4,270 research outputs found

    SOTXTSTREAM: Density-based self-organizing clustering of text streams

    Get PDF
    A streaming data clustering algorithm is presented building upon the density-based selforganizing stream clustering algorithm SOSTREAM. Many density-based clustering algorithms are limited by their inability to identify clusters with heterogeneous density. SOSTREAM addresses this limitation through the use of local (nearest neighbor-based) density determinations. Additionally, many stream clustering algorithms use a two-phase clustering approach. In the first phase, a micro-clustering solution is maintained online, while in the second phase, the micro-clustering solution is clustered offline to produce a macro solution. By performing self-organization techniques on micro-clusters in the online phase, SOSTREAM is able to maintain a macro clustering solution in a single phase. Leveraging concepts from SOSTREAM, a new density-based self-organizing text stream clustering algorithm, SOTXTSTREAM, is presented that addresses several shortcomings of SOSTREAM. Gains in clustering performance of this new algorithm are demonstrated on several real-world text stream datasets

    Link Clustering with Extended Link Similarity and EQ Evaluation Division.

    Get PDF
    Link Clustering (LC) is a relatively new method for detecting overlapping communities in networks. The basic principle of LC is to derive a transform matrix whose elements are composed of the link similarity of neighbor links based on the Jaccard distance calculation; then it applies hierarchical clustering to the transform matrix and uses a measure of partition density on the resulting dendrogram to determine the cut level for best community detection. However, the original link clustering method does not consider the link similarity of non-neighbor links, and the partition density tends to divide the communities into many small communities. In this paper, an Extended Link Clustering method (ELC) for overlapping community detection is proposed. The improved method employs a new link similarity, Extended Link Similarity (ELS), to produce a denser transform matrix, and uses the maximum value of EQ (an extended measure of quality of modularity) as a means to optimally cut the dendrogram for better partitioning of the original network space. Since ELS uses more link information, the resulting transform matrix provides a superior basis for clustering and analysis. Further, using the EQ value to find the best level for the hierarchical clustering dendrogram division, we obtain communities that are more sensible and reasonable than the ones obtained by the partition density evaluation. Experimentation on five real-world networks and artificially-generated networks shows that the ELC method achieves higher EQ and In-group Proportion (IGP) values. Additionally, communities are more realistic than those generated by either of the original LC method or the classical CPM method

    Improving the family orientation process in Cuban Special Schools trough Nearest Prototype classification

    Get PDF
    Cuban Schools for children with Affective – Behavioral Maladies (SABM) have as goal to accomplish a major change in children behavior, to insert them effectively into society. One of the key elements in this objective is to give an adequate orientation to the children’s families; due to the family is one of the most important educational contexts in which the children will develop their personality. The family orientation process in SABM involves clustering and classification of mixed type data with non-symmetric similarity functions. To improve this process, this paper includes some novel characteristics in clustering and prototype selection. The proposed approach uses a hierarchical clustering based on compact sets, making it suitable for dealing with non-symmetric similarity functions, as well as with mixed and incomplete data. The proposal obtains very good results on the SABM data, and over repository databases

    Familiarity Discrimination of Radar Pulses

    Full text link
    The ARTMAP-FD neural network performs both identification (placing test patterns in classes encountered during training) and familiarity discrimination (judging whether a test pattern belongs to any of the classes encountered during training). The performance of ARTMAP-FD is tested on radar pulse data obtained in the field, and compared to that of the nearest-neighbor-based NEN algorithm and to a k > 1 extension of NEN
    • …
    corecore