] used the return on equity for SOM clustering. 

Often used by investors and can therefore be regarded as a ratio 

which managers view as significant. Due to its popularity it is likely 

that this ratio will not contain many outliers, making it suitable to 

clustering.  

Market 

Capitalisation 
MC 

Provides the ability to distinguish between small and large firms and 

may also provide insight into growth. Smaller firms are sometimes 

regarding as being information inefficient [52], [55]. Could provide 

insight into whether financial performance (measured with financial 

ratios) is related to firm size. Used in various financial studies for the 

purpose of generating financial portfolios [22].  

Volatility V 

A different risk measure, to any of the above listed ratios. Could 

provide additional insight into share performance, which is not 

apparent from the traditional financial ratios. The only ratio which 

solely looks at price movements and since it is dependent on share 

prices it will be readily available. 
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4.2 Data Range 

In order to select the time frame for the analysis it was necessary to consider the following: 

1. There must be sufficient data to analyse a wide range of firms so as to not exclude 

companies which may be required for various financial relationships. 

2. The data must be taken over a sufficient time frame to enable several years of 

historic data (used for the clustering) as well as several subsequent years of 

additional data for the purpose of cluster return analysis. 

Considering the above mentioned criteria it was decided that the 10 years prior to this study 

(2002 – 2012) would provide the most comprehensive data over an adequate time frame. By 

separating the 10 years into two sections it is possible to use five years (2002-2006) for the 

inputs and the remaining five years (July 2007- June 2012) for the analysis of the 

performance of the results. The final period started in July to allow a six month gap to avoid 

look-ahead-bias. 

4.3 Data Frequency 

The next component of the data collection involves the frequency of the data. The data is 

available over a daily, weekly, monthly, quarterly and annual basis. Although some financial 

variables (such as the P/E ratio and market capitalisation) are available on a daily basis, not 

all of the variables are available with such frequency. By examining the McGregor BFA 

database it was found that annual year end results were the most abundant and would 

enable the largest inclusion of different firms. In addition to this it was decided that ratios, 

such as P/E, when taken on a daily basis are predominantly controlled by the share price. 

The inclusion of several variables on a daily basis would therefore measure the price 

movements [76], rather than underlying fundamental aspects of firm performance. Previous 

research by Fama and French [39] and Jago [22] only used a single annual value for the 

financial variables. These annual values were used to determine the clusters and therefore it 

should not be necessary to include data with higher dimensionality. For these reasons only 

the annual data has been used as an input into the SOM. 
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4.4 Data Collection 

The data was downloaded from the McGregor BFA Database in Excel sheets and processed 

in MATLAB using object oriented programming (OOP). This reduced the possibility of errors, 

before processing the data back into an Excel sheet for inspection. Figure 4-1 shows the 

simplified data collection process – this has been broken into 8 steps which have been 

discussed in more detail.  

DOWNLOAD FINANCIAL 

RATIO DATA FROM 

McGREGOR BFA

LOAD DATA INTO 

MATLAB OOP 

DATABASE

REMOVE UNDEFINED 

ENTRIES

DOWNLOAD PRICE 

DATA FROM  

McGREGOR BFA

FILL IN MISSING DATA

SAVE ALL DATA TO 

SINGLE EXCEL SHEET

SORT STOCKS (BASED 

ON AVAILABLE 

INFORMATION)

COPY STOCKS (WITH 

SUFFICIENT DATA) TO A 

NEW SHEET

USER DEFINED 

DATA

USER SELECTS 

VARIABLES

MANUALLY 

SORTED BY USER

(1) (2)

(3)

(4)

(5)

(6)

(7)

(8)

 

Figure 4-1: Data Collection (Illustrative) 

When retrieving the information from the McGregor BFA database it was necessary to 

download the annual standardised financial ratios (step 1) for each firm and then download 
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the price information separately (step 2). Within the price data file was the market 

capitalisation, dividend information and volatility.  

The majority of this data manipulation was completed by developing an object oriented 

programing (OOP) system, whereby each firm was a new instance of an object (step 3). The 

financial ratios were separated into general, cash and growth ratios (as defined by the 

McGregor BFA Database) and each section was defined as a new property for that instance. 

This was done since all the financial ratio information had been downloaded and stored as 

separate Excel sheets. Table 4-2 lists all the properties of the OOP database, along with a 

description of where the data came from. For clarity the fundamental ratio Excel sheets refer 

to step 1 in Figure 4-1 and the price information Excel sheets refer to step 2 in Figure 4-1.  

Table 4-2: Object Oriented Instance Properties 

Property Type Description 

Name String The name of the firm from the fundamental ratio Excel Sheets. 

Ticker String 
The ticker which was obtained from the name of the price 

information Excel sheets. 

Year Array The years of interest as input by the user. 

Raw ID Double 

A number assigned according to when the firm was originally 

added to the database (order comes from the fundamental ratio 

Excel Sheets). 

Month String 
The month extracted from the firm heading line in the 

fundamental financial ratio Excel sheets 

Cash Cell Array 
An array containing the chosen annual cash ratios extracted 

from the cash fundamental ratio Excel sheet. 

General Cell Array 
An array containing the chosen annual general ratios extracted 

from the general fundamental ratio Excel sheet. 

Growth Cell Array 
An array containing the annual growth ratios extracted from the 

growth fundamental ratio Excel sheet. 

Price Cell Array 
The selected columns from the price Excel sheets. This required 

the opening, closing and date columns for later calculations. 

Dividend Cell Array 
The selected columns from the price Excel sheets. This required 

the LDR date column and the amount. 
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Market 

Cap 
Cell Array 

The selected columns from the price Excel sheets. This required 

the date and market capitalisation columns. 

Volatility Cell Array 
The selected columns from the price Excel sheets. This required 

the date and volatility columns. 

Technical Cell Array 
This is used for storing the chosen data from the price, dividend, 

market capitalisation and volatility properties in annual form. 

Step 4 in Figure 4-1 refers to the removal of data points which were not available (presented 

as N/A in the excel sheets downloaded from BFA McGregor). Missing values were then 

replaced using linear interpolation and the last known value method described by Silva and 

Marques [8]. Companies with missing values for three or more input years were excluded and 

only data from 2000-2006 were used for interpolation. The MC was assumed to be zero for 

years the companies were not listed, hence it did not benefit from the last known value 

method. The MC and V were taken for the month end corresponding to the other financial 

ratios. 

Previous financial studies have excluded companies from the finance sector (Fama and 

French [39]) and others have excluded companies with negative price ratios (Gaffney [132]). 

For this study it was decided to include all companies listed as of July 2007 with three years 

input values. The listing date of July 2007 is required for the financial analysis which begins 

six months after the final input year (2006). This six month gap has been included to avoid 

look-ahead-bias. Companies delisted after July 2007 have been included to prevent 

survivorship bias. In order to complete all the tests with the same set of companies those 

without sufficient data were excluded.  
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The differences between the market capitalisations for the JSE and the database were then 

compared. In Figure 4-2 it can be seen that the sample taken for the research adequately 

represents the JSE. 

 

Figure 4-2: Database Composition  
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5. METHODOLOGY 

To complete research into the validity of SOMs for stock clustering it is necessary to evaluate 

various parameters in the clustering process. Two parameters which are seen to play a 

significant role in the clustering process are the size of the clusters and the choice of financial 

variables. For clarity a brief explanation of the methodology chosen as well as the notation 

used for the remainder of the report will first be discussed in this section.  

The first method of clustering (Section 5.2) used single values for all the financial ratios. In 

comparison to the study completed by Nanda et al. [4] the research presented here was 

aimed at the inclusion of many more companies. The inclusion of a greater number of 

companies was done so as to not limit the scope of the research, as mentioned by Moor and 

Sercu [58]. Moor and Sercu found that some relationships, such as small firm effect, were 

only apparent in the smallest of companies. Therefore by only taking the larger companies it 

is possible that some relationships may not become apparent. This inclusion of more 

companies did introduce more outliers which will have an impact on the clustering. The work 

by Wang [6] simply looked at the success rate of the clustering and it did not analyse the 

validity with tools such as the Davies-Bouldin Index and it is therefore difficult to interpret the 

validity of the clustering.  

The second method of clustering employed in this study was aimed at providing insight into 

the individual variables. Previous work [4], [6] has focused on clustering firms with several 

financial variables but it is not apparent which individual variables are having an effect on the 

clustering process. This is in part due to the lack of component analysis. By taking the single 

variable approach applied in financial studies [39], [22], [133] it will provide more insight into 

how each variable may be a proxy for stock returns. The methodology specifically related to 

these tests is shown in Section 5.3 where it has been explained in more detail.  

Section 5.1 refers to the general clustering process, which was applied to the clustering 

methodologies (Sections 5.2 and 5.3). This provides insight into the procedures followed by 

the algorithms designed to automate the clustering process for data mining. 
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5.1 Clustering Process 

This section refers specifically to the clustering which was applied to Sections 5.2 and 5.3. 

The general process of clustering is explained in this section before expanding into more 

detail in the remaining sections. 

The methodology (shown in Figure 5-1) is aimed at analysing how various parameters affect 

the clustering process. The remainder of this section will refer to Figure 5-1 as the description 

of the methodology is expanded on in more detail. 

FINALISED RAW DATA

NORMALISE RAW DATA  

(REQUIRED FOR SOM)

COMPLETE SOM 

CLUSTERING

COMPLETE GENERAL 

ANALYSIS

COMPUTE PORTFOLIO 

RETURNS AND STD 

DEVIATION

COMPUTE CLUSTERING 

VALDITY INDICES

SAVE RESULTS IN 

EXCEL SHEET

USER DEFINED 
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(2) (3)

(4)

(5) (6)

(7)
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(8)
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Figure 5-1: Clustering Methodology 
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5.1.1 Data Pre-processing 

The data pre-processing refers to the preparation of the data for use in the SOM. In particular 

it deals with stages (1-3) in Figure 5-1. The names of all the companies were extracted from 

the raw data file and the financial data was normalised.  

The presence of outliers (which greatly impacted on the clustering regardless of the 

clustering algorithm) was caused by the inclusion of small companies and the time frame 

chosen. Sian and Kelvin [7] found the presence of outliers problematic and that the use of 

normalisation increased the quantisation error because the input vectors became too similar.  

This work, as well as other studies, revealed that the two most likely causes for the poor 

clustering are: 

1. The presence of outliers within the data which distorted the input vectors and was not 

overcome in the normalisation process. 

2. The limited number of input vectors, which makes it difficult to generate sufficiently 

large clusters. 

To overcome this problem an algorithm was developed based on Winsorising. Winsorising 

refers to the process of replacing outlying values with a new value considered to not be an 

outlier [134]. Winsorising can be easily applied by using percentiles to define the limits of the 

outlying range. This requires the analyst to determine a suitable cut-off region but for this 

research it was decided to use two criteria as shown in the algorithm below.  

 If (variable > Q3+3xIQR && variable > 95th percentile) 

  variable = max{Q3+3xIQR, 95th percentile}  

 elseif (variable < Q1-3xIQR && variable < 5th percentile) 

   variable = min{Q1-3xIQR ,5th percentile} 

 end 

The choice of the upper and lower quartiles (Q1 and Q3) with three times the inter-quartile 

range (IQR) is based on the definition for extreme outliers ( [135] , [136]). This criterion was 

combined with the percentile limits to create a system which was less likely to suffer from any 

bias. This algorithm was not applied to MC and V. MC and V were transformed using 

               due to the log normal distribution present in the market capitalisation and 

volatility data. The study presented here had several zero values for MC and V and therefore 
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               would result in zero values after the log transformation without distorting the 

original values too much. Once the outlying values had been replaced the data was linearly 

normalised between -1 and +1 using min-max normalisation.  

5.1.2 SOM Clustering 

The SOM clustering (stage 4 in Figure 5-1) was considered one of the simpler steps in the 

methodology process since most of the required algorithms are built into the MATLAB 

environment. It should be noted than when using the nctool method in MATLAB it is only 

possible to generate square SOMs; however by taking the sample code generated after this 

process it is possible to define each SOM dimension independently. This was required to 

generate SOM networks which were not square, as shown in Table 5-4 in Section 5.2.  

5.1.3 Clustering Validity Indices 

The clustering validity stage occurred after the clustering had been completed and was not 

dependent on the financial results because it deals purely with the input variables. Although 

the financial analysis should provide more evidence regarding the effectiveness of the 

clustering process (in terms of portfolios and returns) the clustering validity is intended to 

provide information regarding the use of the input variables. 

For the purpose of measuring the validity of the clustering process the four measures 

(mentioned in Section 2.5.4) were chosen. The Davies-Bouldin Index is commonly employed 

in cluster analysis and is regarded as an adequate measure of clustering performance. It is 

most commonly used to determine the optimal number of clusters and for this study it should 

provide insight into how the SOM dimensions affect the clustering. DB values related to 

single firm clusters have not been considered in the overall DB index. 

The second measure, Silhouette Width (SW) is incorporated within the MATLAB 

environment, therefore making its application relatively simple. The overall SW has been 

determined using the cluster sizes to determine the weighted average. In addition to this it 

has been used to investigate whether individual shares were clustered appropriately.  

The third and fourth clustering validity indices refer to Dunn’s Index (DI). This measure has 

been used in previous studies and it was decided to use both traditional DI as well as the 

alternative DI. The difference between the two methods has been discussed in Section 2.5.5. 

The MATLAB algorithms for these two metrics come from the algorithms developed by 

Ramosall [143]. The alternative DI was expected to produce less biased results with DI being 

more influenced by outliers. For this work the Alternative Dunn’s Index with the following 
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metrics for distance and diameter between two clusters (  and  ) were used [118]. As with 

the equations described in Section 2.5.5 the distance between two clusters is defined by 

       and the diameter of a cluster is defined by     . For Equations 34 and 35 | | and | | 

refer to the size of clusters   and  .  

 
                 

 

| || |
∑       

       

 
(34) 

 
      (

∑           

| |
)           

 

| |
∑ 

   

 
(35) 

All these measures were calculated using the normalised input values. Euclidian distance 

has been used to be consistent with the SOM distance metrics. Refer to Appendix B Sections 

B-1 to B-3 for additional references and sample calculations for the Davies-Bouldin Index, 

Silhouette Width and Dunn’s Index. 

5.1.4 General and Financial Analysis 

The general and financial analysis has been completed in iterative steps because it requires 

user inputs. The general analysis in stage 6 in Figure 5-1 refers to a brief investigation of the 

clusters formed. In particular this stage analyses the industry composition, cluster size, 

validity and number of delisted companies in each cluster. The validity of the individual 

clusters has been measured using Silhouette Width as discussed in Section 5.1.3. Using this 

information, only clusters suitable for financial analysis are investigated in more detail (stages 

7 and 8, Figure 5-1).  

The financial analysis of the portfolios refers to stage 7 in Figure 5-1. This step has been 

broken down into two stages, the computation of the individual share returns and the more 

involved portfolio analysis.  

During the clustering process it was found that the clusters produced were varied in size, with 

several small clusters. When analysing very small clusters it is likely that differences in 

returns would become apparent simply due to the random nature of individual firm 

performance. It was therefore decided that a cut-off cluster size would need to be determined 

prior to financial analysis in order to achieve meaningful results. By making the cut-off cluster 

size too large many companies would be excluded, thus increasing the likelihood of 

overlooking relationships in the data. If however the cut-off is set too low the results become 

less reliable. In the work completed by Nanda et al. [4] the financial performance of clusters 

with only five companies was analysed. In comparison the double variable analysis by Jago 
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[22] generated four portfolios, with the smallest single year portfolio containing 21 companies. 

In addition to this, the work completed by Jago [22] was completed over a much longer time 

frame to prevent biased results. The main difference between these two studies is that 

Nanda et al. [4] was primarily focused on clustering whereas Jago [22] completed a purely 

financial study. Since the work presented here has a greater emphasis on financial 

performance than Nanda et al. [4] it was decided that the inclusion of clusters as small as five 

companies would create a bias. This bias would be generated because such small clusters 

would inherently have different performance. So, by taking larger portfolios the possibility of 

having false findings is minimized. Following a methodology more similar to Jago [22], it was 

decided to make the cluster cut-off 20 companies. To further understand the impact of the 

cut-off on the data collected for this study Table 5-1 has been provided. Each of the cells in 

Table 5-1 show the percentage of companies included in the analysis for the various tests 

presented in Section 6 (for more details with regards to the size of the SOMs used refer to 

the relevant tests in Section 6 where the SOM sizes have been discussed). Making the cut-

off much greater  results in a large portion of the companies being excluded and in order to 

include more companies it would be necessary to decrease the cut-off to 15 companies per 

cluster. Considering the significance placed on having large clusters by Jago [22] it was 

decided to rather keep the cut-off at 20 companies, thereby making the results achieved 

more conservative. 

Table 5-1: Minimum Cluster Size Data Loss Analysis 

Cut-
off 

Clustering Test (% companies included) 

DE M1 M2 MC PB PC PE QR RA RE V 

1 100 100 100 100 100 100 100 100 100 100 100 

2 100 100 100 100 100 100 100 100 100 100 100 

3 99 100 100 100 100 99 100 100 100 100 100 

4 98 100 100 99 99 99 99 100 98 99 99 

5 96 100 100 99 99 98 99 98 97 97 99 

6 95 100 100 99 95 98 97 96 93 95 99 

7 95 100 100 99 90 93 95 94 93 95 96 

8 95 100 100 99 85 93 95 91 93 95 96 

9 91 100 100 99 85 93 91 91 90 92 93 

10 88 100 100 99 85 93 91 91 90 92 93 

11 84 100 100 99 85 85 84 91 90 84 93 

12 80 100 96 99 85 81 84 78 85 80 93 

13 80 100 96 99 85 81 84 78 85 80 93 

14 75 100 96 99 80 76 73 73 85 70 93 

15 75 95 96 99 80 76 73 73 85 70 93 
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16 75 89 96 99 80 76 73 73 85 64 93 

17 75 89 96 99 80 76 73 73 85 64 93 

18 75 89 89 99 80 76 73 73 85 64 93 

19 75 89 89 99 80 76 66 73 78 64 93 

20 75 81 89 99 80 76 66 73 78 64 93 

21 75 73 81 99 80 76 66 73 78 64 93 

22 75 73 81 99 80 76 66 73 78 64 85 

23 75 73 81 99 80 76 66 73 78 64 85 

24 75 73 81 99 80 76 66 73 78 64 85 

25 75 64 81 99 80 76 57 73 78 64 85 

26 75 64 81 99 80 76 57 73 78 64 75 

27 75 64 71 99 80 65 57 73 78 64 75 

28 75 64 71 99 80 65 57 73 78 64 75 

29 75 64 71 99 80 55 57 73 78 64 75 

30 75 64 60 87 80 55 57 73 78 64 75 

31 75 64 60 87 80 55 57 73 78 64 75 

32 75 64 60 75 80 55 57 73 78 64 75 

33 75 64 60 63 80 55 57 73 66 64 75 

34 75 64 60 63 80 55 57 73 53 64 75 

35 75 51 60 63 80 55 57 73 53 64 75 

36 75 51 60 63 66 55 57 73 53 64 75 

37 75 51 60 63 66 55 57 59 53 64 75 

38 60 51 60 63 66 55 57 45 53 64 75 

39 60 51 45 63 66 55 57 45 53 64 75 

40 60 51 45 32 66 55 57 45 53 64 75 

41 60 51 45 16 66 55 57 45 53 64 75 

42 60 51 45 16 50 55 57 45 53 64 75 

43 60 51 45 0 50 55 57 45 53 64 75 

44 60 51 45 0 50 55 57 45 53 64 75 

45 60 51 45 0 33 55 57 45 53 64 75 

46 60 33 45 0 33 55 57 45 53 64 75 

47 60 33 45 0 33 55 57 45 53 64 57 

48 60 33 45 0 33 55 57 45 53 64 57 

49 60 33 45 0 33 55 57 45 53 64 57 

50 60 33 45 0 33 55 57 45 53 64 57 

In addition to the cluster size cut-off it was necessary to consider the frequency of returns to 

be calculated. As it is common practice to use monthly returns ( [22], [39]), and to not 

generate excessive data, it was decided to use monthly returns. The returns were calculated 

using the continuous compounding formula (Equation 2). To avoid look-ahead bias a 6 month 

period after January 2007 was allowed, as explained in Section 4.4. This resulted in the 
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mean monthly returns being calculated from July year t to June year t+1. Dividends were 

included in the return calculations using the last day to trade as an associated date. In the 

event that a firm delisted in year t its returns were assumed to be zero after the delisting date. 

The firm was then removed from the cluster for year t+1. This is similar to the study by Jago 

[22] where delisted companies were given 0% return for that year, but this research only 

assumes 0% return after delisting and not for the whole of year t. For all portfolios transaction 

costs were not included. 

So as to not overlook possible trends in the data, value weighted and equally weighted 

financial results were calculated. Value weighted results were calculated using each 

companies’ market capitalisation from the last trading day before July year t. These values 

were assumed unbiased because market capitalisation data is readily available on a daily 

basis. In comparison the equally weighted results were calculated giving equal weighting to 

all the companies.  

It was found that the time frame chosen for this study suffered from poor overall market 

performance. Rather than using the R157 as a benchmark it was decided to compare the 

monthly returns to the JSE All Share Index. The portfolio standard deviation was calculated 

using the monthly returns for year t and Equation 21 from Section 2.2.2. Appendix B contains 

the sample calculations related to this financial analysis. 

Stage 8 in Figure 5-1 refers to the statistical analysis of the selected clusters. For this 

analysis it was necessary to use parametric and non-parametric tests. These statistical tests 

were included to evaluate the hypothesis that the clustering could produce clusters of 

companies with different financial performance. The parametric test used was one-way 

ANOVA and the non-parametric test used was one-way Kruskal-Wallis. The non-parametric 

test was included because several of the tests presented non-normal distributions as well as 

a limited sample size (    ). This inclusion of non-parametric tests is not unique and a 

similar method was used by Patel [137]. 

When completing the statistical analysis the monthly portfolio returns were used over three 

time frames (one year, three years and five years). Although the financial results were 

calculated and presented on an individual yearly basis it was decided to rather complete the 

statistical analysis over different time frames. This has been done to increase the sample 

sizes and improve the quality of the statistical analysis – i.e. the financial results for year 

three would only be for the 12 months in year three, whereas the statistical results for year 

three would run from year one to year three and would contain 36 months. The reason for 
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using the portfolio returns as a measure of the variance in the returns (rather than the 

individual firm returns) was to keep in-line with the methodology introduced by Graham and 

Uliana [138] as well as deFusco et al. [20]. Each portfolio was then generated and the 

monthly returns taken. The returns were then compared using SPSS for the statistical 

analysis.  
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5.2 Multiple Variable Clustering 

The first clustering method used all the financial variables. With this approach to clustering, 

the 2006 values for each financial variable were used as inputs into the SOM. This generated 

a system whereby each input vector (firm) had nine dimensions (financial variables). This 

approach was chosen because it accounts for all financial aspects of a firm’s performance. 

Table 5-2 shows an example of how four input vectors (companies A to D) would each have 

nine dimensions (financial variables).  

Table 5-2: Multiple Variable Clustering Input Example 1 

Firm DE PB PC PE QR RA RE MC V 

A var1 var2 var3 var4 var5 var6 var7 var8 var9 

B var1 var2 var3 var4 var5 var6 var7 var8 var9 

C var1 var2 var3 var4 var5 var6 var7 var8 var9 

D var1 var2 var3 var4 var5 var6 var7 var8 var9 

The second multiple variable clustering test was completed using five financial variables (MC, 

PB, PC, PE and V) as shown in Table 5-3. These five financial variables were expected to 

yield the most significant results based on how often they have been investigated in financial 

studies and were therefore grouped together. 

Table 5-3: Multiple Variable Clustering Input Example 2 

Firm PB PC PE MC V 

A var1 var2 var3 var4 var5 

B var1 var2 var3 var4 var5 

C var1 var2 var3 var4 var5 

D var1 var2 var3 var4 var5 

For the remainder of the report it is important to note the notation which will be used to 

distinguish between these two tests. The first multiple variable test (nine variables) will be 

referred to as M1 and the second test (five variables) will be referred to as M2. In addition to 

this, a code which refers to the respective SOM dimension may be included when referring to 
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a specific test. Table 5-4 lists the codes related to each SOM size, e.g. the first multiple 

variable test, with SOM size 3x3, would be referred to as M1-09.  

In order to determine whether the size of the clusters has an effect on the generation of 

portfolios it was decided to complete numerous clustering iterations with different SOM 

dimensions. Table 5-4 lists the different iterations where it can be seen that SOM dimensions 

for prime numbers result in 1-dimensional clusters.  

Table 5-4: SOM Dimensions 

Number of Clusters Code SOM Dimensions 

2 02 2x1 

3 03 3x1 

4 04 2x2 

5 05 5x1 

6 06 2x3 

7 07 7x1 

8 08 2x4 

9 09 3x3 

10 10 2x5 

11 11 11x1 

12 12 3x4 

13 13 13x1 

14 14 2x7 

15 15 3x5 
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5.3 Single Variable Clustering 

In order to evaluate a different method of clustering, the SOM algorithm was applied to each 

financial variable separately. To achieve this it was originally considered to take the financial 

inputs related to 2006. The use of a one dimensional input would not take full advantage of 

the SOM network and it was decided to rather use the previous five years financial results. 

This should enable the SOM to detect companies with irregular behaviour and be more 

beneficial than simply using 2006 values. Each test was completed using the five years of 

data for only one variable. In Table 5-5 it can be seen that four input vectors (companies A to 

D) would each have five dimensions, each related to a different year for the chosen financial 

variable.  

Table 5-5: Single Variable Clustering Input Example 1 

Firm 

DE 

2006 2005 2004 2003 2002 

A var1 var2 var3 var4 var5 

B var1 var2 var3 var4 var5 

C var1 var2 var3 var4 var5 

D var1 var2 var3 var4 var5 
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6. RESULTS 

The results presented here have been separated into two sections. Section 6.1 looks at the 

clustering completed using multiple variables and Section 6.2 looks at the single variable 

clustering. For completeness a sample calculation has been included in Appendix B.  

Although the naming convention has been discussed in Section 5 it has been explained in 

more detail in Table 6-1 because it has been used extensively in the results.  

Table 6-1: Naming Convention for Clustering Test 

Code Description Dimensions 

M1 2006 values for all financial variables 9 

M2 2006 values for five financial variables 5 

DE 2006 – 2002 values for debt/ equity 5 

PB 2006 – 2002 values for price/ book value 5 

PC 2006 – 2002 values for price/ cash flow 5 

PE 2006 – 2002 values for price/ earnings 5 

QR 2006 – 2002 values for quick ratio 5 

RA 2006 – 2002 values for return on assets 5 

RE 2006 – 2002 values for return on equity 5 

MC 2006 – 2002 values for market capitalisation 5 

V 2006 – 2002 values for volatility 5 

The first column (Code) in Table 6-1 refers to the clustering and when referring to a specific 

test, the code is followed by a SOM size. For clarity a few examples have also been given 

below and should provide sufficient understanding with regards to the naming convention. 

 M2-08: multiple variable clustering with input values for 2006 for five variables 

completed using a 2x4 SOM network. 

 PB-02: single variable clustering with input values for 2006–2002 for price/ book 

value completed using a 2x1 SOM network. 
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The results related to each test have been presented in the order listed below: 

1. Clustering validity analysed with Davies-Bouldin (DB) Index, Silhouette Width (SW), 

Dunn’s Index (DI) and Alternative Dunn’s Index.  

 DB Index: lower values are more desirable 

 SW: values below 0.25 being regarded as poor [139] 

 Alternative DI & DI: Larger values indicate better clustering 

It should be noted that several validity indices were used because one alone would not 

necessarily yield accurate results. In fact the different validity measures can yield 

contradictory results due to them weighting outliers differently and using different 

measures of inter and intra cluster distances. 

2. General results for a chosen SOM test which looks at neuron numbers, cluster sizes, 

individual Silhouette Widths, industry composition and delisted companies. 

3. SOM plane weight diagrams for each input variable. Lighter colours indicate a greater 

input value. When referring to a neuron number in the SOM weight plane diagrams the 

numbering starts in the bottom left and moves across to the top right as shown in the 

sample below: 

 

Figure 6-1: SOM Weight Plane Numbering Sample 

4. Value weighted and equally weighted financial results of chosen clusters. Including 

comparison to the JSE All Share index and portfolio standard deviation. 

5. Statistical results comparing returns for selected clusters using both parametric and non-

parametric tests. 

It is important to note that the returns presented are for the individual years (i.e. year 1 or 2 or 

3 etc.) whereas the statistical results are presented over a time frame of years (i.e. year 1 or 

year 1 to year 3 etc.). For a full explanation regarding this refer to Section 5.1.4 where the 

statistical analysis has been discussed. 
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When investigating the specific clusters related to a SOM the terms cluster and neuron are 

often used interchangeably. A brief summary of the column headings is presented in Table 

6-2. 

Table 6-2: Results Notation 

Heading Variable Description 

NRN 
Neuron number/ cluster 

number 

Refers to the location of the neuron (cluster) in the 

SOM network. 

CMP Number of companies 
Number of companies related to the specific 

neuron (cluster). 

SW Silhouette Width 
Clustering validity measure related to the specific 

neuron (cluster). 

Mean 

Monthly 

Arithmetic mean portfolio 

monthly returns 

Calculated using firm continuous compounding 

returns 

Mean 

Excess 

Arithmetic mean portfolio 

monthly excess returns 

Difference between the portfolio monthly mean 

returns and monthly JSE Top 40 Index 

Std Dev 
Portfolio Standard 

Deviation 

Portfolio standard deviation consistent with 

Markowitz portfolio theory 
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6.1 Multiple Variable Clustering  

The clustering results, using multiple variables, can be broken down into two tests. The first 

uses all nine variables analysed in this study and the second test only uses the variables 

which were considered most significant. The cluster sizes achieved in these tests were 

relatively even over the range of cluster tests. 

6.1.1 All Variables 

 

Figure 6-2: All Variables Clustering Validity 

The clustering validity (Figure 6-2) related to the use of all the financial variables (M1) shows 

mixed results. Figure 6-2 (b) – (d) suggests that the smallest SOMs were the most effective 

whereas Figure 6-2 (a) suggests that the 11x1 SOM was the most effective. Overall the 

clustering is adequate and the SWs achieved do not fall below 0. Although the smallest 

SOMs could be considered the most effective, the larger SOMs achieved smaller clusters 

which are more appropriate for further analysis and for this reason the 2x4 SOM has been 

investigated in more detail. 
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Table 6-3: All Variables 2x4 SOM General Information 

NRN CMP SW 

Industry Composition Delisted (Per Year) 

Industry 
Cluster 

(%) 
1 2 3 4 5 

1 24* 0.11 Financials 54 1 2 3 1 0 

2 19 0.09 Basic Materials 37 0 2 0 2 2 

3 45* 0.05 Industrials 36 2 3 1 1 1 

4 14 0.30 Basic Materials 36 2 1 0 1 1 

5 84* 0.31 Industrials 30 2 2 2 0 1 

6 34* 0.07 Financials 62 2 0 3 2 3 

7 20* 0.16 Basic Materials 25 2 0 0 0 1 

8 15* 0.31 Financials 87 0 1 0 1 0 

* Investigated in financial analysis 

The general information, regarding the clustering completed with all the input variables, can 

be seen in Table 6-3. In general the clusters achieved are evenly sized, excluding the single 

large cluster at neuron 5. None of the clusters have a small number of companies which is a 

desirable result from the clustering for practical reasons. All the SWs for the individual 

clusters are above zero; however several of the values are near zero. Cluster 8 consists of 

mostly financial variables and is also the best cluster from a validity aspect. The reason for 

this unique cluster can be seen by the high market capitalisation of the financial companies in 

input 8 (Figure 6-3). None of the clusters have a particularly high number of companies who 

delisted. To provide complementary information regarding the clusters Figure 6-3 has been 

provided. 

 

Figure 6-3: All Variables 2x4 SOM Weight Planes 
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The weight planes in Figure 6-3 show how the different financial variables were responsible 

for forming specific clusters. QR (input 5) played a significant role in forming cluster 1 which 

can be seen by the significantly lighter weight input colour at neuron 1. In general DE, PB, 

PC and RE (inputs 1, 2, 3 and 7) appear to have relatively similar weights when ignoring the 

clusters with outlying values (shown by black and yellow neurons). The most apparent 

feature of Figure 6-3 is the fact that each variable appears to have played a role in defining 

the clusters in a unique manner. PB, PC and RE (inputs 2, 3 and 7) were most affected by 

the presence of outliers which can be seen by the colour scale showing little detail. This is 

because the Winsorising was only capable of reducing the number of outliers. Had a more 

aggressive Winsorising approach been taken the outliers could have been completely 

removed. In contrast PE, RA and MC (inputs 4, 6 and 8) have resulted in the most evenly 

distributed colour scales.  

In general cluster 5, which is the largest cluster in Table 6-3, achieved relatively medial 

values for all the inputs and this cluster could be considered closely related to the market 

when considering the input variables. Cluster 8 from Table 6-3 consisted of mostly financial 

companies and the most apparent feature of this cluster is its high DE and MC. The clusters 

occurring at neurons 1, 3, 5, 6, 7 and 8 have all been analysed in more detail in Table 6-4.  
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Table 6-4: All Variables 2x4 SOM Financial Information 

NRN CMP Year 

Value Weighting Equal Weighting 

Mean 
Monthly 

Mean 
Excess 

Std Dev 
Mean 

Monthly 
Mean 
Excess 

Std Dev 

1 24 

1 -0.0178 -0.0237 0.0653 -0.0238 -0.0297 0.0382 

2 0.0094 0.0362 0.0696 -0.0003 0.0265 0.0519 

3 0.0155 0.0009 0.0562 0.0024 -0.0121 0.0299 

4 -0.0175 -0.0336 0.1052 -0.0126 -0.0288 0.0666 

5 0.0095 0.0049 0.0322 0.0108 0.0061 0.0274 

3 45 

1 -0.0251 -0.0310 0.0807 -0.0265 -0.0324 0.0490 

2 -0.0710 -0.0442 0.1418 -0.0324 -0.0056 0.0457 

3 0.0166 0.0020 0.0481 0.0069 -0.0077 0.0305 

4 0.0115 -0.0046 0.0301 0.0075 -0.0086 0.0296 

5 -0.0031 -0.0078 0.0494 0.0144 0.0097 0.0282 

5 84 

1 0.0042 -0.0017 0.0559 -0.0191 -0.0250 0.0543 

2 -0.0472 -0.0204 0.1115 -0.0166 0.0102 0.0617 

3 0.0155 0.0009 0.0472 0.0204 0.0058 0.0354 

4 0.0174 0.0013 0.0436 0.0130 -0.0031 0.0295 

5 0.0032 -0.0015 0.0395 0.0091 0.0044 0.0206 

6 34 

1 -0.0090 -0.0149 0.0385 -0.0160 -0.0219 0.0433 

2 -0.0438 -0.0170 0.1076 -0.0225 0.0043 0.0711 

3 0.0201 0.0055 0.0288 0.0150 0.0004 0.0194 

4 0.0130 -0.0031 0.0351 0.0008 -0.0153 0.0401 

5 0.0076 0.0029 0.0487 -0.0059 -0.0106 0.0806 

7 20 

1 0.0247 0.0188 0.0696 -0.0217 -0.0276 0.0454 
2 -0.0372 -0.0104 0.1217 -0.0112 0.0156 0.0714 
3 0.0144 -0.0001 0.0638 0.0206 0.0060 0.0438 
4 0.0183 0.0022 0.0549 0.0032 -0.0129 0.0543 
5 -0.0049 -0.0096 0.0722 0.0081 0.0034 0.0358 

8** 15 

1 -0.0206 -0.0265 0.0794 -0.0248 -0.0307 0.0653 

2 0.0030 0.0298 0.0854 -0.0026 0.0242 0.0775 

3 0.0090 -0.0056 0.0410 0.0196 0.0051 0.0495 

4 0.0155 -0.0007 0.0503 0.0108 -0.0053 0.0406 

5 0.0128 0.0081 0.0272 0.0102 0.0056 0.0308 

** Not included in statistical analysis 

With regards to the mean monthly returns, the general trend of poor first year performance is 

apparent in all the clusters besides the value weighted cluster 7. None of the clusters 

achieved exceptionally high or low returns consistently; however it should be noted that the 
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largest cluster (neuron 5) did not achieve the lowest standard deviation. In addition to this 

cluster 8, which consisted of predominantly financial companies (Table 6-3), was not the least 

diversified cluster.  

In Figure 6-4 (a) it can be seen that cluster 8 follows a similar trend to that of the All-Share 

Index and cluster 7 achieved high value weighted returns over the first 12 months. Cluster 3 

had the worst overall performance and cluster 1 had highly irregular performance, which is 

most evident in the value weighted results. This has been attributed to a single large firm 

distorting the weighting of the other companies. The greatest deviation in performance can 

be seen in the first 12 months and after 24 months most of the clusters (value and equally 

weighted) follow a similar trend to that of the benchmark. 

 

Figure 6-4: All Variables 2x4 SOM Financial Performance Comparison (a) Value Weighting (b) Equally Weighting 
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The statistical analysis shows that there is no evidence of the clusters having different 

performance. Even in the first 12 months, when Figure 6-4 revealed the greatest difference in 

returns, there is no evidence of the result being statistically significant. The results for the 

parametric and non-parametric tests (Table 6-5) indicate strong evidence in support of the 

returns being the same.  

Table 6-5: All Variables 2x4 SOM Statistical Results 

Period 

Value Weighting Equal Weighting 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

Year 1 
0.342764 0.576837 0.984334 0.988285 

Years 1 – 3 
0.592339 0.76126 0.804922 0.668708 

Years 1 – 5 
0.743797 0.885017 0.876417 0.769507 
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6.1.2 Primary Variables 

 

Figure 6-5: Primary Variables Clustering Validity 

The clustering validity using only the primary variables (M2) shows significant changes in 

validity with changes in SOM size (Figure 6-5). As with the results in Figure 6-2 these results 

show that the DB Index and SW differ. DI yields very erratic results and this can be attributed 

to the impact of outliers which were not completely removed by Winsorising. To maintain 

consistency with the previous results the 2x4 SOM was chosen again for further analysis. 
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Table 6-6: Primary Variables 2x4 SOM General Information 

NRN CMP SW 

Industry Composition Delisted (Per Year) 

Industry 
Cluster 

(%) 
1 2 3 4 5 

1 20* 0.24 Basic Materials 40 0 4 1 2 1 

2 26* -0.03 Financials 35 1 2 0 0 0 

3 17 0.14 Financials 47 1 0 2 4 0 

4 11* 0.11 Financials 82 0 1 0 0 0 

5 29* 0.19 Consumer Services 24 2 1 1 0 3 

6 56* 0.30 Industrials 32 2 2 0 1 1 

7 58* 0.28 Consumer Services 26 1 0 2 0 0 

8 38* -0.02 Financials 39 4 1 3 1 4 

* Investigated in financial analysis 

The general clustering information for M2 can be seen in Table 6-6. The cluster sizes are 

relatively constant and two of the clusters achieved negative SWs. Cluster 4 is comprised of 

mostly financial companies and this can be attributed to a combination of large MC (input 4), 

low PC (input 2) and V (input 5) (Figure 6-6). Cluster 1 is comprised of companies with 

significantly higher V (input 5) than the other clusters which is shown by the yellow neuron for 

input 5. Overall the colour scale is evenly spread for all the inputs with PB (input 1) suffering 

the most from a cluster of outliers. 

 

Figure 6-6: Primary Variables 2x4 SOM Weight Planes 
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Table 6-7: Primary Variables 2x4 SOM Financial Information 

NRN CMP Year 

Value Weighting Equal Weighting 

Mean 
Monthly 

Mean 
Excess 

Std Dev 
Mean 

Monthly 
Mean 
Excess 

Std Dev 

1 20 

1 -0.0356 -0.0414 0.0732 -0.0238 -0.0297 0.0510 
2 -0.0265 0.0003 0.1337 -0.0111 0.0157 0.0692 
3 -0.0286 -0.0432 0.0577 -0.0068 -0.0214 0.0342 
4 -0.0411 -0.0573 0.1784 -0.0184 -0.0345 0.0863 
5 0.0008 -0.0038 0.0330 -0.0083 -0.0130 0.0511 

2 26 

1 -0.0382 -0.0441 0.0464 -0.0244 -0.0303 0.0358 

2 -0.0677 -0.0409 0.1134 -0.0294 -0.0026 0.0396 

3 -0.0004 -0.0149 0.0441 -0.0042 -0.0188 0.0433 

4 0.0172 0.0011 0.0417 0.0109 -0.0053 0.0318 

5 0.0176 0.0129 0.0367 0.0159 0.0112 0.0224 

4** 11 

1 -0.0251 -0.0309 0.0849 -0.0132 -0.0190 0.0622 

2 -0.0040 0.0228 0.0897 -0.0005 0.0263 0.0556 

3 0.0200 0.0055 0.0435 0.0191 0.0046 0.0424 

4 0.0122 -0.0040 0.0467 0.0136 -0.0025 0.0396 

5 0.0192 0.0145 0.0325 0.0177 0.0130 0.0280 

5 29 

1 0.0225 0.0166 0.0678 -0.0177 -0.0236 0.0501 

2 -0.0353 -0.0085 0.1174 -0.0161 0.0107 0.0571 

3 0.0147 0.0001 0.0617 0.0195 0.0050 0.0372 

4 0.0181 0.0020 0.0531 0.0055 -0.0106 0.0375 

5 -0.0035 -0.0082 0.0690 0.0002 -0.0045 0.0404 

6 56 

1 -0.0091 -0.0150 0.0567 -0.0204 -0.0263 0.0485 

2 -0.0261 0.0007 0.0825 -0.0231 0.0037 0.0539 

3 0.0211 0.0065 0.0343 0.0121 -0.0024 0.0292 

4 0.0085 -0.0076 0.0481 0.0027 -0.0134 0.0366 

5 0.0181 0.0134 0.0254 0.0138 0.0091 0.0265 

7 58 

1 -0.0004 -0.0063 0.0555 -0.0220 -0.0279 0.0583 

2 -0.0488 -0.0220 0.1140 -0.0070 0.0198 0.0705 

3 0.0170 0.0024 0.0516 0.0218 0.0072 0.0412 

4 0.0202 0.0040 0.0443 0.0126 -0.0035 0.0384 

5 0.0033 -0.0014 0.0437 0.0079 0.0032 0.0260 
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8 38 

1 0.0018 -0.0041 0.0473 -0.0096 -0.0155 0.0428 

2 -0.0338 -0.0070 0.1109 -0.0324 -0.0056 0.0820 

3 0.0130 -0.0016 0.0443 0.0164 0.0019 0.0292 

4 0.0092 -0.0069 0.0352 0.0050 -0.0111 0.0288 

5 0.0048 0.0001 0.0285 -0.0317 -0.0364 0.0870 

** Not included in statistical analysis 

The financial results for the clustering completed using only the primary variables shows a 

trend of the poor first and second year average monthly returns. This is most evident when 

equal weighting is given to the companies in each portfolio. Considering the equal weightings 

cluster 2 has achieved the lowest standard deviation. Even though cluster 4 was comprised 

of predominantly financial companies it was still able to achieve a relatively low standard 

deviation. Considering the value weighted and equally weighted returns shows that clusters 1 

and 2 could be considered the poorest performer, which is also evident in Figure 6-7. The 

performance of cluster 7 can also be seen to vary significantly in Figure 6-7 due to the 

clusters small size. None of the clusters achieved notably high returns over any of the years, 

however cluster 8 achieved very poor fifth year equal weighting results.  

 

 

Figure 6-7: Primary Variables 2x4 SOM Financial Performance Comparison (a) Value Weighting (b) Equally 
Weighting 
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The statistical results shown in Table 6-8 were computed using clusters 1, 2, 5, 6, 7 and 8. As 

with the results shown in Table 6-5 there is insufficient evidence to support the hypothesis 

that the clusters achieved significantly different results. By considering the returns shown in 

Table 6-7 it can be concluded that there is no difference in the performance of the clusters.  

A direct comparison between the value and equally weighted results in Table 6-8 shows that 

the value weighted results were more statistically significant. Cluster 5 was assumed to be 

the main driver behind this because it had the most different performance over the first 12 

months, when using value weighting. It was found that the returns for this cluster were largely 

driven by BHP Billiton which outweighed its counterparts.  

Table 6-8: Primary Variables 2x4 SOM Statistical Results 

Period 

Value Weighting Equal Weighting 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

Year 1 
0.104908 0.132077 0.977726 0.912542 

Years 1 – 3 
0.296169 0.264155 0.764343 0.426352 

Years 1 – 5 
0.207067 0.398918 0.512728 0.521047 

Although the results in Table 6-9 show that the null hypothesis of similar returns could not be 

rejected it was decided to investigate the results in more detail. The first year value weighted 

post hoc Tukey HSD results are shown in Table 6-9 (page 68) where it can be seen that 

cluster 5’s relationship with clusters 1 and 2 was the main driver behind the high statistical 

significance. Apart from this, clusters 1 and 2 can be seen to have very similar performance 

as well as clusters 7 and 8 in Table 6-9 (page 68). Similar performance would not normally be 

considered important however in this case the clusters with similar performance were next to 

one another in the SOM implying they had similar input vectors. 
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Table 6-9: Primary Variables 2x4 Year 1 Tukey HSD Results 

Portfolio Mean Difference 
Significance 

95% Confidence Interval 

I J (I-J) Lower Bound Upper Bound 

1 

2 0.0026 1.0000 -0.0677 0.0729 

5 -0.0581 0.1629 -0.1284 0.0122 

6 -0.0265 0.8774 -0.0968 0.0438 

7 -0.0351 0.6866 -0.1054 0.0352 

8 -0.0374 0.6274 -0.1077 0.0329 

2 

1 -0.0026 1.0000 -0.0729 0.0677 

5 -0.0607 0.1292 -0.1310 0.0096 

6 -0.0291 0.8281 -0.0994 0.0412 

7 -0.0377 0.6174 -0.1081 0.0326 

8 -0.0400 0.5567 -0.1103 0.0303 

5 

1 0.0581 0.1629 -0.0122 0.1284 

2 0.0607 0.1292 -0.0096 0.1310 

6 0.0316 0.7735 -0.0387 0.1019 

7 0.0230 0.9293 -0.0474 0.0933 

8 0.0207 0.9535 -0.0496 0.0910 

6 

1 0.0265 0.8774 -0.0438 0.0968 

2 0.0291 0.8281 -0.0412 0.0994 

5 -0.0316 0.7735 -0.1019 0.0387 

7 -0.0086 0.9992 -0.0790 0.0617 

8 -0.0109 0.9975 -0.0812 0.0594 

7 

1 0.0351 0.6866 -0.0352 0.1054 

2 0.0377 0.6174 -0.0326 0.1081 

5 -0.0230 0.9293 -0.0933 0.0474 

6 0.0086 0.9992 -0.0617 0.0790 

8 -0.0022 1.0000 -0.0726 0.0681 

8 

1 0.0374 0.6274 -0.0329 0.1077 

2 0.0400 0.5567 -0.0303 0.1103 

5 -0.0207 0.9535 -0.0910 0.0496 

6 0.0109 0.9975 -0.0594 0.0812 

7 0.0022 1.0000 -0.0681 0.0726 
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6.2 Single Variable Clustering 

The single variable clustering yielded mixed results. In general the clustering validity shows a 

low number of clusters are optimal. From a financial cluster analysis perspective this is not 

practical and for this reason the 3x4 SOM results were analysed in more detail for DE, PB, 

PC, PE, QR, RA and RE. In comparison the clustering completed with MC and V achieved 

the best cluster sizes for financial analysis with 2x4 SOMs. 

6.2.1 Debt/ Equity 

 

Figure 6-8: Debt/ Equity Clustering Validity 

The clustering validity in Figure 6-8 for DE suggests that the ideal number of clusters is two. 

The cluster sizes related to this test are 36 and 219 and therefore the small SOM does not 

lend itself to financial interpretation for the ideal number of clusters. A similar trend is noticed 

with the other small SOMs so by only comparing the larger SOM networks (10 – 15) it can be 

seen that there is little difference in the clustering validity. The 3x4 achieved the most 

appropriate cluster sizes for further analysis and has been shown in Table 6-10. 
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Table 6-10: Debt/ Equity 3x4 SOM General Information 

NRN CMP SW 

Industry Composition Delisted (Per Year) 

Industry 
Cluster 

(%) 
1 2 3 4 5 

1* 13 0.66 Financials 100 0 1 0 0 0 

2 11 0.16 Financials 45 1 1 1 2 1 

3 5 0.21 Consumer Services 40 2 0 0 0 0 

4 2 0.12 Technology 50 1 0 0 0 0 

5 8 0.05 Financials 50 0 0 0 1 0 

6 4 0.49 Financials 50 0 0 1 0 0 

7 9 0.23 Financials 67 1 0 0 1 0 

8* 37 -0.01 Industrials 32 2 1 0 2 2 

9* 82 0.31 Industrials 26 1 4 3 0 1 

10 3 0.25 Technology 33 1 0 0 0 1 

11* 71 0.33 Financials 28 2 3 4 1 4 

12 10 -0.02 Basic Materials 40 0 1 0 1 0 

* Investigated in financial analysis 

Three main clusters can be seen in Table 6-10 (neurons 8,9 and 11) and one cluster is 

comprised of only financial companies (neuron 1). Analysis of Figure 6-9 shows that clusters 

8, 9 and 11 are all relatively similar with the smaller clusters being comprised of companies 

with irregular inputs. The financial cluster (neuron 1) is comprised of companies with high 

leverage as shown in Figure 6-9. Cluster 4, which is the smallest cluster, had the most erratic 

inputs with the weight plane for input 3 differing significantly to the other planes. This would 

not be apparent if the clustering was completed using only one year of input values. Overall 

the colour range shows that the SOM was able to show small changes in DE and this 

variable was not distorted by outliers. Clusters 1, 8, 9 and 11 have been investigated in more 

detail in Table 6-11. 

 

Figure 6-9: Debt/ Equity 3x4 SOM Weight Planes 
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Table 6-11: Debt/ Equity 3x4 SOM Financial Information 

NRN CMP Year 

Value Weighting Equal Weighting 

Mean 
Monthly 

Mean 
Excess 

Std Dev 
Mean 

Monthly 
Mean 
Excess 

Std Dev 

1** 13 

1 -0.0322 -0.0381 0.0793 -0.0242 -0.0301 0.0577 

2 0.0061 0.0329 0.0931 0.0066 0.0334 0.0615 

3 0.0174 0.0028 0.0482 0.0219 0.0074 0.0409 

4 0.0100 -0.0061 0.0481 0.0184 0.0023 0.0369 

5 0.0164 0.0117 0.0336 0.0141 0.0094 0.0297 

8 37 

1 -0.0155 -0.0214 0.0658 -0.0179 -0.0238 0.0567 

2 -0.0054 0.0214 0.0732 -0.0300 -0.0032 0.0627 

3 0.0202 0.0057 0.0323 0.0102 -0.0044 0.0325 

4 0.0152 -0.0009 0.0382 0.0112 -0.0049 0.0400 

5 0.0185 0.0138 0.0261 0.0035 -0.0012 0.0307 

9 82 

1 0.0124 0.0065 0.0571 -0.0212 -0.0271 0.0438 
2 -0.0488 -0.0220 0.1162 -0.0241 0.0027 0.0609 
3 0.0134 -0.0011 0.0558 0.0155 0.0009 0.0338 
4 0.0169 0.0008 0.0480 0.0058 -0.0104 0.0320 
5 -0.0042 -0.0089 0.0548 0.0042 -0.0005 0.0230 

11 71 

1 -0.0040 -0.0099 0.0448 -0.0186 -0.0245 0.0378 

2 -0.0470 -0.0202 0.1397 -0.0148 0.0120 0.0476 

3 0.0192 0.0046 0.0247 0.0129 -0.0016 0.0206 

4 0.0150 -0.0011 0.0359 0.0029 -0.0133 0.0327 

5 0.0075 0.0028 0.0447 0.0019 -0.0028 0.0319 

** Not included in statistical analysis 

Only four clusters were chosen for financial analysis, of which only three were of adequate 

size.  Cluster 1 was comprised of only financial companies and the portfolio standard 

deviation for this cluster was greater than the others in the first year, however this is not 

noticeable in the later years. The first noticeable feature is the mean monthly excess returns 

for cluster 9 which are relatively near zero, implying that this cluster followed a similar value 

weighted performance to the JSE All-share Index. This feature is most apparent in the first 12 

months in Figure 6-10 (page 72). After this, cluster 9 has poor performance relative to the 

benchmark for 12 months and then follows the same trend as the benchmark. In general 

Cluster 8 obtained the best value weighted returns over years three to five, which is apprent 

in both Table 6-11 and Figure 6-10 (page 72). 
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Figure 6-10: Debt/ Equity 3x4 SOM Financial Performance Comparison (a) Value Weighting (b) Equally Weighting 

From the ANOVA and Kruskal-Wallis analysis (Table 6-12) it can be seen that clusters 8,9 

and 11 achieved similar result as the tests were unable to reject the null hypothesis. This lack 

of statistical significance is confrmed visually in Figure 6-10 where all the clusters are seen to 

follow a similar trend. 

Table 6-12: Debt/ Equity 3x4 SOM Statistical Results 

Period 

Value Weighting Equal Weighting 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

Year 1 
0.484839 0.808591 0.983334 0.94525 

Years 1 – 3 
0.847135 0.732637 0.878305 0.911849 

Years 1 – 5 
0.71803 0.429329 0.982826 0.994558 
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6.2.2 Price/ Book Value 

 

Figure 6-11: Price/ Book Value Clustering Validity 

The PB clustering validity reveals mixed results as shown in Figure 6-11. This can be 

attributed to the presence of outliers within the data making clustering more difficult. Again 

the smaller SOMs achieved superior validity for the majority of the tests. Considering the 

larger SOMs, the DB index shows that 10 clusters achieved very poor results. In general 

11x1 or 3x4 SOMs have produced the best clustering validity. Again the 3x4 SOM was 

chosen. Although the 11x1 SOM achieved better validity in several tests it is a one 

dimensional SOM and this would have compressed the input data more.  
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Table 6-13: Price/ Book Value 3x4 SOM General Information 

NRN CMP SW 

Industry Composition Delisted (Per Year) 

Industry 
Cluster 

(%) 
1 2 3 4 5 

1 7 0.52 Financials 43 1 0 0 1 0 

2 5 0.18 Telecommunications 20 0 1 0 1 0 

3 6 0.43 Basic Materials 50 0 0 0 2 0 

4 13 0.17 Consumer Services 31 2 1 0 0 0 

5 41* 0.13 Financials 37 1 0 1 2 0 

6 3* 0.48 Consumer Services 100 1 0 0 0 0 

7 7 0.00 Technology 29 2 0 0 0 0 

8 35* 0.18 Consumer Services 31 0 0 0 0 1 

9 83* 0.37 Financials 35 3 3 5 2 3 

10 6 -0.04 Technology 33 0 0 1 0 2 

11 44* 0.18 Financials 34 1 6 2 0 2 

12 5* 0.54 Basic Materials 100 0 0 0 0 1 

* Investigated in financial analysis 

Four large clusters are apparent in Table 6-13 and the largest cluster (neuron 9) being 

significantly larger than the others. Overall the SW values for the individual clusters are high 

and since clusters 6 and 12 were comprised of single industries they have been included in 

the financial analysis. Clusters 5, 8, 9 and 11 all achieved relatively similar inputs with cluster 

11 having slightly lower inputs. The smaller clusters from Table 6-13 are comprised of 

irregular inputs (Figure 6-12). The overall colour scale in Figure 6-12 is evenly spread 

however the PB input across the five years varies. The most important clusters from Table 

6-13 have been investigated in more detail in Table 6-14. 

 

Figure 6-12: Price/ Book Value 3x4 SOM Weight Planes 
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Table 6-14: Price/ Book Value 3x4 SOM Financial Information 

NRN CMP Year 

Value Weighting Equal Weighting 

Mean 
Monthly 

Mean 
Excess 

Std Dev 
Mean 

Monthly 
Mean 
Excess 

Std Dev 

5 41 

1 -0.0082 -0.0141 0.0571 -0.0200 -0.0258 0.0502 

2 -0.0255 0.0013 0.0929 -0.0124 0.0144 0.0456 

3 0.0177 0.0031 0.0344 0.0117 -0.0029 0.0287 

4 0.0133 -0.0029 0.0339 0.0112 -0.0049 0.0336 

5 0.0105 0.0058 0.0382 0.0116 0.0069 0.0196 

6** 3 

1 -0.0143 -0.0202 0.0472 -0.0103 -0.0162 0.0352 

2 0.0203 0.0471 0.0517 0.0205 0.0473 0.0645 

3 0.0231 0.0085 0.0352 0.0202 0.0057 0.0278 

4 0.0015 -0.0146 0.0577 0.0065 -0.0096 0.0500 

5 0.0114 0.0067 0.0467 0.0129 0.0082 0.0413 

8 35 

1 0.0168 0.0109 0.0687 -0.0240 -0.0299 0.0609 

2 -0.0506 -0.0238 0.1283 -0.0208 0.0060 0.0694 

3 0.0173 0.0027 0.0660 0.0204 0.0058 0.0385 

4 0.0222 0.0060 0.0525 0.0137 -0.0024 0.0332 

5 -0.0024 -0.0071 0.0651 0.0093 0.0046 0.0220 

9 83 

1 -0.0211 -0.0270 0.0506 -0.0249 -0.0308 0.0456 

2 -0.0337 -0.0069 0.0915 -0.0215 0.0053 0.0600 

3 0.0129 -0.0016 0.0328 0.0172 0.0027 0.0260 

4 0.0117 -0.0044 0.0352 0.0077 -0.0084 0.0322 

5 0.0082 0.0035 0.0249 0.0094 0.0047 0.0220 

11 44 

1 -0.0212 -0.0271 0.0455 -0.0183 -0.0242 0.0356 

2 -0.0541 -0.0273 0.0842 -0.0186 0.0082 0.0432 

3 -0.0043 -0.0188 0.0837 -0.0059 -0.0204 0.0187 

4 -0.0060 -0.0221 0.0680 -0.0056 -0.0217 0.0468 

5 0.0045 -0.0002 0.0298 -0.0036 -0.0083 0.0600 

12** 5 

1 0.0082 0.0023 0.0875 0.0193 0.0134 0.1127 

2 -0.0786 -0.0518 0.2331 -0.1033 -0.0765 0.2065 

3 0.0208 0.0062 0.0785 0.0117 -0.0029 0.1019 

4 -0.0090 -0.0251 0.0553 0.0013 -0.0148 0.0535 

5 -0.0437 -0.0484 0.0767 -0.1341 -0.1388 0.3845 

** Not included in statistical analysis  

The financial results in Table 6-14 show that cluster 6 achieved low portfolio standard 

deviations, even though it only consisted of three companies. This cluster also achieved high 

returns in the second year, especially considering the poor returns for the market in general. 
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This is highlighted by the large excess monthly average returns for the second year. Cluster 

11 performed very poorly over all five years for both the value and equally weighted results. 

In fact this cluster only achieved positive mean monthly returns in the fifth year. Cluster 12 

was comprised of companies only from the basic materials industry and it did achieve poor 

portfolio standard deviation for the first three years. 

Clusters 6 and 12, which are the two smallest PB clusters, had the greatest difference in 

performance over the five year period as shown in Figure 6-13. Besides these two clusters 

none of the returns achieved stand out from the general trend. 

 

 

Figure 6-13: Price/ Book Value 3x4 SOM Financial Performance Comparison (a) Value Weighting (b) Equally 
Weighting 

The most significant statistical results in Table 6-15 (page Table 6-15) occurred over the 

single year and five year periods. Again the value weighted results indicate more likely 

evidence of the clusters performing differently, however, the significance of these results is 

still very poor. A more detailed look at the statistical results shows that none of the value 

weighted clusters achieved significantly different results over any of the test periods and 

similar results can be noted for the equally weighted tests. Figure 6-13, with the exclusion of 
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clusters 6 and 12 which were not included in the statistical analysis, supports this conclusion 

that the performance of the clusters was relatively similar. 

Table 6-15: Price/ Book Value 3x4 SOM Statistical Results 

Period 

Value Weighting Equal Weighting 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

Year 1 
0.31558 0.448116 0.985073 0.982655 

Years 1 – 3 
0.604197 0.650791 0.919716 0.521299 

Years 1 – 5 
0.432343 0.640406 0.504203 0.294682 
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6.2.3 Price/ Cash Flow 

 

Figure 6-14: Price/ Cash Flow Clustering Validity 

As with the PB clustering (Figure 6-11), the PC clustering (Figure 6-14) has yielded large 

jumps in clustering validity as the SOM size increases. SW, DI and DI alternative suggest that 

6 clusters achieved relatively good clustering. The cluster sizes for this test are however not 

ideal for further analysis and to be consistent with the majority of the tests in this section it 

was decided to rather analyse the 3x4 SOM in more detail. 
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Table 6-16: Price/ Cash Flow 3x4 SOM General Information 

NRN CMP SW 

Industry Composition Delisted (Per Year) 

Industry 
Cluster 

(%) 
1 2 3 4 5 

1 10 0.09 Financials 50 2 0 0 1 0 

2 10 0.15 Financials 60 0 0 0 2 0 

3 6 0.07 Financials 50 0 1 1 0 0 

4 26* 0.04 Financials 35 0 0 0 1 3 

5 69* 0.27 Consumer Services 29 3 1 2 1 1 

6 28* 0.11 Basic Materials 29 1 3 0 1 2 

7 13 -0.03 Financials 69 1 0 4 1 0 

8 70* 0.22 Industrials 34 3 4 2 0 3 

9 4 0.12 Basic Materials 50 0 0 0 0 0 

10 2* 0.29 Basic Materials 100 0 0 0 0 0 

11 11 0.06 Financials 36 1 2 0 0 0 

12 6 0.66 Basic Materials 50 0 0 0 1 0 

* Investigated in financial analysis 

Table 6-16 shows that the PC clustering achieved two very large clusters (neurons 5 and 8) 

and two slightly smaller clusters (neurons 4 and 6) which have been considered appropriate 

for financial analysis. Cluster 6 is comprised of companies with lower PC values than the 

other significant clusters (Figure 6-15). Cluster 10 is comprised of only two companies due to 

inconsistent PC values (Figure 6-15). Overall the SW values in Table 6-16 are low with only 

the small cluster at neuron 12 achieving a high SW. 

 

Figure 6-15: Price/ Cash Flow 3x4 SOM Weight Planes 

  



80 
 

Table 6-17: Price/ Cash Flow 3x4 SOM Financial Information 

NRN CMP Year 

Value Weighting Equal Weighting 

Mean 
Monthly 

Mean 
Excess 

Std Dev 
Mean 

Monthly 
Mean 
Excess 

Std Dev 

4 26 

1 0.0043 -0.0016 0.0505 -0.0173 -0.0231 0.0475 
2 -0.0370 -0.0102 0.1466 -0.0127 0.0141 0.0731 
3 0.0224 0.0079 0.0492 0.0205 0.0059 0.0333 
4 0.0058 -0.0103 0.0392 -0.0049 -0.0211 0.0597 
5 0.0105 0.0058 0.0363 -0.0085 -0.0132 0.0763 

5 69 

1 0.0029 -0.0030 0.0602 -0.0181 -0.0240 0.0515 

2 -0.0466 -0.0198 0.1233 -0.0086 0.0182 0.0567 

3 0.0124 -0.0022 0.0529 0.0193 0.0048 0.0321 

4 0.0200 0.0039 0.0458 0.0142 -0.0020 0.0289 

5 -0.0016 -0.0063 0.0395 0.0044 -0.0003 0.0350 

6 28 

1 -0.0257 -0.0315 0.0867 -0.0167 -0.0226 0.0495 

2 -0.0050 0.0218 0.0969 -0.0300 -0.0032 0.0509 

3 0.0150 0.0004 0.0421 0.0010 -0.0136 0.0270 

4 0.0058 -0.0103 0.0481 -0.0024 -0.0185 0.0604 

5 0.0155 0.0108 0.0318 -0.0007 -0.0054 0.0404 

8 70 

1 0.0123 0.0064 0.0598 -0.0197 -0.0256 0.0455 
2 -0.0385 -0.0117 0.0916 -0.0267 0.0001 0.0596 
3 0.0116 -0.0030 0.0495 0.0131 -0.0014 0.0355 
4 0.0213 0.0051 0.0470 0.0079 -0.0082 0.0312 
5 -0.0006 -0.0053 0.0548 0.0051 0.0005 0.0239 

10** 2 

1 -0.0036 -0.0095 0.1743 0.0052 -0.0007 0.1840 

2 -0.0136 0.0132 0.1818 -0.0078 0.0190 0.1732 

3 -0.0011 -0.0156 0.0621 -0.0223 -0.0369 0.0675 

4 0.0085 -0.0077 0.0768 0.0033 -0.0128 0.0688 

5 -0.0108 -0.0155 0.1011 0.0148 0.0101 0.1080 

** Not included in statistical analysis 

Only four clusters in Table 6-17 were comprised of a significant number of companies. 

Cluster 10 consisted of two companies and therefore achieved poor portfolio diversification 

over the first two years. The performance of cluster 10 in Figure 6-16 (page 81) shows 

relatively stable returns considering the cluster only contains two companies. For equal 

weighting, cluster 6 achieved poor returns over all five output years. However, looking at 

Figure 6-16 shows that this poor performance does not stand out from that of the other 

clusters. 
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Figure 6-16: Price/ Cash Flow 3x4 SOM Financial Performance Comparison (a) Value Weighting (b) Equally 
Weighting 

The relatively similar returns noted in Figure 6-16 and Table 6-17 are evident in Table 6-18 

where it can be seen that the null hypothesis could not be rejected. The non-parametric 

results for the equally weighted clusters in Table 6-18 over the three and five year periods 

indicate the greatest likelihood of the clusters having different results. Even though these 

results are the most indicative of differing cluster performance the evidence strongly suggests 

that the performance was the same. 

Table 6-18: Price/ Cash Flow 3x4 SOM Statistical Results 

Period 

Value Weighting Equal Weighting 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

Year 1 
0.519774 0.565027 0.998836 0.993571 

Years 1 – 3 
0.985548 0.928124 0.63778 0.293067 

Years 1 – 5 
0.987918 0.946698 0.605451 0.313924 
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6.2.4 Price/ Earnings 

 

Figure 6-17: Price/ Earnings Clustering Validity 

The PE clustering has resulted in the best clustering being achieved with the very small 

SOMs (Figure 6-17). Considering the cluster sizes from 5 onwards it can be seen that the 

clustering validity has a general trend of improved performance. Evaluating the largest SOM 

reveals that as the number of neurons increased, the dominant cluster remained relatively 

unchanged and the smaller clusters were broken down. This same trend was noted with the 

other clustering tests and is due to the very compact data for the price ratios. The clusters 

produced by this variable were consistently uneven, making analysis difficult. It was decided 

to analyse the 3x4 SOM to be consistent with the previous tests, even though this SOM did 

not produce ideal clusters for analysis. 
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Table 6-19: Price/ Earnings 3x4 SOM General Information 

NRN CMP SW 

Industry Composition Delisted (Per Year) 

Industry 
Cluster 

(%) 
1 2 3 4 5 

1 13 0.19 Basic Materials 38 0 1 0 1 2 

2 13 0.05 Consumer Goods 23 0 2 1 0 1 

3 5 -0.05 Financials 60 1 0 1 1 0 

4 24* -0.04 Consumer Services 25 3 1 1 0 1 

5 92* 0.47 Industrials 26 3 1 1 0 2 

6 10 0.16 Basic Materials 40 0 1 0 3 0 

7 8 0.28 Basic Materials 38 0 0 1 0 0 

8 53* 0.02 Financials 34 2 2 2 0 1 

9 18 0.12 Financials 33 1 3 1 1 2 

10 6 0.00 Consumer Services 33 0 0 0 1 0 

11 3 0.43 Financials 67 0 0 1 0 0 

12 10* 0.16 Basic Materials 80 1 0 0 1 0 

* Investigated in financial analysis 

The PE general results are shown in Table 6-19 where it can be seen that this input variable 

was not able to generate even cluster sizes. This large cluster (neuron 5) achieved a 

relatively high SW however the majority of the remaining clusters have lower SWs. The 

second and third largest clusters (neurons 4 and 8 respectively) achieved very poor SWs. In 

general cluster 4 is comprised of companies with greater PE than cluster 5 (Figure 6-18). 

Cluster 8 is comprised of companies with lower PE ratios than cluster 5 (Figure 6-18). Cluster 

12 consists mostly of basic material companies and this cluster had the lowest PE values 

across the five years as shown by the dark neurons in Figure 6-18. 

 

Figure 6-18: Price/ Earnings 3x4 SOM Weight Planes 
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Table 6-20: Price/ Earnings 3x4 SOM Financial Information 

NRN CMP Year 

Value Weighting Equal Weighting 

Mean 
Monthly 

Mean 
Excess 

Std Dev 
Mean 

Monthly 
Mean 
Excess 

Std Dev 

4 24 

1 0.0003 -0.0056 0.0509 -0.0182 -0.0241 0.0344 

2 -0.0228 0.0040 0.1479 -0.0040 0.0228 0.0343 

3 0.0148 0.0003 0.0539 0.0215 0.0070 0.0331 

4 0.0051 -0.0111 0.0524 0.0005 -0.0156 0.0380 

5 0.0028 -0.0019 0.0296 0.0085 0.0038 0.0151 

5 92 

1 -0.0084 -0.0143 0.0589 -0.0228 -0.0287 0.0551 

2 -0.0382 -0.0114 0.1014 -0.0087 0.0181 0.0540 

3 0.0171 0.0026 0.0483 0.0176 0.0030 0.0314 

4 0.0153 -0.0008 0.0430 0.0098 -0.0063 0.0320 

5 0.0081 0.0034 0.0380 0.0137 0.0091 0.0199 

8 53 

1 -0.0179 -0.0238 0.0580 -0.0203 -0.0262 0.0414 

2 -0.0217 0.0051 0.0695 -0.0225 0.0043 0.0603 

3 0.0226 0.0081 0.0336 0.0112 -0.0033 0.0280 

4 -0.0045 -0.0207 0.0548 0.0014 -0.0147 0.0392 

5 0.0142 0.0096 0.0196 0.0113 0.0066 0.0235 

12** 10 

1 -0.0041 -0.0100 0.0549 -0.0094 -0.0152 0.0762 

2 -0.0102 0.0166 0.0815 -0.0184 0.0084 0.1281 

3 0.0227 0.0081 0.0281 0.0036 -0.0109 0.0522 

4 0.0189 0.0028 0.0304 0.0059 -0.0103 0.0638 

5 0.0193 0.0147 0.0370 -0.0023 -0.0070 0.0472 

** Not included in statistical analysis 

The four clusters shown in Table 6-20 were generated by the PE clustering. All of the clusters 

achieved poor first year results. Cluster 12, which comprised of companies predominantly 

from the basic materials sector, did not achieve greater portfolio standard deviations over the 

five years. The value weighted performance of cluster 12 was however very strong in the final 

24 months of the analysis which is more evident in Figure 6-19 (page 85). Apart from cluster 

12 there are no significant deviations in financial performance and the clusters chosen for 

further analysis. 
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Figure 6-19: Price/ Earnings 3x4 SOM Financial Performance Comparison (a) Value Weighting (b) Equally Weighting 

The statistical analysis (Table 6-21) reveals that there is no evidence to support the 

hypothesis that the clusters achieved different returns, as previously mentioned. Compared 

to the other clustering tests shown thus far the PE clusters are arguably the most similar with 

regards to the returns achieved. 

Table 6-21: Price/ Earnings 3x4 SOM Statistical Results 

Period 

Value Weighting Equal Weighting 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

Year 1 
0.731032 0.880842 0.968173 0.904973 

Years 1 – 3 
0.922865 0.918067 0.619588 0.813328 

Years 1 – 5 
0.991097 0.890089 0.670656 0.68416 

 

  



86 
 

6.2.5 Quick Ratio 

 

Figure 6-20: Quick Ratio Clustering Validity 

The QR clustering achieved a constant trend of decreasing validity with an increase in cluster 

size (Figure 6-20). As mentioned in the DE clustering the 2x1 SOM has yielded the best 

validity, however the cluster sizes for this SOM were 40 and 215. The significantly better 

results achieved by the 2x1 SOM have distorted the scale. From the DB Index and SW it can 

be seen that the SOMs which produced 12, 13 and 14 clusters were relatively equal with 

regards to validity. Again it was decided to analyse the 3x4 SOM in more detail. 
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Table 6-22: Quick Ratio 3x4 SOM General Information 

NRN CMP SW 

Industry Composition Delisted (Per Year) 

Industry 
Cluster 

(%) 
1 2 3 4 5 

1* 7 0.15 Consumer Services 43 1 0 1 0 2 

2 11 0.12 Financials 45 0 1 0 1 1 

3 11 0.10 Basic Materials 27 0 0 0 2 0 

4 13 0.02 Consumer Services 31 0 1 0 0 0 

5* 51 0.13 Financials 31 2 4 1 3 0 

6* 36 0.37 Financials 36 4 0 0 0 0 

7 11 0.39 Financials 64 0 0 3 1 0 

8 6 0.20 Financials 50 0 1 0 0 1 

9* 63 0.30 Industrials 37 2 2 3 0 3 

10 5 0.41 Basic Materials 40 1 1 0 0 0 

11 4 0.38 Financials 75 0 1 1 0 0 

12* 37 0.16 Industrials 27 1 0 0 1 2 

* Investigated in financial analysis 

The results for the 3x4 SOM from the QR clustering are shown in Table 6-22. Analysis of the 

industry compositions of the clusters shows no conclusive results. The delisting information 

shows that four out of the seven companies in cluster 1 delisted, which should be 

investigated in more detail. The cluster sizes are varied however the four largest clusters (5, 

6, 9 and 12) are relatively similar in size. Overall these four clusters achieved below average 

QR inputs (shown in Figure 6-21). Figure 6-21 also shows that the colour map has not been 

distorted and the neuron colours are well spread across the spectrum.  

 

Figure 6-21: Quick Ratio 3x4 SOM Weight Planes 
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Table 6-23: Quick Ratio 3x4 SOM Financial Information 

NRN CMP Year 

Value Weighting Equal Weighting 

Mean 
Monthly 

Mean 
Excess 

Std Dev 
Mean 

Monthly 
Mean 
Excess 

Std Dev 

1** 7 

1 -0.0362 -0.0421 0.0765 -0.0256 -0.0315 0.0622 
2 0.0054 0.0322 0.0691 0.0043 0.0311 0.0606 
3 0.0311 0.0166 0.0503 0.0296 0.0150 0.0429 
4 0.0239 0.0078 0.0594 0.0230 0.0068 0.0433 
5 0.0119 0.0072 0.0314 0.0132 0.0085 0.0276 

5 51 

1 0.0016 -0.0043 0.0605 -0.0237 -0.0296 0.0475 

2 -0.0128 0.0140 0.0654 -0.0155 0.0113 0.0528 

3 0.0035 -0.0110 0.0414 0.0165 0.0020 0.0257 

4 0.0277 0.0116 0.0479 0.0028 -0.0133 0.0409 

5 0.0086 0.0039 0.0282 0.0137 0.0090 0.0176 

6 36 

1 -0.0057 -0.0116 0.0571 -0.0071 -0.0130 0.0504 

2 -0.0316 -0.0048 0.1189 -0.0141 0.0127 0.0600 

3 0.0236 0.0091 0.0475 0.0112 -0.0034 0.0344 

4 0.0075 -0.0087 0.0375 0.0061 -0.0101 0.0279 

5 0.0142 0.0095 0.0292 0.0055 0.0008 0.0187 

9 63 

1 0.0086 0.0027 0.0548 -0.0153 -0.0212 0.0463 
2 -0.0480 -0.0212 0.1161 -0.0310 -0.0042 0.0696 
3 0.0146 0.0000 0.0535 0.0124 -0.0022 0.0378 
4 0.0165 0.0004 0.0435 0.0112 -0.0049 0.0325 
5 -0.0051 -0.0097 0.0517 -0.0073 -0.0120 0.0308 

12 37 

1 -0.0042 -0.0101 0.0628 -0.0216 -0.0274 0.0424 
2 -0.0408 -0.0140 0.1431 -0.0316 -0.0048 0.0510 
3 0.0186 0.0040 0.0398 0.0187 0.0042 0.0359 
4 0.0132 -0.0029 0.0356 0.0079 -0.0082 0.0256 
5 0.0103 0.0056 0.0293 -0.0080 -0.0127 0.0587 

** Not included in statistical analysis 

The QR clustering financial results in Table 6-23 show that cluster 1 achieved superior 

returns over years two to five for both the equally weighted and value weighted clusters 

(Figure 6-22 page 89). Clusters 9 and 12 performed the most poorly of the clusters and this is 

most evident in the equally weighted results.  
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Figure 6-22: Quick Ratio 3x4 SOM Financial Performance Comparison (a) Value Weighting (b) Equally Weighting 

Figure 6-22 shows that overall there is no significant difference in financial performance, 

excluding cluster 1. Since the statistical analysis only involves the larger clusters it is 

expected that the results would not yield any statistically significant results and this can be 

seen in Table 6-24. 

Table 6-24: Quick Ratio 3x4 SOM Statistical Results 

Period 

Value Weighting Equal Weighting 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

Year 1 
0.931718 0.965648 0.822069 0.770223 

Years 1 – 3 
0.984724 0.948938 0.885212 0.780289 

Years 1 – 5 
0.913919 0.83181 0.763244 0.753145 
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6.2.6 Return on Assets 

 

Figure 6-23: Return on Assets Clustering Validity 

The clustering for RA (Figure 6-23) shows different results to the other single variable 

clustering tests. These results show that the 3x1 SOM has outperformed the 2x1 SOM 

however this small SOM still does not lend itself to further interpretation. As with the previous 

tests these results show little difference between the results for SOM sizes ranging from 10 to 

12 so it was decided to investigate the 3x4 SOM in more detail. This SOM achieved cluster 

sizes adequate for further analysis. 
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Table 6-25: Return on Assets 3x4 SOM General Information 

NRN CMP SW 

Industry Composition Delisted (Per Year) 

Industry 
Cluster 

(%) 
1 2 3 4 5 

1 11 0.34 Basic Materials 55 0 0 0 0 1 

2 8 0.06 Basic Materials 50 1 0 0 0 0 

3* 33 0.15 Industrials 30 1 1 1 0 2 

4 5 -0.03 Basic Materials 60 0 1 0 0 0 

5* 68 0.34 Industrials 28 5 1 0 1 1 

6 4 0.15 Consumer Services 25 0 1 1 1 0 

7* 1 - Technology 100 0 0 0 0 0 

8* 67 0.23 Financials 45 2 4 1 2 2 

9* 32 0.09 Financials 50 1 0 4 3 1 

10 5 -0.01 Financials 60 0 0 1 0 0 

11 3 0.36 Basic Materials 67 1 0 0 0 0 

12 18 0.03 Basic Materials 39 0 3 1 1 2 

* Investigated in financial analysis 

The RA clustering achieved both very small and large clusters (Table 6-25). This is the only 

variable to produce a single firm cluster (neuron 7) for a 3x4 SOM. This firm has been 

excluded from other clusters because its RA ranged from low to high back to low (Figure 

6-24). Of the larger clusters chosen for further analysis (neurons 3, 5, 8 and 9) cluster 3 

achieved the greatest RA values and cluster 9 the lowest (Figure 6-24). These clusters and 

the single firm cluster have been investigated in more detail in Table 6-26. 

 

Figure 6-24: Return on Assets 3x4 SOM Weight Planes 
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Table 6-26: Return on Assets 3x4 SOM Financial Information 

NRN CMP Year 

Value Weighting Equal Weighting 

Mean 
Monthly 

Mean 
Excess 

Std Dev 
Mean 

Monthly 
Mean 
Excess 

Std Dev 

3 33 

1 0.0021 -0.0038 0.0716 -0.0171 -0.0229 0.0504 
2 -0.0031 0.0237 0.0578 -0.0109 0.0159 0.0585 
3 0.0119 -0.0026 0.0453 0.0182 0.0037 0.0289 
4 0.0190 0.0029 0.0417 0.0077 -0.0085 0.0424 
5 0.0167 0.0120 0.0288 0.0114 0.0067 0.0163 

5 68 

1 0.0035 -0.0024 0.0594 -0.0267 -0.0326 0.0513 

2 -0.0495 -0.0227 0.1165 -0.0120 0.0148 0.0537 

3 0.0145 -0.0001 0.0552 0.0183 0.0037 0.0336 

4 0.0196 0.0035 0.0493 0.0101 -0.0060 0.0276 

5 0.0007 -0.0040 0.0456 0.0092 0.0045 0.0248 

7** 1 

1 0.0664 0.0605 0.2000 0.0664 0.0605 0.2000 

2 -0.0695 -0.0427 0.1478 -0.0695 -0.0427 0.1478 

3 -0.0474 -0.0620 0.1190 -0.0474 -0.0620 0.1190 

4 -0.0152 -0.0313 0.1732 -0.0152 -0.0313 0.1732 

5 0.0261 0.0214 0.0672 0.0261 0.0214 0.0672 

8 67 

1 -0.0133 -0.0192 0.0510 -0.0180 -0.0239 0.0401 
2 -0.0274 -0.0006 0.1019 -0.0158 0.0110 0.0549 
3 0.0177 0.0031 0.0337 0.0119 -0.0027 0.0284 
4 0.0087 -0.0074 0.0337 0.0006 -0.0155 0.0456 
5 0.0108 0.0061 0.0355 0.0022 -0.0025 0.0420 

9 32 

1 -0.0312 -0.0371 0.0746 -0.0128 -0.0187 0.0491 
2 -0.0162 0.0106 0.1056 -0.0378 -0.0110 0.0648 
3 0.0207 0.0061 0.0553 0.0091 -0.0055 0.0192 
4 0.0096 -0.0066 0.0468 -0.0038 -0.0199 0.0583 
5 0.0184 0.0138 0.0373 0.0106 0.0059 0.0241 

** Not included in statistical analysis 

Cluster 7 in Table 6-26 is the only single firm cluster for the RA clustering. This cluster 

achieved very high first year returns which subsequently dropped significantly before 

stabilising in year five. As expected this single firm cluster achieved the poorest standard 

deviation, which is simply the standard deviation of the single firm. Cluster 3 achieved 

relatively consistent above average performance and is one of the few clusters to have done 

this.  This performance is however only evident in the value weighted results as can be seen 

in Figure 6-25 (page 93). Cluster 9 achieved poor results in the first two years however 
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Figure 6-25 shows that these low returns are not significantly different to those achieved by 

the other clusters. The financial results for clusters 5 and 8 are mixed over the five years. 

 

Figure 6-25: Return on Assets 3x4 SOM Financial Performance Comparison (a) Value Weighting (b) Equally 
Weighting 

Again the statistical analysis shows that the results for the clusters were not significantly 

different (Table 6-27). Only the value weighted clusters for year one show that there was a 

possibility of there being a difference in performance. Further analysis of these results shows 

that no clusters were significantly different, even over this short 12 month period. 

Table 6-27: Return on Assets 3x4 SOM Statistical Results 

Period 

Value Weighting Equal Weighting 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

Year 1 
0.52823 0.507943 0.909897 0.97107 

Years 1 – 3 
0.845578 0.795427 0.824917 0.775078 

Years 1 – 5 
0.745445 0.650359 0.707763 0.741686 
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6.2.7 Return on Equity 

 

Figure 6-26: Return on Equity Clustering Validity 

The validity of the RE clustering (Figure 6-26) reveals results which are consistent with the 

previous tests. The DB Index (Figure 6-26 (a)) shows that the 2x5 SOM achieved better 

clustering than similar SOM sizes. This feature is however not apparent in the remaining 

figures. The 5x1 SOM achieved the best overall clustering however this SOM consists of a 

single large cluster with 150 companies. Instead it was decided to investigate the 3x4 SOM in 

more detail.  
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Table 6-28: Return on Equity 3x4 SOM General Information 

NRN CMP SW 

Industry Composition Delisted (Per Year) 

Industry 
Cluster 

(%) 
1 2 3 4 5 

1 10 0.31 Basic Materials 30 1 0 0 0 0 

2* 8 -0.01 Basic Materials 38 0 0 2 2 1 

3* 3 0.31 Consumer Services 67 2 0 0 0 0 

4 15 -0.04 Consumer Services 27 0 1 0 1 0 

5* 80 0.29 Industrials 25 2 3 1 1 1 

6 5 0.22 Financials 60 0 1 0 0 0 

7 11 0.07 Basic Materials 45 1 0 0 0 1 

8* 83 0.25 Financials 34 3 3 4 3 4 

9 10 -0.05 Financials 60 1 0 1 0 0 

10 13 0.01 Basic Materials 31 0 1 0 0 0 

11 13 0.00 Basic Materials 38 1 1 1 1 2 

12 4 0.34 Oil and Gas 25 0 1 0 0 0 

* Investigated in financial analysis 

The general information for the clustering completed with RE is shown in Table 6-28. The first 

notable feature is that cluster 2, which was comprised of only eight companies, had five 

delistings. Cluster 3 had two of its companies delist in the first year, leaving only one firm. 

Two clusters were of adequate size to consider for financial analysis (clusters 5 and 8). 

These clusters achieved very similar average inputs over the five year period (Figure 6-27). 

In comparison cluster 2 and 3’s RE performance decreased going from right to left in Figure 

6-27.  

 

Figure 6-27: Return on Equity 3x4 SOM Weight Planes 
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Table 6-29: Return on Equity 3x4 SOM Financial Information 

NRN CMP Year 

Value Weighting Equal Weighting 

Mean 
Monthly 

Mean 
Excess 

Std Dev 
Mean 

Monthly 
Mean 
Excess 

Std Dev 

2** 8 

1 -0.0280 -0.0338 0.1031 -0.0325 -0.0384 0.0673 
2 -0.0957 -0.0689 0.2673 -0.0377 -0.0109 0.0783 
3 0.0066 -0.0080 0.0947 -0.0113 -0.0258 0.0597 
4 -0.0055 -0.0216 0.0829 -0.0660 -0.0821 0.2725 
5 -0.0376 -0.0423 0.1246 -0.0490 -0.0537 0.2286 

3** 3 

1 -0.0129 -0.0188 0.0512 -0.0105 -0.0164 0.0434 
2 0.0202 0.0470 0.0508 0.0202 0.0470 0.0508 
3 0.0248 0.0103 0.0433 0.0248 0.0103 0.0433 
4 -0.0012 -0.0173 0.0640 -0.0012 -0.0173 0.0640 
5 0.0103 0.0056 0.0534 0.0103 0.0056 0.0534 

5 80 

1 -0.0057 -0.0115 0.0587 -0.0274 -0.0333 0.0536 
2 -0.0387 -0.0119 0.1036 -0.0070 0.0198 0.0546 
3 0.0159 0.0013 0.0477 0.0199 0.0054 0.0336 
4 0.0149 -0.0013 0.0424 0.0079 -0.0082 0.0268 
5 0.0071 0.0024 0.0379 0.0123 0.0076 0.0226 

8 83 

1 -0.0133 -0.0192 0.0414 -0.0181 -0.0240 0.0373 
2 -0.0381 -0.0113 0.1060 -0.0235 0.0033 0.0536 
3 0.0169 0.0024 0.0322 0.0125 -0.0021 0.0267 
4 0.0098 -0.0064 0.0313 0.0053 -0.0109 0.0333 
5 0.0064 0.0017 0.0401 0.0033 -0.0014 0.0343 

** Not included in statistical analysis 

The financial results for the RE clustering could only be extended to four clusters, of which 

only two are of an appropriate size to use in a statistical analysis (as shown in Table 6-29). 

Cluster 2 had a large number of companies delisting and the financial results of the 

companies within this cluster are very poor. In addition to this the portfolio standard 

deviations were poor due to the limited number of companies in this cluster. Cluster 3 

achieved a better portfolio standard deviation than cluster 2 even though it was comprised of 

fewer companies. Figure 6-28 (page 97) shows that the performance of the smaller clusters 

(clusters 2 and 3) varied the most, however the larger clusters had similar performance with 

cluster 5 only slightly outperforming cluster 8. 
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Figure 6-28: Return on Equity 3x4 SOM Financial Performance Comparison (a) Value Weighting (b) Equally 
Weighting 

When considering the value weighted statistical results it can be seen that the returns of 

these two clusters can be considered very similar. The equally weighted clusters show a 

greater indication that different returns could have been achieved however it is still not 

statistically significant.  

Table 6-30: Return on Equity 3x4 SOM Statistical Results 

Period 

Value Weighting Equal Weighting 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

Year 1 
0.717066 1 0.625495 0.77283 

Years 1 – 3 
0.90912 0.946125 0.660393 0.443774 

Years 1 – 5 
0.835089 0.883162 0.484287 0.352884 
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6.2.8 Market Capitalisation 

 

Figure 6-29: Market Capitalisation Clustering Validity 

MC is the first variable chosen which does not depend on reported financials. Due to the 

nature of this data no outliers were present when taking          and the overall clustering 

validity was an improvement over the previous tests. Analysis of all the validity measures in 

Figure 6-29 reveals mixed results however it can be seen that the 2x4 SOM achieved better 

validity than similar size clusters. This is most evident with the DB Index and SW (Figure 6-29 

(a) and (b)) results and for this reason the 2x4 SOM has been investigated in more detail.  
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Table 6-31: Market Capitalisation 2x4 SOM General Information 

NRN CMP SW 

Industry Composition Delisted (Per Year) 

Industry 
Cluster 

(%) 
1 2 3 4 5 

1* 3 0.58 Financials 67 0 0 0 0 0 

2* 29 0.49 Basic Materials 38 0 1 0 0 0 

3* 40 0.31 Basic Materials 23 0 3 2 2 1 

4* 42 0.56 Consumer Services 29 2 0 1 1 0 

5* 39 0.30 Financials 38 5 0 0 1 2 

6* 31 0.30 Industrials 39 2 1 0 1 2 

7* 39 0.34 Financials 31 1 1 3 2 3 

8* 32 0.26 Financials 31 1 5 3 1 1 

* Investigated in financial analysis 

The MC clustering achieved the most even cluster sizes of all the tests and this is apparent in 

Table 6-31. Only one cluster was significantly smaller and this can be attributed to the 

companies only listing after the first input year. The SW values for these clusters is very high 

and cluster 2 is comprised of the largest companies as shown by the yellow neuron in Figure 

6-30. Clusters 7 and 8 consist of smaller companies, which can be seen by the dark neurons 

in Figure 6-30. Due to the consistency in the cluster sizes it was decided to take all these 

clusters forward for financial analysis in Table 6-32. 

 

Figure 6-30: Market Capitalisation 2x4 SOM Weight Planes 

  



100 
 

Table 6-32: Market Capitalisation 2x4 SOM Financial Information 

NRN CMP Year 

Value Weighting Equal Weighting 

Mean 
Monthly 

Mean 
Excess 

Std Dev 
Mean 

Monthly 
Mean 
Excess 

Std Dev 

1** 3 

1 -0.0255 -0.0314 0.0561 -0.0356 -0.0415 0.0527 

2 -0.0580 -0.0312 0.1733 -0.0158 0.0110 0.1048 

3 0.0159 0.0013 0.0739 0.0280 0.0135 0.0639 

4 0.0112 -0.0050 0.0439 0.0235 0.0073 0.0504 

5 -0.0184 -0.0231 0.0447 -0.0080 -0.0127 0.0413 

2 29 

1 0.0067 0.0008 0.0528 -0.0067 -0.0126 0.0491 

2 -0.0424 -0.0156 0.1144 -0.0285 -0.0017 0.0893 

3 0.0137 -0.0008 0.0482 0.0144 -0.0002 0.0440 

4 0.0152 -0.0009 0.0404 0.0149 -0.0012 0.0371 

5 0.0022 -0.0025 0.0449 0.0045 -0.0002 0.0375 

3 40 

1 -0.0165 -0.0224 0.0564 -0.0138 -0.0197 0.0422 
2 -0.0207 0.0061 0.0935 -0.0148 0.0120 0.0797 
3 0.0215 0.0070 0.0342 0.0211 0.0065 0.0331 
4 0.0058 -0.0103 0.0428 0.0048 -0.0113 0.0315 
5 0.0190 0.0143 0.0218 0.0126 0.0079 0.0156 

4 42 

1 -0.0167 -0.0226 0.0615 -0.0181 -0.0240 0.0592 
2 -0.0045 0.0223 0.0710 0.0005 0.0273 0.0571 
3 0.0226 0.0080 0.0425 0.0220 0.0075 0.0385 
4 0.0144 -0.0017 0.0436 0.0099 -0.0062 0.0356 
5 0.0139 0.0092 0.0302 0.0108 0.0061 0.0276 

5 39 

1 -0.0234 -0.0293 0.0654 -0.0294 -0.0353 0.0534 
2 -0.0349 -0.0081 0.0999 -0.0185 0.0083 0.0706 
3 0.0278 0.0132 0.0378 0.0209 0.0064 0.0304 
4 0.0149 -0.0012 0.0289 -0.0046 -0.0208 0.0476 
5 -0.0246 -0.0293 0.1343 -0.0092 -0.0139 0.0541 

6 31 

1 -0.0255 -0.0314 0.0499 -0.0189 -0.0248 0.0484 
2 -0.0310 -0.0042 0.0712 -0.0241 0.0027 0.0586 
3 0.0045 -0.0100 0.0379 0.0201 0.0056 0.0333 
4 -0.0532 -0.0694 0.1489 -0.0193 -0.0354 0.0639 
5 0.0111 0.0065 0.0237 0.0080 0.0033 0.0273 

7 39 

1 -0.0168 -0.0227 0.0367 -0.0211 -0.0270 0.0328 
2 -0.0581 -0.0313 0.1098 -0.0337 -0.0069 0.0530 
3 0.0025 -0.0121 0.0260 -0.0024 -0.0170 0.0308 
4 0.0230 0.0069 0.0296 0.0168 0.0007 0.0288 
5 0.0065 0.0018 0.0378 -0.0130 -0.0177 0.0671 
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8 32 

1 -0.0552 -0.0611 0.0585 -0.0236 -0.0295 0.0517 
2 -0.0568 -0.0300 0.0629 -0.0211 0.0057 0.0322 
3 -0.0445 -0.0591 0.0645 -0.0143 -0.0289 0.0314 
4 -0.0094 -0.0255 0.0460 -0.0032 -0.0193 0.0337 
5 0.0157 0.0110 0.0676 0.0125 0.0078 0.0281 

** Not included in statistical analysis 

The financial results for all the clusters generated from the MC are shown in Table 6-32. For 

these financial results it is expected that the value weighted and equally weighted returns are 

similar due to the clustering being dependent on MC. The results for the two different 

weightings are similar with no significant differences, as shown in Figure 6-31. Since the 

clusters range from large to small, with an increase in cluster number, it was expected that a 

trend in either increasing or decreasing performance would become apparent if there was a 

relationship between the firm size and performance. This is not the case and the 

performance of the clusters does not follow any trend related to the cluster numbers. 

 

 

Figure 6-31: Market Capitalisation 2x4 SOM Financial Performance Comparison (a) Value Weighting (b) Equally 
Weighting 
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Results from the statistical analysis (Table 6-33) show that it can be concluded that there 

were different results over the three and five year periods. Over the five year period the 

ANOVA test was not significant within a 5% level. However there appears to be strong 

evidence to support the hypothesis that the returns achieved were different over the three 

year period. It is important to note that this is not evident with the equally weighted results, as 

shown in Table 6-33. 

Table 6-33: Market Capitalisation 2x4 SOM Statistical Results 

Period 

Value Weighting Equal Weighting 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

Year 1 0.256006 0.349016 0.952611 0.919157 

Years 1 – 3 0.025114 0.004805 0.558449 0.125307 

Years 1 – 5 0.056844 0.013072 0.416887 0.16882 

To support the statistical results found in Table 6-33, for the value weighted portfolios over 

years 1-3, a Tukey HSD post hoc analysis was completed. The results of this test can be 

found in Table 6-34 where the most significant difference in cluster performance occurred 

between clusters 4 and 8. Apart from these two clusters there are no other statistically 

significant results for α = 0.05. Cluster 8 does have significance values near 0.05 with several 

of the other clusters, so it has been assumed that cluster 8 is critical in highlighting a market 

capitalisation trend. Referring to Figure 6-30 (page 99) reveals that this cluster was 

comprised of the smallest companies. Analysis of the companies in this cluster shows that 

there wasn’t a single firm with a significantly higher market capitalisation hence cluster 8’s 

unique performance cannot entirely be attributed to a single poor performing firm. 

Table 6-34: Market Capitalisation 2x4 Years 1-3 Tukey HSD Results 

Portfolio Mean Difference 
(I-J) 

Significance 
95% Confidence Interval 

I J Lower Bound Upper Bound 

2 

3 -0.0021 1.0000 -0.0495 0.0452 

4 -0.0078 0.9990 -0.0552 0.0396 

5 0.0028 1.0000 -0.0445 0.0502 

6 0.0100 0.9959 -0.0374 0.0574 

7 0.0168 0.9401 -0.0305 0.0642 

8 0.0448 0.0767 -0.0025 0.0922 
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3 

2 0.0021 1.0000 -0.0452 0.0495 

4 -0.0057 0.9998 -0.0530 0.0417 

5 0.0050 0.9999 -0.0424 0.0523 

6 0.0121 0.9883 -0.0352 0.0595 

7 0.0189 0.8978 -0.0284 0.0663 

8 0.0470 0.0536 -0.0004 0.0943 

4 

2 0.0078 0.9990 -0.0396 0.0552 

3 0.0057 0.9998 -0.0417 0.0530 

5 0.0106 0.9942 -0.0367 0.0580 

6 0.0178 0.9225 -0.0296 0.0652 

7 0.0246 0.7171 -0.0227 0.0720 

8 0.0526 0.0186*** 0.0053 0.1000 

5 

2 -0.0028 1.0000 -0.0502 0.0445 

3 -0.0050 0.9999 -0.0523 0.0424 

4 -0.0106 0.9942 -0.0580 0.0367 

6 0.0072 0.9994 -0.0402 0.0545 

7 0.0140 0.9755 -0.0334 0.0614 

8 0.0420 0.1195 -0.0053 0.0894 

6 

2 -0.0100 0.9959 -0.0574 0.0374 

3 -0.0121 0.9883 -0.0595 0.0352 

4 -0.0178 0.9225 -0.0652 0.0296 

5 -0.0072 0.9994 -0.0545 0.0402 

7 0.0068 0.9995 -0.0405 0.0542 

8 0.0348 0.3062 -0.0125 0.0822 

7 

2 -0.0168 0.9401 -0.0642 0.0305 

3 -0.0189 0.8978 -0.0663 0.0284 

4 -0.0246 0.7171 -0.0720 0.0227 

5 -0.0140 0.9755 -0.0614 0.0334 

6 -0.0068 0.9995 -0.0542 0.0405 

8 0.0280 0.5770 -0.0193 0.0754 

8 

2 -0.0448 0.0767 -0.0922 0.0025 

3 -0.0470 0.0536 -0.0943 0.0004 

4 -0.0526 0.0186*** -0.1000 -0.0053 

5 -0.0420 0.1195 -0.0894 0.0053 

6 -0.0348 0.3062 -0.0822 0.0125 

7 -0.0280 0.5770 -0.0754 0.0193 

*** Statistically significant for α = 0.05 
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6.2.9 Volatility 

 

Figure 6-32: Volatility Clustering Validity 

As with the MC clustering the V clustering also does not depend on reported financials. This 

variable is dependent on price movements and the clustering was completed using        . 

Again no outliers were present and this variable was still able to achieve relatively even 

cluster sizes. The 2x4 SOM appears to have achieved the more compact clusters than similar 

SOM sizes (Figure 6-32). The 2x4 SOM also produced clusters which could be analysed in 

more detail and was therefore chosen for financial analysis. 
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Table 6-35: Volatility 2x4 SOM General Information 

NRN CMP SW 

Industry Composition Delisted (Per Year) 

Industry 
Cluster 

(%) 
1 2 3 4 5 

1* 46 0.24 Industrials 28 1 2 0 1 4 

2 3 0.38 Financials 67 1 0 0 0 0 

3* 25 0.29 Basic Materials 32 1 0 4 2 2 

4* 73 0.29 Financials 32 3 2 1 1 1 

5* 21 0.18 Financials 29 0 4 1 0 1 

6* 73 0.23 Financials 26 4 3 2 3 1 

7 6 0.29 Financials 50 0 0 1 0 0 

8 8 0.27 Financials 63 1 0 0 1 0 

* Investigated in financial analysis 

The V clustering general results are shown in Table 6-35. Although this variable was not 

greatly affected by outliers, the cluster sizes are still not as even as the MC clusters.  Overall 

the SWs are consistent for all the clusters. The industry composition and delisting data does 

not show any significant anomalies which may be considered for further analysis. For this 

reason only the four largest clusters (1, 3, 4, 5 and 6) have been included in the financial 

analysis. The plane weights in Figure 6-33 show that the small clusters are comprised of 

companies with inconsistent weights with many of the neurons changing from brown to 

yellow. 

 

Figure 6-33: Volatility 2x4 SOM Weight Planes 
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Table 6-36: Volatility 2x4 SOM Financial Information 

NRN CMP Year 

Value Weighting Equal Weighting 

Mean 
Monthly 

Mean 
Excess 

Std Dev 
Mean 

Monthly 
Mean 
Excess 

Std Dev 

1 46 

1 -0.0100 -0.0159 0.0662 -0.0180 -0.0239 0.0430 

2 -0.0216 0.0052 0.1089 -0.0292 -0.0024 0.0650 

3 0.0131 -0.0015 0.0380 0.0166 0.0020 0.0280 

4 0.0026 -0.0135 0.0456 -0.0003 -0.0164 0.0473 

5 -0.0197 -0.0244 0.0931 -0.0045 -0.0092 0.0536 

3 25 

1 -0.0246 -0.0305 0.0715 -0.0202 -0.0261 0.0397 
2 -0.0431 -0.0163 0.0827 -0.0321 -0.0053 0.0583 
3 -0.0012 -0.0157 0.0396 -0.0094 -0.0240 0.0441 
4 0.0157 -0.0004 0.0271 0.0126 -0.0036 0.0295 
5 0.0165 0.0118 0.0393 0.0083 0.0036 0.0489 

4 73 

1 -0.0187 -0.0246 0.0578 -0.0169 -0.0228 0.0476 

2 -0.0059 0.0209 0.0645 0.0012 0.0280 0.0459 

3 0.0210 0.0065 0.0414 0.0217 0.0072 0.0294 

4 0.0124 -0.0037 0.0373 0.0136 -0.0025 0.0271 

5 0.0205 0.0159 0.0273 0.0086 0.0039 0.0330 

5 21 

1 -0.0488 -0.0546 0.0840 -0.0225 -0.0284 0.0626 
2 -0.0458 -0.0190 0.1185 -0.0341 -0.0073 0.0280 
3 -0.0507 -0.0653 0.0763 -0.0094 -0.0239 0.0255 
4 -0.1000 -0.1161 0.3579 -0.0166 -0.0327 0.0906 
5 0.0013 -0.0034 0.0570 -0.0057 -0.0104 0.0495 

6 73 

1 0.0125 0.0066 0.0584 -0.0184 -0.0243 0.0490 
2 -0.0486 -0.0218 0.1280 -0.0278 -0.0010 0.0836 
3 0.0130 -0.0016 0.0526 0.0188 0.0042 0.0389 
4 0.0164 0.0002 0.0456 -0.0009 -0.0170 0.0465 
5 -0.0032 -0.0079 0.0489 0.0016 -0.0031 0.0224 

** Not included in statistical analysis  

The five clusters chosen for financial analysis from the V clustering are shown in Table 6-36 

where is can be seen that cluster 5 performed poorly considering both the equally weighted 

and value weighted returns. The performance of cluster 4 was found to be above that of the 

benchmark over years two and three, making it the only cluster out of the volatility tests to do 

so. These features can be seen again in Figure 6-34 (page 107) along with the relatively 

average performance of clusters 1 and 6. 
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Figure 6-34: Volatility 2x4 SOM Financial Performance Comparison (a) Value Weighting (b) Equally Weighting 

The statistical analysis was completed using all the clusters from Table 6-36 and the results 

can be seen in Table 6-37. For the statistical analysis there is a notable difference between 

the Kruskal Wallis and ANOVA results. For the 6 statistical tests there are 3 cases where one 

of the tests is able to reject the null hypothesis while the other is not. Due to the difference in 

results it was decided to incorporate visual analysis of Figure 6-34 to determine which 

weighting and time frames would be most appropriate for further analysis. Using this 

approach it was decided to investigate both the 1-3 and 1-5 year time frames from the value 

weighted portfolios in more detail. 

Table 6-37: Volatility 2x4 SOM Statistical Results 

Period 

Value Weighting Equal Weighting 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

ANOVA 

Significance 

Kruskal Wallis 

Significance 

Year 1 
0.290457 0.332622 0.998844 0.960542 

Years 1 – 3 
0.068745 0.097231 0.239352 0.034302 

Years 1 – 5 
0.023359 0.105974 0.144957 0.042915 
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For the 1-3 year time frame the variance of the clusters was found to be equal and the Tukey 

post-hoc results have been presented in Table 6-38. Here it can be seen that the greatest 

difference arises from clusters 4 and 5. 

Table 6-38: Volatility 2x4 Years 1-3 Tukey HSD Results 

Portfolio Mean Difference 
Significance 

95% Confidence Interval 

I J (I-J) Lower Bound Upper Bound 

1 

3 0.01679 0.88855 -0.03347 0.06705 

4 -0.00496 0.99879 -0.05522 0.04530 

5 0.04227 0.14404 -0.00799 0.09253 

6 0.00156 0.99999 -0.04870 0.05181 

3 

1 -0.01679 0.88855 -0.06705 0.03347 

4 -0.02175 0.75544 -0.07201 0.02851 

5 0.02548 0.63024 -0.02478 0.07574 

6 -0.01524 0.91921 -0.06549 0.03502 

4 

1 0.00496 0.99879 -0.04530 0.05522 

3 0.02175 0.75544 -0.02851 0.07201 

5 0.04723 0.07657 -0.00303 0.09749 

6 0.00652 0.99648 -0.04374 0.05678 

5 

1 -0.04227 0.14404 -0.09253 0.00799 

3 -0.02548 0.63024 -0.07574 0.02478 

4 -0.04723 0.07657 -0.09749 0.00303 

6 -0.04071 0.17256 -0.09097 0.00955 

6 

1 -0.00156 0.99999 -0.05181 0.04870 

3 0.01524 0.91921 -0.03502 0.06549 

4 -0.00652 0.99648 -0.05678 0.04374 

5 0.04071 0.17256 -0.00955 0.09097 

For the five year time frame the clusters were found to have different variance so instead the 

Games Howell test was used (Table 6-39 page 109). This has been done according to the 

recommendation by Lomax [140] for n > 50. Again this test reveals that the greatest 

difference occurs between clusters 4 and 5. However, unlike the ANOVA results these are 

not statistically significant. 
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Table 6-39: Volatility 2x4 Years 1-5 Games Howell Results 

Portfolio Mean Difference 

Significance 

95% Confidence Interval 

I J (I-J) Lower Bound Upper Bound 

1 

3 0.0002 1.0000 -0.0337 0.0341 

4 -0.0130 0.7875 -0.0447 0.0188 

5 0.0417 0.4390 -0.0267 0.1101 

6 -0.0051 0.9957 -0.0428 0.0326 

3 

1 -0.0002 1.0000 -0.0341 0.0337 

4 -0.0132 0.6691 -0.0406 0.0142 

5 0.0415 0.4161 -0.0252 0.1081 

6 -0.0053 0.9926 -0.0396 0.0289 

4 

1 0.0130 0.7875 -0.0188 0.0447 

3 0.0132 0.6691 -0.0142 0.0406 

5 0.0547 0.1467 -0.0110 0.1203 

6 0.0079 0.9600 -0.0242 0.0400 

5 

1 -0.0417 0.4390 -0.1101 0.0267 

3 -0.0415 0.4161 -0.1081 0.0252 

4 -0.0547 0.1467 -0.1203 0.0110 

6 -0.0468 0.3228 -0.1153 0.0217 

6 

1 0.0051 0.9957 -0.0326 0.0428 

3 0.0053 0.9926 -0.0289 0.0396 

4 -0.0079 0.9600 -0.0400 0.0242 

5 0.0468 0.3228 -0.0217 0.1153 
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7. DISCUSSION 

A detailed discussion, with regards to the results shown in Section 6, has been presented 

below. The discussion first looks at the data mining approach and its application in this 

research (Section 7.1), thereafter the different clustering methodologies have been discussed 

in Sections 7.2 and 7.3. Finally a discussion with regards to EMH and this study is completed 

in Section 7.4.  

7.1 Data Mining and the Self-Organising Map 

Since the data analysis was intended to be done as a data mining task it is important to 

review the steps taken and determine whether the desired data mining approach was 

achieved.  

By referring back to the definition of data mining (Section 2.5) it can be seen that there are a 

few key aspects to data mining. First, the process must reveal potentially useful information 

and second it must be an automatic (or a semi-automatic) process. The remaining sections of 

this discussion will investigate whether the results produced have revealed any potentially 

useful information. With regards to the process being automated, it can be said that the 

majority of the steps taken (by designing an OOP system and performing numerous 

automated tests) have resulted in the overall process requiring little human intervention, 

except when analysing the final results. 

Further analysis of the CRISP-DM method (Section 2.5.1) shows that six steps need to be 

followed in data mining. These six steps have been followed and although the results 

presented may appear to have been completed in a single attempt it should be noted that 

only the final results have been included. To reach these results numerous iterations at many 

of the stages were necessary, especially for the data understanding, data preparation and 

model building. 

With regards to the SOM, it was necessary to use aggressive data pre-processing techniques 

to handle outliers in the data. Although previous research [4], [6], [7] has not been done in 

this manner it is important to note that this was required due to the presence of outliers. The 

impact of outliers is not unique to this study and Sian and Kelvin [7] found that outliers 

affected the visual analysis of components planes when using 470 stocks from the S&P 500. 

It is likely that the study presented here is comprised of more outliers for two reasons: the 

stock market is less developed and the chosen time frame was extremely volatile. In 

particular the less developed stock market (with many small firms) is considered to be an 
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issue because these smaller companies are not necessarily information efficient and can 

therefore have reported financials which lie outside of the normal range. Although the study 

could have been completed with less firms, which were more developed, it was decided that 

the inclusion of smaller firms, with irregular behaviour, would be beneficial. Evidence of the 

importance of the inclusion of smaller companies was found by Banz [52]. 

Wang [6] produced uneven cluster sizes when clustering with turnover and price/ earnings as 

input variables. It was found that a similar outcome was produced in this research if the data 

was simply normalised between -1 and +1, without any additional pre-processing. By 

producing portfolios of significantly different sizes the analyses which could be completed 

after the clustering would be limited. Since the research presented here placed more 

emphasis on financial and statistical analysis than previous studies ( [4], [6], [7]) it was 

necessary to conduct additional pre-processing to handle outliers within the data. 

Winsorising was chosen for the pre-processing as it would not discretise the data and would 

limit the information loss to companies with irregular financial variables. In addition to this it 

would enable the SOM clustering process to produce more evenly sized clusters than if it had 

not been applied. To limit the impact that the pre-processing would have on the data it was 

decided to only apply Winsorising to the variables when necessary. For MC and V the natural 

log of the values was instead taken and this bypassed the need for Winsorising. 

This approach to pre-processing was found to be only partially successful and it is 

recommended that alternative pre-processing techniques be investigated. The main difficulty 

with the data was that the majority of the values would be grouped together, within a small 

range, thereby making differentiation between these points difficult. As a result the clustering 

will inherently group these similar companies together with outliers distorting the distance 

metrics. Since the most effective results were found with MC and V clustering (Sections 6.2.8 

and 6.2.9 respectively), which did not undergo Winsorising, it is likely that more meaningful 

results could be found if a more effective method of data normalisation is applied. 

Alternatively, fuzzy clustering may be more suited to the clustering process however different 

validity indices would be necessary to evaluate the performance. By using fuzzy clustering 

the visual and topographic advantages of the SOM would no longer be available. If however 

the clusters achieved are able to provide better results, the use of fuzzy clustering would be 

recommended. 
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7.2 Multiple Variable Clustering  

Overall, the clustering completed using multiple financial variables was less effective than the 

clustering completed using single variables, when considering the clustering validity (Figure 

6-2 and Figure 6-5). This poorer clustering validity can be attributed to the greater variation in 

inputs for multiple variable clustering. When using a single variable it is less likely that each 

dimension will differ significantly i.e. a firm with a low PE is likely to have a low PE in the 

following year. When using different variables it is less likely that the input vectors will have 

the same level of consistency i.e. a firm with a low PE will not necessarily have a low PB, 

hence increasing the range of possibilities for input vectors. 

Although the clustering was less effective from a validity perspective it is still important to 

consider how the clustering process applies to companies from a financial portfolio point of 

view. In this regard the clustering completed with multiple variables has the distinct 

advantage of accounting for different aspects of a firm’s performance. This was found to play 

a significant role in the clustering process and single clusters were found to have a defining 

factor which was caused by one of the input variables. One example would be cluster 1 from 

M1-08 being defined by the QR input (Figure 6-3). 

Neither of the multiple variable clustering tests was successful at achieving abnormal returns. 

The clustering completed using the main variables (PB, PC, PE, MC and V) was more 

successful than the clustering using all 10 variables. Although these results were still not 

statistically significant the results achieved still provide insight into the clustering process. 

First it can be concluded that the addition of variables does not necessarily add any 

significant benefits to the clustering. It is likely that there is no need for additional variables 

because the main variables contain all the necessary information and it is simply repeated by 

including additional variables.  

In addition to the above, the topographic nature of the SOM can be noted in the M2-08 test 

by the similar performance of clusters 1 and 2 which are next to one another on the SOM 

network. The input weights for clusters 1 and 2 (Figure 6-6) show that these two clusters 

differed for several inputs; however their market capitalisation weights (input 4) were similar. 

Since these clusters achieved very low market capitalisation values it is possible that small 

firm effect is the underlying feature in this test. This is further validated by the strong MC 

results found in Section 6.2.8. This impact of the small companies on the clustering has been 

discussed in more detail in Section 7.3.8. 
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Previous financial clustering studies ( [4], [6], [7]) have placed little emphasis on the choice of 

financial variables. Considering the above it would be beneficial to look at different 

combinations of variables for clustering. Although a regression analysis will quickly reveal 

which variables are directly related, it is likely that more subtle relationships could be 

revealed through SOM clustering.  

Overall the multiple variable clustering was not able to produce statistically significant results 

and the most significant results have been attributed to the market capitalisation input. There 

is a need to investigate clustering with different variables in future studies in order to confirm 

whether or not there are benefits to having multiple variables. 
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7.3 Single Variable Clustering and Financial Ratios  

In order to gain an understanding of the predictive nature of single variables it was decided to 

include clustering completed using one variable at a time. To take advantage of the SOM it 

was decided to use five years of inputs rather than one. By doing so the SOMs ability to 

compress high dimensional data into a lower dimension was leveraged. 

7.3.1 Debt/ Equity 

The tests with DE achieved relatively good clustering validity, especially with the 2x1 SOM. 

Analysis of the input data from the two clusters in DE-02 shows that there was a relatively 

clear split in the DE data between high and low values. This meant that the clustering could 

be extremely effective with a very small SOM. Increases in the SOM size forced this split to 

be broken down more, resulting in less effective clustering. 

Of interest is that cluster 1 achieved the greatest Silhouette Width in Table 6-10 and is 

comprised of purely financial companies. This can be attributed to the high DE ratio found in 

the financial companies. Clusters 8 and 9 have similar DE values with the companies in 

cluster 9 in general being more stable whereas the companies in cluster 8 had more irregular 

inputs. These inputs would have been the driving factor behind the poor Silhouette Width 

achieved by cluster 8 in Table 6-10.  

In terms of the returns achieved there was nothing worth noting for the DE clustering. As a 

clustering variable DE would not be considered for further work as it was largely influenced 

by industry and did not show any indication of being a proxy for future returns. 

7.3.2 Price/ Book Value 

The PB clustering achieved relatively good validity results when considering the Davies-

Boudin Index and Silhouette Width (Figure 6-11). With PB being a commonly reported ratio it 

is less likely to obtain many outliers and instead have a more evenly distributed range of 

values. In addition to this it is less likely that the five year range would have significantly 

different results between years. Taking this into consideration it is easier to cluster the data, 

thereby also increasing the validity of the clusters. This hypothesis is further supported by the 

even colour distribution in Figure 6-12.  

The smaller clusters of interest in the PB clustering (Table 6-13) are clusters 3 (only 

consumer services) and 12 (only basic materials). For cluster 12 the input vectors were all 

low in value, which proved to be a defining factor for these companies. Cluster 3 however 
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does not show any notable trend and since the cluster is very small it has been considered 

an anomaly rather than a trend. With these two clusters being small it becomes difficult to 

draw conclusions with regards to their performance. By only considering the larger clusters it 

can be seen that PB cannot be considered a proxy for future returns. 

From a clustering point of view PB is suitable and this has mostly been attributed the large 

amount of attention it receives. As a proxy for returns no evidence was found to promote 

further analysis or to contradict EMH. 

7.3.3 Price/ Cash Flow 

The PC clustering was expected to be one of the less effective in terms of validity due to the 

wide range of values present in the data. This was however not the case when evaluating the 

overall validity (Figure 6-14) and instead the clustering validity was better than expected.  

When taking the individual clusters from the 3x4 SOM (Table 6-16) the poorer clustering 

validity becomes evident. In addition to this the fluctuations between the years for the input 

vectors is evident in Figure 6-15 where the colour of the weight planes for each neuron differ 

significantly between each input/ year. This variation is due to the inherent unstable nature of 

cash flow. 

The clusters produced by the SOM using PC were not able to achieve abnormal returns and 

even cluster 10, with only 2 companies, did not achieve returns which differed significantly. 

The statistical analysis further supports the hypothesis that the PC clustering was not able to 

produce abnormal returns and based on these points it can be concluded that the PC 

clustering was ineffective.  

7.3.4 Price/ Earnings  

The PE clustering achieved very poor validity in Figure 6-17 and Table 6-19 which was not 

expected since PE is so commonly reported.  

Analysis of the input vectors showed that the PE ratios would often differ considerably from 

year to year. Furthermore, the Winsorising increased the effect because many of the 

variables were able to fluctuate from very low to very high within the refined range. Without 

the Winsorising the clustering would not have been possible since the SOM would 

continuously group the majority of the companies together. Compared to the other clusters 

this appears to be most apparent with PE, making it less suited to clustering than most of the 



116 
 

other variables. This poor clustering resulted in little differentiation between the large clusters 

and the returns achieved being very similar.  

For the PE tests it can therefore be concluded that the poor clustering has played the most 

significant role in not achieving abnormal returns. In order to overcome this problem a 

different approach to the pre-processing will be required in future work so as to enable the 

clustering algorithm to differentiate between these similar input vectors. 

7.3.5 Quick Ratio 

Overall the clustering validity for QR was relatively good (Figure 6-20). The raw data 

presented few outliers and as a result the data was not greatly affected by Winsorising and 

could be easily clustered. An evaluation of the clusters formed by the 3x4 SOM shows that 

there were often examples of clusters which similar trends in QR and these trends appeared 

to be less random that those found in the PE and PC tests. Considering the Silhouette 

Widths found in Table 6-22 it can be seen that the individual clusters were often above 0.30 

as a result of these consistent trends being present. In addition to the clustering validity the 

QR clustering did not simply group companies from the same sector together.  

As a proxy for future returns the QR clustering revealed no significant trends. Considering 

only the larger clusters there was little deviation between the clusters and this was reiterated 

in the statistical results. 

Considering these points it can be concluded that QR was effective from a clustering 

perspective but did not yield any significant financial results. 

7.3.6 Return on Assets 

The clustering completed using RA was very poor when considering the validity indices in 

Figure 6-23. Considering the cluster sizes in Table 6-25 it can be seen that using RA as an 

input variable resulted in inconsistent cluster sizes. This was also the only clustering test 

analysed which produced a single firm cluster. The reason for the single firm cluster can be 

seen in Figure 6-24 where cluster 7 is found to have large fluctuations across the weight 

planes. Since the results presented in detail refer to the 3x4 SOM, which can be considered 

relatively large, it is not surprising that a single firm could be separated. An investigation into 

the smaller SOMs revealed that the single firm cluster was first formed with the 2x4 SOM 

making it the only cluster with less than 10 companies. Since this occurred with such a small 

SOM the input vector for this cluster can be considered highly erratic. 
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The returns from the RA clustering show greater deviations than many of the other variables. 

Since cluster 7 only contained a single firm it was expected to have a greater deviation from 

the All-Share Index and this is evident in Figure 6-25. Apart from the cluster 7’s unique 

performance it was found that the larger clusters also achieved varied results. These 

differences could however not be confirmed with the statistical analysis and therefore it is not 

possible to assume that the performance was abnormal. 

For the RA test it can be said that the clustering was not effective when only considering 

validity. The RA clustering was however effective at placing outlier companies in unique 

clusters which could have practical applications for financial analysis. 

7.3.7 Return on Equity 

The validity results for the RE clustering in Figure 6-26 and Table 6-28 were poor. In addition 

to this the cluster sizes from the RE clustering were the least suited for financial analysis. 

Instead of producing several clusters which were large enough for further analysis the RE 

clustering produced two very large clusters. An analysis of the smaller SOMs leading up to 

the 3x4 SOM reveals that there was a single large cluster which split in the 2x3 SOM to make 

two smaller clusters. Although the Winsorising was used to improve the cluster sizes it was 

not successful with the RE clustering as the SOM only produced two clusters which could be 

considered for portfolio generation. 

Since these two portfolios contained the majority of the companies from the analysis, with 

similar RE values, it was assumed that their performance would be similar in nature. This is 

evident in Figure 6-28 where clusters 3 and 5 had similar performance over all five years. 

The RE clustering was not successful as it suffered from outliers and even with the 

Winsorising the SOM could still not produce an adequate number of clusters. As a result of 

this poor clustering the financial and statistical analyses were limited and no conclusions 

regarding abnormal returns could be made. 

7.3.8 Market Capitalisation 

The MC clustering was the most successful of all the clustering tests. Since the data was 

evenly distributed it didn’t require Winsorising and instead the data could be normalised by 

taking the natural log. With the even distribution of values the SOM was able to successfully 

produce evenly sized clusters with relatively good validity (Figure 6-29). 
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Since the MC clustering was capable of producing even cluster sizes it was possible to use a 

2x4 SOM. Table 6-31 shows that the cluster sizes were constant besides for cluster 1, which 

contained large companies which listed after the first input year. In addition to the large 

clusters the Silhouette Width of each cluster was above 0.25 and compared to the other tests 

this is the best set of results achieved. Furthermore the clusters were not comprised of 

companies from the same sectors but instead presented a range of sectors per cluster. 

The use of five years as an input for MC does not seem to have been beneficial for the 

clustering. This is because MC doesn’t change drastically over time and if one year of inputs 

had been used a similar result could have been expected, with the exception of cluster 1. 

The most significant output from the MC clustering was the statistical analysis which revealed 

a statistically significant difference in the returns (Table 6-33). This result has been attributed 

to cluster 8’s poor performance which implies that for the time frame taken the small cap 

companies have performed worse than their larger counterparts. Although many studies have 

found a negative relationship between firm size and returns [52], [53], [54] there has also 

been some evidence to support the trend found in this study [57]. Considering that the time 

frame chosen for this research was during poor market performance it is not surprising that 

the larger companies have outperformed their smaller counterparts. Investors would be more 

hesitant to invest in smaller companies due to uncertainty making it difficult for them to grow. 

Although there are contradictions between the various studies it should be noted that in order 

to identify these firm size trends it is important to include the smallest companies. Without the 

inclusion of cluster 8 no trend would have been noted. This same point was highlighted by 

Moor and Sercu [58] and Banz [52].  

Overall the MC tests were very successful considering both clustering and financial aspects. 

The tests highlighted the importance of including all companies in the analysis as well as the 

benefit of having evenly distributed input data. 

7.3.9 Volatility 

The volatility raw data required normalisation using the natural log as described in Section 

5.1.1. As a result no Winsorising was necessary, however unlike the MC clustering, the 

validity for the V tests were not superior to the other tests (Figure 6-32). The Silhouette 

Widths achieved by the individual clusters in Table 6-35 are however consistent with the 

lowest value achieved being 0.18. The V clustering produced an adequate number of large 

clusters for financial analysis, without industry being an underlying defining factor. The colour 
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range of the weight planes in Figure 6-33 shows that the input vectors were well distributed, 

taking full advantage of the input number range. 

The returns achieved by the five largest clusters did differ by more than the results in some of 

the previous tests. Further investigation into these returns reveals that the differences are 

however not statistically significant. The main point of interest from the results is that cluster 5 

achieved poor returns (Figure 6-34) and it had the greatest volatility of the analysed clusters 

(the yellow neurons in Figure 6-33). As discussed in Section 7.3.8 this study occurred over  a 

time frame during which there was overall poor financial performance in the market. 

Considering this it is unlikely that investors would be willing to invest in highly volatile 

companies and would rather invest in companies with stable performance. 

Overall the V tests proved successful when considering the clustering validity. Future work 

would provide more insight into the possible relationships between this variable and future 

returns. 

7.4 Efficient Market Hypothesis 

Some additional points, which were not directly considered in Sections 7.1 to 7.3, have been 

expanded upon in this section. This section is intended to take the points which have already 

been discussed and see how they are related to EMH as well as the possible implications of 

these results for real world applications. 

Of all the tests completed only MC clustering produced results which were statistically 

significant. Although none of the other tests could provide any evidence to contradict EMH it 

is important to remember that the analyses were only conducted on clusters which were large 

enough to be considered for portfolios. The inclusion of all the very small clusters would have 

been likely to produce more abnormal returns; however they were excluded because the 

interpretation of the results would have been more random in nature. This is because very 

small clusters would be likely to have statistical different results, even if selected at random. 

So in order to not obtain misleading results small clusters were excluded. 

Since the clustering groups together similar companies it is likely that the large clusters 

simply represent a market average. Further evidence of this is present in the smaller SOMs, 

in particular the 2x1 SOMs. In these SOMs there would be one very large cluster and one 

small break away cluster. As the SOM sizes were increased the large cluster would get 

broken down into a few larger clusters. Since the analyses were focused on the larger 

clusters, and they predominantly came from the same original cluster, they were less likely to 
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have major differences. So rather than producing clusters with significantly different results 

the SOM appears to have removed outliers from the industry average. The reason for the 

clustering producing results of this nature is because the majority of the companies would 

achieve similar values for the input variables and even with the Winsorising the impact of 

outliers was still significant. The MC clustering however was different in that the distribution of 

the input variables was relatively even (when taking a log scale) and hence MC-02 produced 

two clusters of sizes 145 and 110. 

The second important point to note is the time frame chosen for the analysis. In order to 

confirm that EMH is no longer valid it would be necessary to complete the analysis over a 

significantly longer time frame. The purpose of this research was to determine if it would be 

possible to challenge EMH over a short time period so that further work could be completed 

over a suitable time frame. By limiting this research to a short time frame it is possible that 

long term trends were not considered. Since the clusters were only formed once it was vital 

that a trend appeared in the first three years after formation because the likelihood of a trend 

becoming apparent five years after formation is unlikely.   

Another concern with the data used is the fact that companies have different year ends, thus 

creating a system whereby the input variables are not taken at the same time. Due to the 

limited size of the JSE it would still be advisable to use the different year ends, however to 

overcome this problem it may be beneficial to use dynamic time warping [141]. This 

technique is often employed in time series analyses because two time series may have 

similar patterns, but are displaced with respect to one another along the time axis. The 

current SOM model measures the Euclidian distance between each point assuming that they 

are aligned in time. By taking the traditional SOM algorithm distance measurement and 

applying dynamic time warping it will be possible to compare the distances and determine the 

winning neuron. This research relied on the use of the MATLAB SOM algorithm; however it 

would be necessary to program a new SOM toolbox which incorporates dynamic time 

warping. It may also be necessary to interpolate numerous input values between each annual 

input for this method to be effective. 

Although the methodology employed did not produce clusters which consistently 

outperformed the benchmark, the results could still be applied to real world applications. 

When investigating a particular firm the clustering process could be completed using various 

financial ratios. The clusters which are associated with this firm could then be analysed to 

reveal which firms could be related with the main one. In addition to this if an investor wished 

to analyse a firm then it may be important to note which neuron its cluster occurs at. If the 
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cluster is at a neuron with very large neighbourhood distances or few firms then its behaviour 

would be regarded as irregular. 
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8. CONCLUSIONS 

The conclusions for the study follow from the discussion in Section 7 and have been broken 

down into the relevant topics below: 

1. Data mining and the self-organising map:  

The data mining approach was successful in terms of automating a large portion of the 

analysis. Overall the input data was found to be difficult to manage due to the presence of 

outliers. The Winsorising methodology was successful at improving the quality of the 

clustering, from a financial perspective, however there is potential for improvement. 

Considering the results of this study, in parallel to previous studies, it can be concluded that 

the SOM has limited capabilities for handling financial data. 

2. Multiple variable clustering:  

Overall the multiple variable clustering was not able to produce statistically significant results 

and the most significant results have been attributed to the market capitalisation input. The 

addition of more inputs was found to be unbeneficial as the majority of the information 

required for clustering appears to be contained within major variables (PE, PB, PC, MC and 

V).  

3. Single variable clustering: 

Apart from the market capitalisation tests, no significant results were found. Some variables 

were found to cluster firms based on industry or remove extreme outliers. Using multiple 

years as inputs yielded limited benefits, apart from removing abnormal behaviour. The 

following gives more detailed conclusions on the individual tests: 

 Debt/ equity: The DE clustering was not found to be a suitable proxy for future 

returns as the clustering was mostly impacted by the industry of the firm.  

 Price/ book value: The PB clustering was found to be an effective variable for 

clustering. It was concluded that this is because it is a relatively stable variable which 

is frequently reported thereby limiting the number of outliers. As a proxy for future 

returns this variable was not found to be effective and it was not able to contradict 

EMH. 
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 Price/ cash flow: The PC clustering had limited validity because one of the underlying 

variables in this ratio is cash, which is relatively volatile. In addition to this PC was not 

found to be a suitable proxy for future returns. 

 Price/ earnings: The clusters formed from the P/E tests showed little inter-cluster 

variation and they were not able to achieve abnormal returns. A different approach to 

the pre-processing will be required in future work so as to enable the clustering 

algorithm to differentiate between these similar input vectors. 

 Quick ratio:  Although the QR tests were effective from a clustering perspective, they 

were not able to yield abnormal financial results. It is possible that QR clustering 

could still have value as a proxy for high risk groups. 

 Return on assets: The RA clustering was not effective when only considering validity. 

The RA clustering was however effective at placing outlier companies in unique 

clusters which could practical applications for financial analysis. 

 Return on equity: The RE tests suffered considerably from outliers and were the least 

effective from a clustering perspective. This limited the financial analysis and as a 

result no financial conclusions can be drawn for this variable. 

 Market capitalisation: The MC clustering was the most effective of all the tests. The 

inclusion of the smallest firms was found to be vital to produce the statistically 

significantly different performance between clusters. It was found that the largest 

firms performed the best, which can be attributed to the time frame chosen for the 

analysis. During this time general stock performance was poor so investors would 

have favoured larger firms, thereby improving their returns. 

 Volatility: The volatility clustering was the second most effective from a clustering 

perspective. Although not statistically significant, the financial results for the more 

stable stocks outperformed their counterparts. As with the market capitalisation tests, 

this was attributed to the time frame chosen for the analysis.  

 

4. The efficient market hypothesis: 

Overall there were no contradictions to EMH found in the analysis. Market capitalisation was 

the only variable which was able to yield abnormal returns, however it would be necessary to 

extend the study over a longer time frame to conclude whether EMH is possibly invalid. Since 

the abnormal MC returns were attributed to the time frame chosen, when investors were 

seeking low risk stocks, it implies that over a longer time frame EMH would still be valid. 

Apart from EMH, the clustering did prove to potentially have some useful outputs which would 

be useful from a practical point of view. 



124 
 

9. FUTURE WORK 

Following on from the conclusions drawn the following recommendations have been made: 

 New pre-processing methods: One of the major limitations found in this study was the 

presence of outliers in the input data. Although the Winsorising approach did enable 

substantially improved clustering it still had limitations. A full study into the impact of 

different pre-processing methods would be necessary to decide which method is best 

suited to SOM clustering.  

 Fuzzy clustering: This study focused on using SOMs for clustering but an investigation 

into the use of fuzzy methods for the purpose of clustering could potentially yield 

insightful results. One possible approach would be to use the fuzzy weighting assigned to 

each vector to define how it is weighted in the portfolio. It would therefore be possible to 

make portfolios balanced according to a new weighting. This would also enable portfolios 

to be made of a range of companies, whereas SOMs and K-means are constrained by 

having to allocate firms to single clusters.  

 Longer analysis time frame: In order to find evidence which can contradict EMH it will be 

necessary to carry out the tests over a longer time frame. The purpose of this study was 

to provide insight into what direction one might take in this approach. It can therefore be 

concluded that should a study be continued over a longer time frame then market 

capitalisation would be an essential variable to include in the analysis. 

 Ideal multi variable clustering combinations: Apart from the single variable clustering this 

study also looked at using multiple variables for the purpose of clustering. The results 

indicated that the addition of new variables had limited value, but it would be beneficial to 

understand, in more detail, which variables should be combined. It would be 

recommended to start with the PE, PB, PC, MC, V combination as a base and work from 

that reference point. 

 More developed stock markets: This study focused on the JSE, however with such a 

small stock market the quality of data becomes more of an issue. By taking a larger, 

more developed stock market, it could be possible to use firms with less outliers. By 

doing so the problems associated with pre-processing would be partially overcome and 

the results could be significantly more meaningful. Apart from this, most of the reference 

material refers to more developed stock markets, thereby making it easier to compare 

results to previous studies. 

 Dynamic time warping: Due to the various firms having different year ends the input 

vectors are technically misaligned. To overcome this one could use dynamic time 
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warping to measure the distance between input vectors and nodes. This could possibly 

take into account micro trends with the stock exchange and enable all firms to be 

evaluated on a common base. 

 Practical implications: As it was noted, there could be possible practical implications from 

the work. Although the clustering does not seem to be able to achieve abnormal returns it 

does not mean that the results have no value. A study which involves industry to 

understand how these results could be applied to real life applications could yield 

interesting results. 
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APPENDIX A 

A complete list of all the companies used for the clustering may be found in Table A-1, where 

tickers for each of the companies can be found. 

Table A-1: Ticker List of Companies Used In Clustering Analysis 

ABL ACL ACP ADH ADI ADR AEG AFB 

AFE AFR AFX AGI AGL ALT AMA AME 

AMS ANA ANG AOO APK APN ARD ARI 

ARL ART ASA ASR ATN ATS AVI AWT 

BAT BAU BAW BCF BDM BEE BEL BIL 

BJM BNT BRC BRT BSB BSR BTG BVT 

CAE CAP CAT CCL CDZ CFR CKS CLE 

CLH CLS CMA CMH CML CND CNL CNX 

COM CPI CPL CRG CRM CRW CSB CSO 

CUL CVI CVN CVS DAW DCT DDT DGC 

DLV DMR DON DRD DST DSY DTA DTC 

EHS ELE ELH ELR EMG ENV EOH ERM 

EXL EXX FBR FPT FRT FSR FVT GDH 

GDO GFI GGM GIJ GLL GMB GND GRF 

GRT HAR HCI HDC HWA HWN HYP IFR 

ILA ILV IMP INL INP IPL ITE ITR 

IVT JCD JDG JNC JSC KAP KGM KIR 

KLG KNG LBH LGL LNF LON MAF MAS 

MCU MDC MFL MIP MMG MMI MOB MPC 

MRF MSM MST MTA MTL MTN MTX MUR 

MVL NAI NCS NED NHM NPK NPN NTC 

NWL OCE OCT OML OMN PAL PAM PAP 

PCN PET PGR PHM PIK PMA PMM PMV 

PNC PPC PPE PPR PSG PWK RAH RBW 

RDF REM RES RLO RMB RNG RTO SAB 

SAC SAL SAP SBK SBV SCL SDH SER 

SFN SHF SHP SIM SJL SKJ SLM SMR 

SNT SNU SNV SOL SOV SPA SPG SPO 

SQE STA SUI SUR SYC TBS TBX TDH 

TFG TIW TKG TMT TON TPC TRE TRT 

TRU TSH TSX UCS VIL VLE VTL WBO 

WES WHL WLO WNH YRK ZCI ZSA 
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APPENDIX B 

The following sections have been divided into their respective calculation groups. The 

calculations also follow the order presented in Methodology (Section 5.1). The majority of the 

results have been written using three significant figures but greater accuracy was used in the 

calculations. As a result small differences may arise if repeating the calculations with the 

values shown. 

        B-1 Davies Bouldin Index 

To simply the explanation of the cluster validity analysis it has been decided to use a small 

sample dataset. By doing so it becomes possible to show the relationship between all 

clusters and the vectors within them. The calculations presented in this section follow the 

same logic as that presented by Kumar and Nagesh [142].  

In Figure B-1 an illustrative representation of the inputs vectors used in the sample 

calculation can be seen. Each of the vectors consist of five dimensions and they have been 

grouped into three clusters. The input vectors have been shown with a  symbol and the 

centre of the clusters are represented by a . 

          

Figure B-1: Sample Calculation Clusters (Illustrative)  
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The values for the 12 input vectors can be seen in Table B-1 along with the centre of each of 

the clusters. It is important to note that in the actual calculations for this research, normalised 

values were used to ensure that equal weighting was given to the different variables and to 

reduce the impact of outliers (discussed in Section 7.1). 

Table B-1: Sample Calculation Input Vectors and Clusters 

Cluster Vector Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 

S 

x 2.08 -1.70 -3.14 0.0433 2.89 

A 3.54 -2.53 -2.88 1.54 2.66 

B -0.0512 -1.15 -3.96 -1.38 3.85 

C 2.76 -1.44 -2.57 -0.0300 2.17 

T 

y 0.512 -3.402 3.468 0.112 -3.10 

D 1.89 -3.81 2.56 3.80 -3.04 

E -2.35 -2.37 4.44 2.38 -4.11 

F 2.62 -3.60 4.05 0.791 -0.792 

G 1.09 -3.15 2.29 -4.41 -3.71 

H -0.69 -4.08 4.00 -2.00 -3.87 

U 

z 1.09 3.02 -1.79 0.363 -0.77 

I -0.802 3.60 -3.57 0.792 -0.159 

J 2.43 2.07 1.58 -1.13 1.41 

K 4.29 3.35 -1.88 -2.90 -2.37 

L -1.55 3.06 -3.30 4.69 -1.97 

For the Davies Bouldin Index the first component of the calculation determined the distance 

of each vector from its cluster centre. The distance metric chosen for this was the Euclidian 

distance because the same metric was used in the SOM clustering process. Using the 

standard equation for Euclidian distance gives the following:  

         {∑         
 

 

   

}

   

 

Using Cluster S as a sample cluster for the calculation gives the following: 
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The above was then repeated with the remaining vectors to provide the absolute distance of 

each vector from its respective cluster centre.  The similarity within each cluster was then 

determined using Equation 20 from Section 2.5.5. The value for   was chosen to be   to 

place less emphasis on outliers. 
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∑|     |
 

  

   

)

   

 

Substituting the values obtained for cluster   (from the previous calculation) yielded the 

following: 

   
 

 
[              ]       

   
 

 
[                        ]       

   
 

 
[                   ]       

 

The value of     can then be calculated using Equation 21 from Section 2.5.5 with a value of 

    (Euclidian distance).  

    (∑|       |
 

 

   

)

   

 

For the three cluster example provided three permutations were required: 

     |           |  |          |    |         |           

     |          |  |          |    |          |           

     |          |  |          |    |           |           
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With the above steps completed it was then possible to determine the respective     values 

(Equation 22, Section 2.5.5). 

    
     

   

 

    
         

    
       

    
         

    
      

    
         

    
       

Then taking the maximum values for the three clusters: 

             

                        

                          

                        

The final stage in the Davies Bouldin Index calculation then required the average of the 

above values (Equation 24, Section 2.5.5) as shown below:  
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        B-2 Silhouette Width 

Although the implementation of the Silhouette Width was already incorporated into the 

MATLAB environment a sample calculation has been included since it provides insight into 

how this metric may be used. 

     
         

               
 

The data presented in Section B-3 has been provided again in Table B-2 as it refers to the 

Silhouette Width calculations. As with Davies Bouldin calculations the Silhouette Width 

calculations were also completed using normalised values in the actual calculation. 

Table B-2: Sample Calculation Data for Silhouette Width 

Cluster Vector Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 

S 

x 2.08 -1.70 -3.14 0.0433 2.89 

A 3.54 -2.53 -2.88 1.54 2.66 

B -0.0512 -1.15 -3.96 -1.38 3.85 

C 2.76 -1.44 -2.57 -0.0300 2.17 

T 

y 0.512 -3.402 3.468 0.112 -3.10 

D 1.89 -3.81 2.56 3.80 -3.04 

E -2.35 -2.37 4.44 2.38 -4.11 

F 2.62 -3.60 4.05 0.791 -0.792 

G 1.09 -3.15 2.29 -4.41 -3.71 

H -0.69 -4.08 4.00 -2.00 -3.87 

U 

z 1.09 3.02 -1.79 0.363 -0.77 

I -0.802 3.60 -3.57 0.792 -0.159 

J 2.43 2.07 1.58 -1.13 1.41 

K 4.29 3.35 -1.88 -2.90 -2.37 

L -1.55 3.06 -3.30 4.69 -1.97 

 

Initially the distance of each vector from other vectors within the same cluster was 

determined as follows (where     is the vector of interest and     is another vector from the 

same cluster). 

 (     )  {∑(       )
 

 

   

}
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Using cluster S with vectors A, B and C results in the calculations below: 

                                                             

                                                           

                                                              

With all the distance values for each cluster it was then possible to take the mean of the 

distances to determine     , as shown below. 

     
 

   
∑|     |

   

   

 

Using the distances calculated above the values of     ,      and      can be determined 

as follows: 

     
 

 
[         ]       

     
 

 
[         ]       

     
 

 
[         ]       

The next step in calculation of the Silhouette Width required the calculation of     . This 

variable has been shown in the equation along with the respective calculations for the vectors 

in cluster S. For vectors A, B and C it was found that cluster U was the closest and therefore 

the distances shown are to vectors I, J, K and L. 
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[                   ]       

Finally to calculate      (the Silhouette Width for each vector) the values of      and      from 

above can be used. 

     
         

               
 

     
         

    
       

     
         

    
       

     
         

    
       

The average of these values then yields the Silhouette width for cluster S. 
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Finally the overall Silhouette Width was calculated taking the weighted average of cluster 

Silhouette Widths as mentioned in Section 5.1.3. 
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        B-3 Dunn’s Index 

The Dunn’s Index calculations presented in this section have been completed using the same 

sample data set as Section B-3, which can be seen in Table B-3 below. The MATLAB 

algorithms required for this calculation come from work completed by Ramosall [143]. As 

mentioned previously the calculations for the research used normalised values and the 

values below are for illustrative purposes. 

Table B-3: Sample Calculation Input Vectors and Clusters for Dunn’s Index 

Cluster Vector Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 

S 

x 2.08 -1.70 -3.14 0.0433 2.89 

A 3.54 -2.53 -2.88 1.54 2.66 

B -0.0512 -1.15 -3.96 -1.38 3.85 

C 2.76 -1.44 -2.57 -0.0300 2.17 

T 

y 0.512 -3.402 3.468 0.112 -3.10 

D 1.89 -3.81 2.56 3.80 -3.04 

E -2.35 -2.37 4.44 2.38 -4.11 

F 2.62 -3.60 4.05 0.791 -0.792 

G 1.09 -3.15 2.29 -4.41 -3.71 

H -0.69 -4.08 4.00 -2.00 -3.87 

U 

z 1.09 3.02 -1.79 0.363 -0.77 

I -0.802 3.60 -3.57 0.792 -0.159 

J 2.43 2.07 1.58 -1.13 1.41 

K 4.29 3.35 -1.88 -2.90 -2.37 

L -1.55 3.06 -3.30 4.69 -1.97 

 

The Dunn’s Index equation (Equation 27, Section 2.5.5) shows the two basic components 

required for the calculation are cluster diameter (     ) and distance between clusters 

(        ).  

      
     

{    
         

{
        

   
     

       
}} 

As discussed in Section 2.5.5 there are several definitions for these two variables and for this 

reason two versions of the Dunn’s Index were calculated. The first sample calculation refers 

to the standard equations for diameter and distance between clusters. The second sample 
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calculation presented in this section uses alternative definitions for diameter and distance as 

recommended by Bezdek and Pal [118].  
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B-3-1 Dunn’s Index 

The basic Dunn’s Index calculation takes the diameter as the maximum distance between 

two points in a cluster. Using the Euclidian distance between two vectors in a cluster results 

in the following equation: 

 (     )  {∑(       )
 

 

   

}

   

 

Applying this to the vectors in cluster S from Table B-3 gives the following results: 

                                                             

                                                           

                                                              

With the above step repeated for all the different combinations it is then possible to calculate 

the diameter for cluster S. 

                               

                         

          

The distance between clusters can then be calculated using the same distance formula with 

vectors belonging to different clusters. The sample calculation below takes vector A from 

cluster S and compares it to cluster U. 

 (     )  {∑(       )
 

 

   

}

   

 

                                                             

                                                           

                                                           

                                                           



151 
 

Repeating the above process for vectors B and C enables the distance between clusters S 

and U to be calculated. 

                                                        

                                          

            

With the calculations for cluster diameter,     , and inter-cluster distances,       , repeated 

for clusters T and U it is possible to derive Table B-4 (shown below). 

Table B-4: Dunn’s Index Inter-cluster distances        and cluster diameters       

Cluster S T U      

S 0 7.61 5.61 5.09 

T 7.61 0 6.84 8.31 

U 5.61 6.84 0 9.69 

Using Table B-4 it is then possible to compute the Dunn’s Index for the sample dataset. First 

the maximum cluster diameter can be calculated (shown below). 

   
     

                            

   
     

                            

   
     

             

With the maximum diameter calculated the individual Dunn’s Index values for each cluster 

can be calculated as follows: 
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)}        

Using these values the Dunn’s Index for the set of clusters can be determined by taking the 

minimum value. 
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}} 

                          

         

B-3-2 Alternative Dunn’s Index 

The Alternative Dunn’s Index follows the same logic as the method presented above with the 

only difference being the cluster diameter,     , and inter-cluster,       , distance metrics. 

The cluster diameter can be defined with several different metrics, however for the purpose of 

this study the cluster diameter was defined as shown below (Equation 35, Section 5.1.3). 
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Using the sample dataset shown in Table B-3 and completing the calculation for cluster S 

results in the following: 

      (
∑           

| |
)           

 

| |
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      (
                    

| |
) 

The above equation shows that it is necessary to calculate the distance of each vector from 

the cluster centre. The distances of vectors A, B and C from cluster centre S can be seen 

below: 
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Now continuing with the previous set of equations it is possible to calculate the diameter for 

cluster S. 

      (
                    

| |
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      (
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Repeating the distance calculation from Section B-3-1 yields the following distances between 

vector A and vectors in cluster U. 

                                                             

                                                           

                                                           

                                                           

With this process repeated for vectors B and C and the vectors from cluster U enables the 

inter-cluster distance between clusters S and U to be calculated as follows: 

                 
 

| || |
∑       

       

 

       
 

| || |
(                                           ) 

       
 

| || |
                                      

            

 

 



154 
 

With the calculations for cluster diameter,     , and inter-cluster distances,       , repeated 

for clusters T and U it is possible to derive Table B-5 (shown below). 

Table B-5: Alternative Dunn’s Index Inter-cluster distances δ(i,j) and cluster diameters ∆(i) 

Cluster S T U      

S 0 10.0 7.91 4.24 

T 10.1 0 10.4 7.52 

U 7.91 10.4 0 8.81 

Since the only difference between the two Dunn’s Index calculations is the diameter and 

inter-cluster metrics the final steps have not been presented again. 
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        B-4 Financial Analysis 

For the purpose of the financial sample calculation it was decided to use cluster 7 from the 

PE clustering test. This cluster was chosen because it had an appropriate number of 

companies, enabling the calculation to show detail without too many repetitive steps. The 

companies in this cluster were: 

1. Datatec Limited (DTC) - Technology 

2. Conduit Capital Limited (CND) – Financials 

3. Enterprise Risk Management (ERM) - Technology 

4. Merafe Resources Limited (MRF) – Basic materials 

5. Petmin Limited (PET) – Basic materials 

6. Primeserv Group Limited (PMV) - Industrials 

7. Tradehold Limited (TDH) - Financials 

8. ZCI Limited (ZCI) – Basic materials 

As shown in Equation 1 Section 2.1.1 the return for a share requires the share prices as well 

as the value of dividends paid over the chosen period. 

Using Datatec Limited (DTC) for the purpose of the sample calculation and using the closing 

price difference between 29 June 2007 and 31 July 2007 results in the following: 

  
        

  

 

  
           

    
 

               

Then taking the natural log of the above for continuous compounding (Equation 2 Section 

2.1.1) 
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The previous calculation was then completed for each firm in the cluster (portfolio) and the 

total return was determined. In the case of weighted returns the market capitalisation of each 

firm at the beginning of the 12 month period was used. 

The sample calculation below has been completed for the period 29 June 2007 to 31 July 

2007 with weightings taken according to 29 June 2007. 

          ∑    

 

   

 

          [                               ] 

                        

When calculating the excess monthly returns the above number would then be compared to 

the benchmark over the same period, as shown below: 

                             

                        

                       

To determine the share’s variance (over a 12 month period) monthly stock returns were used. 

The same methodology as the one described above was used to calculate the monthly 

returns for all the companies and with the returns calculated it was then possible to determine 

the sample variance and covariance between each firm’s monthly returns. The values for the 

variance and covariance between the eight companies are shown in Table B-6. 
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Table B-6: Sample Calculation Monthly Return Variance and Covariance 

 DTC CND ERM MRF PET PMV TDH ZCI 

DTC 0.0151        

CND 0.0056 0.0138       

ERM 0.0073 0.0049 0.0132      

MRF -0.0015 0.0033 0.0051 0.0200     

PET 0.0074 0.0109 0.0043 -0.0095 0.0288    

PMV 0.0038 0.0216 0.0045 -0.0033 0.0242 0.0490   

TDH 0.0017 0.0015 0.0000 -0.0047 0.0014 0.0029 0.0061  

ZCI 0.0065 0.0026 0.0065 0.0035 0.0022 -0.0066 -0.0016 0.0259 

With all these values it was then possible to calculate the portfolio standard deviation using 

Equation 11 below. 
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