
Virginia Commonwealth University
VCU Scholars Compass

Computer Science Publications Dept. of Computer Science

2017

SOTXTSTREAM: Density-based self-organizing
clustering of text streams
Avory C. Bryant
Virginia Commonwealth University, bryantac@vcu.edu

Krzysztof J. Cios
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/cmsc_pubs
Part of the Computer Engineering Commons

Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted,
modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative
Commons CC0 public domain dedication.

This Article is brought to you for free and open access by the Dept. of Computer Science at VCU Scholars Compass. It has been accepted for inclusion
in Computer Science Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact
libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/cmsc_pubs/36

http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fcmsc_pubs%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fcmsc_pubs%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fcmsc_pubs%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/cmsc_pubs?utm_source=scholarscompass.vcu.edu%2Fcmsc_pubs%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/cmsc?utm_source=scholarscompass.vcu.edu%2Fcmsc_pubs%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/cmsc_pubs?utm_source=scholarscompass.vcu.edu%2Fcmsc_pubs%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarscompass.vcu.edu%2Fcmsc_pubs%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/cmsc_pubs/36?utm_source=scholarscompass.vcu.edu%2Fcmsc_pubs%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


RESEARCH ARTICLE

SOTXTSTREAM: Density-based self-organizing

clustering of text streams

Avory C. Bryant1,2*, Krzysztof J. Cios1,3

1 Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States of

America, 2 Naval Surface Warfare Center Dahlgren Division, US Navy, Dahlgren, VA, United States of

America, 3 Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Gliwice, Poland

* bryantac@vcu.edu

Abstract

A streaming data clustering algorithm is presented building upon the density-based self-

organizing stream clustering algorithm SOSTREAM. Many density-based clustering algo-

rithms are limited by their inability to identify clusters with heterogeneous density.

SOSTREAM addresses this limitation through the use of local (nearest neighbor-based)

density determinations. Additionally, many stream clustering algorithms use a two-phase

clustering approach. In the first phase, a micro-clustering solution is maintained online,

while in the second phase, the micro-clustering solution is clustered offline to produce a

macro solution. By performing self-organization techniques on micro-clusters in the online

phase, SOSTREAM is able to maintain a macro clustering solution in a single phase.

Leveraging concepts from SOSTREAM, a new density-based self-organizing text stream

clustering algorithm, SOTXTSTREAM, is presented that addresses several shortcomings of

SOSTREAM. Gains in clustering performance of this new algorithm are demonstrated on

several real-world text stream datasets.

Introduction

A primary means for sharing information amongst people is through the production and con-

sumption of text. This fact can be observed in one’s daily interactions with text-based informa-

tion sources such as news articles, blog/micro-blog posts, websites, academic publications,

search engine queries/results, email, and computer logs. A common theme amongst these

information sources is that they are naturally observed as a sequence or stream of text-based

objects (e.g., article, post, query, or email). Given their abundance and size, the analysis of text

streams is an important problem with respect to the analysis of big data.

One such analysis, useful in the exploration of large unlabeled datasets, is cluster analysis.

In addition to the text-based applications of document organization; topic extraction; and out-

lier detection, in a streaming setting cluster analysis can be applied to problems of change-

point detection. Examples of applications include identifying emergent trends in Twitter posts

[1–3] and user queries [4], identifying new and tracking existing news stories [2, 5–7], and

identifying spam emails [8].

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Bryant AC, Cios KJ (2017)

SOTXTSTREAM: Density-based self-organizing

clustering of text streams. PLoS ONE 12(7):

e0180543. https://doi.org/10.1371/journal.

pone.0180543

Editor: M. Sohel Rahman, Bangladesh University of

Engineering and Technology, BANGLADESH

Received: August 15, 2016

Accepted: June 17, 2017

Published: July 7, 2017

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All data used in this

research is freely and publicly available from

sources which are cited in the paper.

Funding: This work was funded in part by the

Naval Surface Warfare Center Dahlgren Division’s

In-house Laboratory Independent Research

Program. There was no additional external funding

received for this study.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0180543
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180543&domain=pdf&date_stamp=2017-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180543&domain=pdf&date_stamp=2017-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180543&domain=pdf&date_stamp=2017-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180543&domain=pdf&date_stamp=2017-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180543&domain=pdf&date_stamp=2017-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180543&domain=pdf&date_stamp=2017-07-07
https://doi.org/10.1371/journal.pone.0180543
https://doi.org/10.1371/journal.pone.0180543
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


Traditional non-streaming clustering approaches focus on the offline analysis of static,

unordered data (e.g., partitioning, hierarchical, density-based, model-based, and grid-based

cluster analysis). Here data is assumed to be stationary as well as independently and identically

distributed. However, with streaming data such assumptions may be invalidated due to the

potential for concept drift. Concept drift can best be described with respect to supervised

learning, where properties of the target variable change over time.

An in-depth description of concept drift is presented in [9] with respect to Bayesian deci-

sion theory. Assuming a categorical response variable, concept drift is defined as changes in

the data’s class conditional probabilities and/or prior class probabilities. Thus, the posterior

probability of some object belonging to some class may change over time. In such a setting one

can view clustering as follows, first assume that data is produced from some generative model.

For example, object and class label pairs drawn from the joint probability density distribution

defined by the conditional and prior probability distributions. With respect to clustering,

objects are presented without class labels. Here the goal of clustering can be viewed as group-

ing the objects into sets, clusters, which correlate to the grouping, sets, defined by the hidden

class labels. With this in mind, concept drift may be described with respect to unsupervised

learning, where properties of the generative model change over time.

In addition to the differences mentioned above, the learning step faces increased memory

and processing restrictions not seen in the non-streaming environment. First, with respect to

time, learning is restricted to the time frame of the stream, as at any stream time t the learner’s

view of the stream is restricted to stream objects arriving at or before t (i.e., the learner cannot

look ahead into the future). Second, a stream’s arrival rate acts as an upper bound on per-

object learning time (i.e., objects must be processed at the rate at which they arrive). Third, as

the size of a stream may be unbounded, at any time t, it is unfeasible to maintain all prior

objects (i.e., previously observed objects must be discarded).

A solution to the above issues is the use of adaptive online single-pass clustering algorithms.

Adaptive clustering algorithms have the ability to grow or shrink the number of recognized

clusters (i.e., capture the dynamics of the stream). In online learning, learning is restricted to

one object at a time with an updated model being available after every object. Finally, a single-

pass algorithm performs a single-pass over all objects never revisiting an object twice. An

example of such a clustering algorithm is the Leader-Follower Clustering Algorithm (LFCA)

[10, 11] which represents a greedy approach to the problem. A popular stream clustering

approach, that trades-off between the benefits of online versus offline learning, is the CLU-
STREAM algorithm [12]. Here online clustering is performed at a micro level. This micro solu-

tion at any time can be passed to an offline clustering step; this step producing a macro

solution by clustering the micro solution.

In LFCA, summary representations of clusters (e.g., statistics such as centroids) are main-

tained online following the arrival of each new stream object. Here each new object is inserted

into its nearest existing cluster assuming some insertion criterion is met. An insertion effec-

tively updates the nearest cluster’s state (e.g., its cluster centroid is adjusted in the direction of

the new object, and its weight increased) where the insertion criterion is associated with some

distance-based threshold. If the insertion criterion is not met, a new singleton (single object)

cluster is created from the new object. In either case, the object is immediately discarded and

model updated. This last point leads to an important property of cluster summary representa-

tions; namely that they be incrementally updateable (i.e., without having to access all past

inserted objects). Generally, the effect of such an update is relative to the current weight of the

cluster that is also subject to some process of decay. In addition to this insertion process, sev-

eral other cluster maintenance operations may be performed such as the deletion of old clus-

ters; merging of near clusters; and splitting of large, disperse clusters. Examples of LFCA

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 2 / 25

https://doi.org/10.1371/journal.pone.0180543


stream clustering algorithms include CLUSTREAM, DENSTREAM [13], STREAMOPTICS
[14], MRSTREAM [15], CLUSTREE [16], SOSTREAM [17], HASTREAM [18, 19], and

SOTXTSTREAM.

Three of the above density-based approaches are designed to handle clusters of heteroge-

neous density: STREAMOPTICS, MRSTREAM, and HASTREAM. STREAMOPTICS is a

method for visualizing streams and is similar to the non-streaming density-based OPTICS
[20]. MRSTREAM uses a grid-based clustering approach used to model data at multiple resolu-

tions (i.e., densities). Unfortunately, such an approach is not well suited given high-dimen-

sional data. HASTREAM, another hierarchical approach, maintains a density-based minimum

spanning tree of clusters, where an offline clustering is produced via hierarchical edge cutting

(see HDBSCAN [21]). HASTREAM maintains micro-clusters online using the DENSTREAM
or CLUSTREE methods (i.e., this approach is primarily focused on the offline phase).

In regards to the above LFCA stream clustering algorithm, SOSTREAM is unique with

respect to its use of self-organizing concepts. In SOSTREAM, the nearest cluster is updated by

the new object, whereas its nearest neighbors are updated by the nearest cluster (i.e., this learn-

ing approach is similar to updating performed in Self-Organizing Maps (SOM) [22]). As with

LFCA, the winning cluster and its neighborhood are updated if and only if some insertion cri-

terion is meet (e.g., the distance between the nearest cluster and the new object is below or

equal to some distance threshold). For SOSTREAM, this distance threshold is set to the dis-

tance between the nearest cluster and its kth-nearest neighbor (i.e., the distance threshold is

dynamic and cluster-dependent). Finally, the winning cluster’s neighborhood is examined for

potential mergers eliminating the need for performing a separate offline clustering step.

This last point represents the primary motivation behind the SOTXTSTREAM and

SOSTREAM algorithms, which is the elimination of the offline clustering step required to pro-

duce a macro clustering solution. In both cases, this is achieved by effectively reducing the

number of micro-clusters in the online phase via a SOM-like approach. With this in mind, the

main contributions of SOTXTSTREAM correspond to improvements to the SOSTREAM algo-

rithm for clustering streaming text, which include:

• Redesign of the algorithm with respect to the use of Cosine distance, as opposed to Euclid-

ean, which is more appropriate for computing distances between documents.

• Redesign of the algorithm to effectively, with respect to performance, reduce the number of

micro-cluster produced.

• Evaluation performed on several real-world disparate text stream with synthetic concept

drift.

The remainder of this paper is structured as follows: prior work in clustering streaming text

is presented in Background, SOTXTSTREAM is introduced in Materials and Methods, perfor-

mance of SOTXTSTREAM is evaluated in Results and Discussion, and findings summarized in

Conclusion.

Background

Here prior work focusing on the use of online clustering approaches for the analysis of text is

presented. Note the generic use of the term object, referring to a stream datum observation, is

dropped in favor of document.

In [1, 4], the IncrementalDBSCAN [23] clustering algorithm is used to maintain an online

DBSCAN [24] clustering solution on a sliding window of stream documents (user queries [4]

and Twitter tweets [1]). This approach relies on the fact that the DBSCAN algorithm clusters

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 3 / 25

https://doi.org/10.1371/journal.pone.0180543


data by local neighborhood observations. Specifically, it is assumed that the insertion or

removal of a document has a local affect on the clustering solution. Unique aspects of the two

approaches includes leveraging of click-through information [4], the use of a temporal penalty

function [1], and the use of geographic information [1].

Online variants of the kMEANS clustering algorithm [8, 25, 26] have been applied to cluster

document streams (websites [25], email [8], and Twitter tweets [26]). While [25] is a multi-

pass iterative clustering approach, operating on stream segments, it does perform fading

which is characteristic of online approaches. Specifically, a fading learning rate is applied at

each iteration of kMEANS such that clusters are faded across segments. Concepts from

kMEANS++ [27], a non-random seeding kMEANS algorithm that guarantees an approximate

solution, are incorporated into a stream clustering algorithm in [8]. Here a merge-and-reduce

technique is used to maintain a set of core-sets, document set summaries, representing an

approximate solution to a kMEANS++ seeding (i.e., this is actually a solution to the kME-
DIODS problem). In [26], an approximate kernel matrix of the stream is maintained using

importance sampling where clustering is applied to the eigen decomposition of said matrix

(i.e., kernel-based kMEANS).

Numerous examples of the online processing of text streams can be seen in work on topic

detection and tracking [2, 5–7] focusing on streaming news articles. In these works, the main

applications are first story detection and tracking. Similar to LFCA, first nearest neighbor clas-

sification is used where new documents are compared directly to previously observed docu-

ments. Here cluster membership of documents are maintained, as opposed to cluster

summaries, where new documents are assigned to the cluster of their nearest prior document

or assigned to a new cluster. Unique aspects of this work includes the use time-dependent doc-

ument distances [5–7], and normalizing distances given some set of labeled documents [6, 7].

Additionally, [7] is unique in its use of text distances based on the minimum distance between

overlapping text segments.

A computational bottleneck of LFCA lies in its solution to the k-nearest neighbor problem.

An approximate solution to the k-nearest neighbor problem for high-dimensional data is

Locality Sensitive Hashing LSH [28]. LSH hashes observations into bins such that similar

observations are more likely to be hashed into the same bin (i.e., similar observations will have

the same hash value with high probability whereas dissimilar observations will have the same

hash value with low probability). In this way the complexity of identifying similar or near

neighbors is reduced by limiting searches to the set of observations within the same bin. In [2]

first nearest neighbor classification of documents is performed using the random projections

method of LSH [29], adapted for the Cosine distance. Here a constant number of prior docu-

ments is maintained by limiting the number of documents assigned to each bin. This mainte-

nance is performed by the removal of older documents in overflowing bins. Similarly, in [30],

LSH is used with LFCA on a stream of XML documents. Here XML documents and their clus-

ters are maintained as graphs where bloom filters are used to optimize set-based distance cal-

culations. LFCA is performed on the XML graphs using the min-wise independent

permutations method of LSH [31], adapted for the Jaccard distance.

Given their popular usage in text modeling, there exists prior work in online topic models

as seen in [32, 33] for text streams. In [32], online topic-models are investigated for several

topic models including von Mises-Fisher, Dirichlet Compound Multinomial, and Latent

Dirichlet Allocation models. All approaches assume some initial model, where model updating

procedures are presented for the insertion of new documents. In addition to the online topic

models, an online-offline process is introduced that maintains the topic model online, periodi-

cally optimizing said model with an offline step (e.g., Gibbs sampling for Latent Dirichlet Allo-

cation) using a set of previously observed documents. In [33] a multinomial mixture model of

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 4 / 25

https://doi.org/10.1371/journal.pone.0180543


terms is combined with a translation model, used to model the relationship between terms and

phrases, and fading model that discounts the effect of older documents. Here the topic model

is maintained online by LFCA using summary statistics required to maintain a multinomial

for each topic.

In [34], a LFCA stream clustering algorithm is presented for text and categorical data. This

approach is novel with respect to the maintained cluster statistics, and includes sparse repre-

sentations of weighted non-zero co-occurrence counts for terms. A similar approach is seen in

[35] that combines social network and text-based distances into a single distance measure.

Non-document clustering solutions to the problem of event detection in text streams are seen

in [3, 36]. An offline approach to identifying emergent topics is presented in [3] by the identifi-

cation and clustering of emergent terms in stream segments. This approach also incorporates

social-network information (i.e., Twitter data) to detect emergent topics. In [36], the problem

being investigated is that of maintaining frequent itemsets over a sliding window of stream

instances with offline clustering. Lastly, in [37, 38] the focus is on maintaining dense compo-

nents of a streaming term co-occurrence graph (i.e., graph-based approaches).

An important pre/online processing step relevant to the performance of document cluster-

ing is that of term (feature) weighting. Term weighting relies on some statistical knowledge of

term usage in a document collection. However, in the streaming setting, term usage statistics

may be unknown, incomplete, or subject to drift. This problem is not considered in this work,

as online methodologies are compared with several offline ones (i.e., non-streaming cluster-

ing). Still, a review of potential solutions is presented below.

In [39], it is shown that some representative background corpus can be used for Term Fre-

quency—Inverse Document Frequency (TF-IDF) weighting with a negligible effect on perfor-

mance. Similarly, in [40], incrementalTF-IDF, continuously updating of term usage statistics, is

shown to be effective given a sufficiently large set of initial documents.

Term weighting solutions [41–43] focus on weighting terms by their arrival rate in the

stream (i.e., positively correlating term arrival rate with significance). Offline approaches pre-

sented in [41] and [43] use a popular method of modeling term burstiness by arrival rate [44],

and by segmenting the stream and modeling expected random segment term counts using a

binomial distribution. An online approach is presented in [42] by maintaining incremental

means of term arrival rates. Similarly, [45] addresses the problem of maintaining online

approximate frequent item counts, under polynomial decay, in data streams, though their

focus is not on text.

Finally, supervised approaches such as [7, 46] perform term weighting assuming some

known categorization of the documents. In [46], categories are assumed to represent separate

network news text streams where significant terms are those that are highly weighted across

many networks. Conversely, in [7], categories represent topics where a term’s weight is

increased if it occurs in a small number of topics.

Materials and methods

Definitions

In this section definitions are presented for the required elements of the SOTXTSTREAM algo-

rithm, summarized in Table 1.

Let X = hx0, . . ., xi, . . .i define a continuous stream of text documents, such that for all docu-

ments xi, i = 0. . .|X| − 1, index i indicates stream arrival order. Note that at any index i, all doc-

uments in the stream with index X�i have been observed, whereas documents with index X>i
have yet to be observed. Additionally, let function t define a time-stamp function t : xi !
Z�0 j 8xi : tðxiÞ � tðxiþ1Þ that maps stream documents to their time of arrival represented as

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 5 / 25

https://doi.org/10.1371/journal.pone.0180543


an integer offset from the start of the stream, initialized to 0 (i.e. t(x0) = 0). While time-stamp

function t allows one to define time epochs in which several or no stream documents arrive,

for simplicity, here it is assumed that t(xi) = i.
For each stream document, let xi represent a term-frequency vector of length d such that

xi 2 Z
d
�0

, and xi, j, j = 0. . .d − 1, is the frequency of term j in document i. Furthermore, assume

the existence of some background document collection B where Bj = |{b 2 B jbj> 0}| is the

number of documents in B containing term j. Let function tfidf(xi, j, B) return the TF-IDF
weighted value of term j in document xi given background corpus B:

tfidf ðxi; j;BÞ ¼ xi;j � log
jBj
Bj ; ð1Þ

where tfidf ðxi; j;BÞ 2 R
d
�0

. For the remainder of this paper, all references to stream docu-

ments, say x, refer to the TF-IDF weighted vector of x, xj = 0. . .d−1 = tfidf(x, j, B), not the term-

frequency vector.

For any vector x 2 Rd
�0

, normalize function norm returns the normalized vector of x:

normðxÞ ¼
x
jjxjj ð2Þ

where normðxÞ 2 Rd
�0

and ||norm(x)|| = 1.

Table 1. SOTXTSTREAM functions and parameters.

X stream of text documents

xi ith arriving document, TF-IDF weighted vector of document x dependent on term usage

statistics of background collection B (see Eq (1)), of X

t(x) time stamp of document x

norm(x) normalized vector of x (see Eq (2))

dist(a, b) cosine distance between vectors a and b (see Eq (3))

Nk(a, A) k-nearest neighbor function that returns the k-nearest neighbors of a in set A. Assumes that

the returned set is in ascending order with respect to distance from a

f(Δt) function returns a fade value with respect to change in time (see Eq (4))

λ controls the degree of fading in function f with respect to change in time

M set of micro-clusters

m micro-cluster in M defined by the features ms (linear sum), mw (weight), mt0
(update time),

and mc (centroid)

init(x) function initializes a singleton micro-cluster with document x (see Eq (5))

insert(m, x) function inserts document x into micro-cluster x (see Eq (6)

fade(m) function fades micro-cluster m with respect to the current stream time (see Eq (7)

merge(m,

m0)

function creates a new micro-cluster by merging two existing micro-clusters m and m0 (see

Eq (8)

adjust(m, x,

r)

function adjusts micro-cluster m towards document x with respect to radius r (see Eq (10)

β(x, m, r) function returns the influence of document x on micro-cluster m given radius r (see Eq (11)

mthresh micro-cluster merge threshold

https://doi.org/10.1371/journal.pone.0180543.t001

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 6 / 25

https://doi.org/10.1371/journal.pone.0180543.t001
https://doi.org/10.1371/journal.pone.0180543


For any two vectors x; y 2 Rd
�0

, distance function dist returns the distance between x and y.

Here function dist is defined using cosine distance:

distðx; yÞ ¼ 1 �
x � y
jjxjjjjyjj ð3Þ

where dist(x, y)2[0, 1].

Given a set of vectors Y, positive integer k, and vector x, let function Nk(x, Y) return the set

of k nearest neighbors, defined by dist, of x in Y. Assume that nearest neighbors in Nk(x, Y) are

returned in ascending order according to their distance from x, such that first index of the

returned set is the nearest instance in Y from x.

Stream X is modeled by maintaining a set of micro-clusters M whose state prior to observ-

ing document xi is dependent on the previously observed i − 1 documents, X<i. At document

xi, each micro-cluster m 2M represents a subset of documents, m� X<i, where M represents

a clustering of X<i such that
S
m2Mm = X<i and 8m, m0 2M where m 6¼m0, m\m0 = ;. The

set of documents in micro-cluster m define its summary representation, a time-dependent

weight and centroid, using the fading function:

f ðDtÞ ¼ 2� lDt ð4Þ

Note that this assumes that each document contributes a weight of one to the model at

insertion (i.e., at Δt = 0). Micro-cluster based clustering can be attributed to the BIRCH [47]

algorithm, with a faded variant for streaming introduced in CLUSTREAM [12]. The following

micro-cluster definition, insertion, and fading schemes are similar to the CLUSTREAM
approach.

Definition 1 (Micro-Cluster) For a subset of documents Y� X<i, micro-cluster m at stream

time t = t(xi) is defined by the triple hs, w, t0i. Here w is the micro-cluster’s weight, w = ∑y2Y
f(t − t(y)); s the weighted linear sum of the normalized TF-IDF weighted documents in

Y, s = ∑y2Y f(t − t(y)) × norm(y); and t0 the time at which the micro-cluster was last updated,

t0 = maxy 2 Y t(y). Additionally, let c be the centroid of m defined as c = s/w.

Any document x can be used to initialize a singleton micro-cluster m according to the func-

tion init as follows:

initðxÞ ¼ hnormðxÞ; 1; tðxÞi ð5Þ

Note that in Def 1 it is assumed that the set of all previously observed documents, X<i, is

maintained throughout the stream; an impractical assumption as X may be unbounded. Fortu-

nately, the summarizing variables of each micro-cluster, hs, w, t0i, can be updated incremen-

tally at the insertion of each stream document (see [12]). Consider the insertion of stream

document xi with time stamp t = t(xi) into some micro-cluster m. In this case, m can be

updated by fading m’s variables before incrementing it with document xi as seen in function

insert:

insertðm; xiÞ ¼ hf ðt � mt0
Þ �ms þ normðxiÞ; f ðt � mt0

Þ �mw þ 1; ti ð6Þ

Likewise, for any unaffected micro-cluster m0 6¼m at time stamp t, m0 can be faded without

insertion according to the function fade:

fadeðm0Þ ¼ hf ðt � m0t0Þ �m0s; f ðt � m0t0Þ �m0w; ti ð7Þ

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 7 / 25

https://doi.org/10.1371/journal.pone.0180543


Any pair of micro-clusters m and m0 can be merged to create a new micro-cluster. This is

achieved by the fading and addition of their variables as seen in function merge:

mergeðm;m0Þ ¼ hf ðt � mt0
Þ �ms þ f ðt � m0t0Þ �m0s;

f ðt � mt0
Þ �mw þ f ðt � m0t0Þ �m0w; ti

ð8Þ

Recall that the SOM algorithm [22] is used to produce a lower dimensional representation

of a dataset by mapping instances onto a grid of nodes (e.g., a 2-dimensional square grid). This

mapping is obtained by learning a vector of weights, of the same dimension as the instances in

the dataset, for each node, that are used to map instances onto the grid (i.e., to the closest node

given the distance between a nodes weight vector and an instance). Node weight learning is

performed over a series of learning steps (batch observation of the dataset) where for a given

dataset X, at each next step s+1 the weight vector Wv(s + 1) of node v is updated as follows:

Wvðsþ 1Þ ¼
X

x2X

WvðsÞ þ yðu; v; sÞaðsÞðx � WvðsÞÞ ð9Þ

where function α is the learning rate (monotonically decreasing with respect to s), u is the clos-

est node to x (according to the distance between x and the weight vector of node u), and θ is a

neighborhood function that returns the distance from u to v at step s (e.g, a Gaussian function

centered at u with monotonically decreasing variance with respect to step s). Note that the dis-

tance returned by the neighborhood function θ is not related to node weight vectors, but rather

the location of nodes on the grid.

Similar to the concept of updating neighbors of the winning node in SOM, when inserting

stream document xi at time t = t(xi) into winning micro-cluster m, some neighboring micro-

cluster m0 may likewise be updated, adjusted, by the insertion. Neighboring micro-cluster m0

can be adjusted, non-insertion, by xi according to function adjust defined as:

adjustðm0; xi; rÞ ¼ hf ðt � m0t0Þ �m0s þ bðxi;m0; rÞ � normðxiÞ;

f ðt � m0t0Þ �m0w þ bðxi;m0; rÞ; ti:
ð10Þ

where function β defines the degree of influence, weight of the adjustment, the insertion of xi
has on neighboring micro-cluster m0 given some radius r (0� r� 1).

bðxi;m0; rÞ ¼ e�
distðxi ;m

0Þ

2r2 ð11Þ

Note that influence function β is dependent on the distance from m0 to xi and radius r. Spe-

cifically, given a fixed radius, function beta is monotonically decreasing with respect to this dis-

tance. Also note that 0� β(xi, m0, r)�1 as 0� dist(xi, m0)� 1.

In contrast to SOM, in SOTXTSTREAM a dynamic set of micro-clusters is updated (as

opposed to a grid of nodes) at the arrival of each new document (as opposed to batch observa-

tion of the entire dataset). Additionally, updating is limited to the new document’s nearest

micro-cluster (Eq (6)), and some neighboring set of micro-clusters (Eq (10)). Furthermore, in

SOTXTSTREAM, Eq (11) represents the learning weight expressed by the product θ(u, v, s)α(s)
in Eq (9) where θ is a Gaussian function. Finally, while SOM (Eq (9)) updates nodes (micro-

clusters) by a signed difference, the update in SOTXTSTREAM (Eq (10)) is equivalent to an

online mean with respect to the weight of a micro-cluster.

Stream clustering algorithm

In this section the SOTXTSTREAM clustering algorithm (Fig 1) is described. Beginning with

some document stream X and empty set of micro-clusters M, for next stream document xi, if

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 8 / 25

https://doi.org/10.1371/journal.pone.0180543


the current number of micro-clusters is less than or equal to k than a new singleton micro-

cluster is created for the new document (Eq (5)) and inserted into M. This is a necessary

requirement as the algorithm requires at least k micro-clusters to form a k-nearest neighbor-

hood. Note that the set of micro-clusters M is initialized with singleton micro-clusters (Eq (5))

for the first k + 1 documents (i.e., after initialization |M| = k + 1 with the next document occur-

ring at index k + 2). For small values of k, and perhaps general, one may consider initializing

the set of micro-clusters to some fixed number of initial stream documents. However, though

not reported here, such an initialization has shown to have a negligible impact on clustering

performance in our experimentation.

If the number of micro-clusters is greater than k, than the k + 1 nearest neighborhood

Mxi � M for stream document xi is found along with the k nearest neighbor Mm 2M of xi’s
nearest micro-cluster m ¼ Mxi

1 . Note that the distance between a stream document x and

Fig 1. Pseudo-code for the SOTXTSTREAM algorithm.

https://doi.org/10.1371/journal.pone.0180543.g001

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 9 / 25

https://doi.org/10.1371/journal.pone.0180543.g001
https://doi.org/10.1371/journal.pone.0180543


micro-cluster m is calculated between document vector x and micro-cluster centroid vector

mc. New document, xi, is inserted into its nearest micro-cluster (Eq (6)), m, if the distance

from xi to m is less than or equal to the distance between m and its nearest micro-cluster in M.

As with a violation of the size criteria on M, if xi is not inserted into m, then xi is used to create

a singleton micro-cluster (Eq (5)) which is inserted into M.

Next, if xi was inserted into its nearest micro-cluster m, then xi’s remaining k nearest neigh-

bor micro-clusters (Mxi � m) are adjusted towards xi (Eq (10)). Radius r of the influence func-

tion (Eq (11)) is set to the merge threshold mthresh. Note that such an approach represents a

weighted competitive learning approach. Here self-organizing is dependent on the degree of

intersections between the two k-nearest micro-cluster sets of m and xi. Finally, the nearest

micro-cluster m is merged with its k-nearest neighbors if the distance between them is less

than or equal to merge threshold mthresh (Eq (8).

Though not addressed here, a common step in micro-cluster based LFCA approaches, such

as SOTXTSTREAM, is the periodic deletion of aging micro-clusters by a minimum weight

threshold. For evaluation purposes, this step was not performed, though the algorithm out-

lined in Fig 1 could be easily modified to perform deletion (e.g., using the previously defined

fade function (Eq (8)).

Other stream clustering algorithms

In this section we describe two stream clustering algorithms that are used to evaluate the per-

formance of SOTXTSTREAM in Results and Discussion. SOSTREAMwhich SOTXTSTREAM
builds upon, and a basic LFCA-based stream clustering algorithm which we refer to as

LSTREAM. LSTREAM is most related to the prior work presented on topic detection and

tracking [2, 5–7], and may be viewed as a simple baseline with respect to micro-cluster

approaches [12–19].

Most importantly, like SOTXTSTREAM, these approaches require a single online phase to

produce a macro clustering solution via the merging of micro-clusters. Whereas most other

micro-cluster approaches require an additional offline clustering phase. For this reason we

limited our analysis to the listed approaches.

SOSTREAM. Two versions of SOSTREAM are present in [17], corresponding to versions

with and without fading. The fading version can be interpreted as being equivalent to SOTXT-
STREAM with respect to initialization Eq (5), insertion Eq (6), fading Eq (7), and merging

Eq (8) of micro-clusters.

A micro-cluster in SOSTREAM is defined by the triple < c, n, r> representing a micro-

cluster’s centroid, weight, and radius. Note that equivalent insertion and merging functions

for centroid c can be defined with respect to weight n, faded according to Eq (7). For example,

the centroid of micro-cluster m, mc, can be updated by inserting stream document x as mc =

(mn ×mc+x)/(mn+1). Similarily, the centroid of micro-cluster m can be merged with the cen-

troid of some other micro-cluster m0 by ðmn �mc þm0n �m0cÞ=ðmn þm0nÞ. Radius r of micro-

cluster m is initialized to 0 and updated at insertions into m. This update sets the value of r to

the distance from m to its k-nearest neighbor in the set of current micro-clusters M, r ¼
distðm;Mm

k Þ where Mm = Nk(m, M −m).

Similar to Eq (10), when inserting stream document x into winning micro-cluster m some

neighboring micro-cluster m0 of m may likewise be updated, adjusted, by the insertion. The

centroid of neighboring micro-cluster m0, m0c, is adjusted by m as follows:

m0c ¼ m0c þ a� bðmc;m0c;mrÞ � ðmc � m0cÞ ð12Þ

where α is a learning rate (0� α� 1), mr the radius of m, and β the influence function as

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 10 / 25

https://doi.org/10.1371/journal.pone.0180543


defined in Eq (11). Differences between Eqs (10) and (12) are discussed below within the con-

text of the streaming algorithm.

SOSTREAM follows the streaming algorithm outlined in Fig 1 with several key differences.

First, in SOSTREAM, document xi is inserted into its nearest micro-cluster, m, if the distance

from xi to m is less than or equal to the distance between m and its k-nearest neighbor micro-

cluster in M. Recall from Fig 1, in SOTXTSTREAM, this insertion threshold is set to the dis-

tance between m and its nearest neighbor in M. Several factors contributed to the choice of the

latter approach. Primarily, use of the nearest neighbor decouples the use of k in the insertion

decision from its use in the neighborhood adjusting and merging processes. With respect to

SOSTREAM, this dependence results in a preference towards solutions with smaller values of

k, which limits the effect of the adjusting and merging phases.

Second, in SOSTREAM, if xi is inserted into its nearest micro-cluster m, then m’s k-nearest

neighbors in M are adjusted towards m (Eqs (12) and (11)). Recall from Fig 1, in SOTXT-
STREAM, xi’s remaining k-nearest neighbor micro-clusters (Mxi � m) are adjusted towards xi
(Eqs (10) and (11)). The latter approach is selected for several reasons. Adjusting towards the

new document xi, as opposed to its nearest micro-cluster m is more similar to the original

SOM approach. Additionally, while it seems more appropriate to update m’s nearest neighbors

with respect to SOM; the use of the cosine distance confounds such an approach. Specifically,

as cosine distance does not ensure the triangle inequality, closeness to xi’s nearest neighbor m
does not guarantee closeness to xi. In addition to this last point, recall in SOM that a node’s

neighborhood is determined with respect to the node grid structure. As no such grid structure

exists here, limiting updates to neighbors of m (as opposed to xi) seemed inappropriate.

Other differences in the adjustment of neighboring micro-clusters, observed in Eqs (10)

and (12), include the following. First, Eq (12) updates a micro-cluster by a signed difference,

while Eq (10) is equivalent to an online mean with respect to the weight of a micro-cluster.

The latter approach being more appropriate for micro-clusters representing document cen-

troids where it is assumed that centroid c 2 Rd
�0

. Second, in Eq (12), the effect of an adjust-

ment on a micro-cluster’s centroid is independent of the micro-cluster’s size, whereas in Eq

(10) the effect is relative to the micro-cluster’s weight (i.e., the larger the weight, the smaller the

impact and vice versa). This requires the use of an additional parameter, α, in Eq (12) to reduce

the effect of the adjustment. Third, in Eq (12), the radius of the influence function Eq (11)) is

set to the radius of m, mr, which is the distance between m and its k nearest neighbor in M.

Recall from Fig 1, in SOTXTSTREAM, the radius of the influence function is set to the merge

threshold mthresh. This latter approach is chosen due to the relationship between the fading and

merging processes. Specifically, as the merge threshold effectively defines a minimum distance

between micro-clusters, its use in defining the impact a new stream document has on neigh-

boring micro-clusters seemed appropriate.

Finally, in SOSTREAM, the merging of neighboring micro-clusters, as seen in Fig 1, has the

addition requirement (i.e., in addition to the distance threshold) that the area of the micro-

clusters, defined by their radii, must be overlapping. Note that this makes the use of a merge

threshold optional in SOSTREAMwhere the overlapping criterion might be deemed sufficient.

However, it has been observed that the performance of SOSTREAM is highly dependent on the

use of a merge threshold. Similarly, though not reported here, our experiments indicate that

the use of the overlapping criterion has a negligible effect on performance while using a merge

threshold.

LSTREAM. To simplify the description of LSTREAM along with the interpretation of its

results, SOTXTSTREAM’s micro-cluster definition Def 1 along with its initialization Eq (5),

insertion Eq (6), fading Eq (7), and merging Eq (8) functions are reused in LSTREAM.

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 11 / 25

https://doi.org/10.1371/journal.pone.0180543


With respect to the stream clustering algorithm, LSTREAM requires a single distance-based

threshold parameter, dthresh, and is outlined as follows. A new document is inserted into its

nearest existing micro-cluster if their distance is less than or equal to dthresh. Otherwise a new

micro-cluster is created for the new document. If the new document is inserted into an exist-

ing micro-cluster, then the updated micro-cluster is merged with any existing micro-clusters

within dthresh distance from it.

Note the performance of LSTREAM, with respect to SOTXTSTREAM, is of particular inter-

est as it lacks the SOM-like adjustment phase while incorporating a more aggressive merging

phase. Thus, the benefits of the adjustment phase in SOTXTSTREAM can be observed with

respect to LSTREAM. In particular, the number of micro-cluster produced by each algorithm

is of interest, along with their evaluation performance.

Results and discussion

To evaluate the performance of SOTXTSTREAM several real-world text collections were used,

and results compared with SOSTREAM, kMEANS, LSTREAM. kMEANSwas chosen to con-

trast the performance of the streaming approaches with a popular non-streaming clustering

algorithm. Synthetic versions of each collection were created to examine the performance of

each algorithm given concept drift.

Note that Cosine distance was used in all of the algorithms, along with normalized TF-IDF
weighted document.

Experiment

Two methods were used to produce stream orderings for each text collections (i.e. the order in

which documents arrive). First, a random ordering which is equivalent to sampling without

replacement from the prior class distribution of the collection. Stream orderings of this type

were considered to lack concept drift as they are dependent on the observed prior class distri-

bution of the collection.

Second, a random ordering which is based on randomly generating the order in which clas-

ses arrive in the stream. Stream orderings of this type were considered to exhibit concept drift

as the prior class distribution is dependent on the random class ordering and are highly depen-

dent on the position of the stream. Streams of this second type are referred to as synthetic ver-

sions of the dataset.

Note that in the first random ordering, random sampling without replacement, sampling is

not independent, but does satisfy exchangeability. In the case of the second random ordering,

the classes are mutually exclusive within the stream, and exchangeability is no longer satisfied.

In other words, all orderings are not equally likely as some orderings have zero probability due

to the classes being mutually exclusive within the stream.

Performance results are reported as the average performance given 100 random orderings

of the above two types for each dataset. In the case of kMEANSwhere the effects of data order-

ing are minimal, a single ordering was used. Note that documents are not evenly distributed

across categories in all cases except for the 20newsgroups collection.

Adjusted Rand Index (ARI) [48] was used to evaluate the performance of the clustering

algorithms on each dataset. ARI is a similarity measure between two data clusterings that is

adjusted for chance and is related to accuracy. For a fair comparison, optimal parameters with

respect to ARI were discovered via grid search, at 10−2 precision, over a range of their values.

Optimal parameters were chosen by the maximum average ARI performance over the 100 ran-

dom orderings

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 12 / 25

https://doi.org/10.1371/journal.pone.0180543


Data. Five unique text datasets were selected for evaluation, representing a diverse sample

of potential text streams (e.g., message posts, news articles, scientific publications, and email).

20newsgroups [49, 50] Subset of the 20newsgroups collection, 9,595 documents from 10 cate-

gories, of message posts collected from various news groups. Documents were limited to

the set of top 10 most distinct categories (see definition of distinct below).

arxiv2015 [51] Subset of the arXiv collection, 8424 documents from 40 categories, of scientific

bibliographic publications limited to documents published in 2015. Documents labeled by

multiple categories were discarded, and only documents from the remaining top 40 most

distinct categories kept.

ecue [52] Collection of 9,978 emails, categorized as spam or non-spam, collected from a single

individual’s mailbox.

reuters21578 [50, 53] Subset of the Reuters21578 collection, 8,257 documents from 65 catego-

ries, of Reuters newswire articles. Documents labeled by multiple categories were

discarded.

tdt2 [50, 54] Subset of the NIST Topic Detection and Tracking collection, 9,302 documents, of

news documents collected from multiple sources. Documents labeled by multiple categories

were discarded, and only documents from the remaining top 30 largest categories kept.

syn20newsgroups, synarxiv2015, synreuters21578, syntdt2 Synthetic versions of the 20news-
groups, arxiv2015, reuters21578, and tdt2 datasets generated by defining their document

stream orderings as follows. For each dataset, categories were randomly ordered and the

first three categories marked as active. Documents were then randomly drawn, without

replacement, from the active categories until a category was exhausted of documents. At

which point the next category in the category ordering was marked as active and the process

continued until all categories were exhausted. Note that the ecue dataset was not included

as it consisted of only two categories.

Here a category is defined as being distinct when the ratio of the category’s intra-document

similarity versus its inter-document similarity is small (with respect to the ratios of all catego-

ries). For inter and intra-document similarity calculations, the average pair-wise document

similarity was used. For two datasets, 20newsgroups and arxiv2015, it was deemed necessary to

limit analysis to the set of most distinct categories. In particular, this was due to the existence

of hierarchical relationships within the categorizations (e.g., one category might be a child of

another).

Data preprocessing. Recall that each document is represented as a normalized TF-IDF
weighted vector of terms. In all cases, except for arxiv2015, datasets were obtained in the form

of document term frequency vectors (i.e., no term tokenization or filtering was required).

With respect to arxiv2015, the Lucene Letter tokenizer was used along with several existing

Lucene filters (Standard, ASCIIFolding, Lowercase, Length (3), Stop (default list), and Porter-

Stem). For each document collection, the number of terms was limited to the top 2000 selected

by term document frequency. Additionally, for each document collection, term usage statistics

for TF-IDF weighting were calculated using the entire collection (i.e., the actual collection was

used as the background collection B in Eq (1)). Finally, documents consisting of fewer than 10

terms, not necessarily unique, were discarded. Note that the number of documents reported

above is the remaining number of documents after applying all of the above filters. In all cases,

the actual number of discarded documents due to term and document length filtering was

minimal.

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 13 / 25

https://doi.org/10.1371/journal.pone.0180543


Parameters of clustering algorithms. Descriptions of each of the optimized parameter

along with their range of possible values for each clustering approach are as follows:

kMEANSNumber of clusters 1� k� 100.

LSTREAMDistance threshold 0� dthresh � 1 for insertion and merging.

SOSTREAMNumber of nearest neighbors 1� k� 20 for insertion, adjusting, and merging;

constant learning rate 0< α� 1 for adjusting; and cluster merge threshold 0<mthresh < 1.

SOTXTSTREAMNumber of nearest neighbors 1� k� 20 for adjusting and merging, and

cluster merge threshold 0<mthresh < 1.

In addition to the above parameters, SOSTREAM and SOTXTSTREAM require a fading

parameter λ. Given a dataset containing n documents, λ was set such that the weight of the

first document at the end of the stream, f(n), is equal to 1

n:

1

n
¼ 2� ln ð13Þ

Eq (13) can be rearranged to solve for λ as follows:

l ¼ �
log 2

1

n

n
ð14Þ

Note that in practice the value of this parameter would be set using domain knowledge or

memory/computational constraints. For example, given a stream of news documents one may

choose a λ that fades out old documents after a month. Optimal values for each algorithm-

dataset pair are reported in Table 2.

Results

Tables 3, 4 and 5 show the average ARI, Purity, and number of cluster results for each cluster-

ing method and evaluation dataset pair. Purity of a cluster is defined as the ratio of documents

belonging to the majority category in a cluster, whereas Purity of a clustering is the weighted

(by cluster size) average of cluster purity with respect to its clusters. As Purity is naturally

biased towards solutions that produce a large amount of clusters, the discussion and conclu-

sions are focused on ARI results. In all cases, ARI performance of SOTXTSTREAM outper-

forms or is equivalent to the performance of the other two streaming algorithms, LSTREAM
and SOSTREAM. Additionally, SOTXTSTREAM outperforms kMEANS, by ARI, in four of the

five non-synthetic datasets. ARI performance for kMEANS is not reported on the synthetic

datasets as its performance is independent of stream ordering.

The poor overall performance on ecue can be attributed to the classification scheme of the

data. Consider that documents are expected to cluster around topical similarities given the fea-

tures and weighting scheme used (i.e., the distinction between spam and non-spam emails

may not be entirely topical). In such a case, Purity is a more appropriate measure where results

can be interpreted as the correlation between the topical categorization and some other catego-

rization scheme (i.e, topical versus spam/non-spam). In fact, all algorithms perform relatively

well on the ecue dataset with respect to Purity. In any case, there appears to be a clear correla-

tion between a document’s topic and its being spam/non-span. Thus, poor ARI performance is

undoubtedly due to the existence of numerous within-category topics.

With respect to number of clusters, SOTXTSTREAM produces far less clusters than the two

other streaming algorithms, LSTREAM and SOSTREAM. This reduced number of clusters

undoubtedly contributes to the overall superiority of SOTXTSTREAMwith respect to ARI

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 14 / 25

https://doi.org/10.1371/journal.pone.0180543


performance. Of course parameters could be selected for both LSTREAM and SOSTREAM to

produce solutions which result in a smaller number of micro-clusters, though these solution

would result in a decrease in ARI performance. In other words, neither solution can effectively,

with respect to ARI performance, reduce the number of clusters as compared to

SOTXTSTREAM.

To test the significance of the ARI performance results Wilcoxon signed-ranks tests [55]

were used. This approach being suggested in [56] for comparing two classifiers over multiple

datasets. Table 6 shows the resulting p-values from these tests, for each pair of clustering algo-

rithms, which was applied to the ARI performance reported in Table 3. From these results, one

Table 2. Clustering parameters.

Algorithm Dataset

kMEANS k

20newsgroups 12

arxiv2015 14

ecue 3

reuters21578 3

tdt2 10

LSTREAM dthresh λ
20newsgroups 0.68 0.001

arxiv2015 0.60 0.001

ecue 0.72 0.001

reuters21578 0.70 0.001

tdt2 0.65 0.001

syn20newsgroups 0.67 0.001

synarxiv2015 0.64 0.001

synreuters21578 0.71 0.001

syntdt2 0.66 0.001

SOSTREAM k α mthresh λ
20newsgroups 1 0.10 0.55 0.001

arxiv2015 1 0.01 0.58 0.001

ecue 1 0.31 0.50 0.001

reuters21578 1 0.08 0.60 0.001

tdt2 1 0.01 0.60 0.001

syn20newsgroups 1 0.01 0.64 0.001

synarxiv2015 1 0.01 0.60 0.001

synreuters21578 1 0.10 0.59 0.001

syntdt2 1 0.01 0.61 0.001

SOTXTSTREAM k mthresh λ
20newsgroups 20 0.60 0.001

arxiv2015 5 0.54 0.001

ecue 8 0.56 0.001

reuters21578 17 0.65 0.001

tdt2 20 0.47 0.001

syn20newsgroups 15 0.58 0.001

synarxiv2015 18 0.52 0.001

synreuters21578 14 0.56 0.001

syntdt2 6 0.58 0.001

https://doi.org/10.1371/journal.pone.0180543.t002

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 15 / 25

https://doi.org/10.1371/journal.pone.0180543.t002
https://doi.org/10.1371/journal.pone.0180543


Table 3. Clustering performance by ARI.

Dataset kMEANS LSTREAM SOSTREAM SOTXTSTREAM

20newsgroups 0.66 0.39 0.25 0.69

arxiv2015 0.60 0.46 0.44 0.50

ecue 0.19 0.19 0.23 0.23

reuters21578 0.47 0.74 0.68 0.94

tdt2 0.70 0.77 0.70 0.93

syn20newsgroups - 0.32 0.30 0.47

synarxiv2015 - 0.50 0.48 0.81

synreuters21578 - 0.45 0.58 0.60

syntdt2 - 0.74 0.65 0.85

https://doi.org/10.1371/journal.pone.0180543.t003

Table 4. Clustering performance by purity.

Dataset kMEANS LSTREAM SOSTREAM SOTXTSTREAM

20newsgroups 0.78 0.76 0.69 0.79

arxiv2015 0.70 0.83 0.79 0.74

ecue 0.89 0.90 0.91 0.90

reuters21578 0.62 0.85 0.80 0.87

tdt2 0.73 0.94 0.91 0.97

syn20newsgroups - 0.71 0.68 0.65

synarxiv2015 - 0.71 0.70 0.81

synreuters21578 - 0.73 0.76 0.74

syntdt2 - 0.92 0.87 0.92

https://doi.org/10.1371/journal.pone.0180543.t004

Table 5. Number of clusters.

Dataset kMEANS LSTREAM SOSTREAM SOTXTSTREAM

20newsgroups 12 1226 1633 73

arxiv2015 14 2230 1637 750

ecue 3 228 315 60

reuters21578 3 852 1067 41

tdt2 10 957 1007 106

syn20newsgroups - 1363 1179 154

synarxiv2015 - 1466 1336 121

synreuters21578 - 730 1101 122

syntdt2 - 931 1015 39

https://doi.org/10.1371/journal.pone.0180543.t005

Table 6. Wilcoxon signed-ranks test p-values.

Algorithm LSTREAM SOSTREAM SOTXTSTREAM

kMEANS 0.496 0.301 0.129

LSTREAM - 0.250 0.004

SOSTREAM - - 0.004

https://doi.org/10.1371/journal.pone.0180543.t006

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 16 / 25

https://doi.org/10.1371/journal.pone.0180543.t003
https://doi.org/10.1371/journal.pone.0180543.t004
https://doi.org/10.1371/journal.pone.0180543.t005
https://doi.org/10.1371/journal.pone.0180543.t006
https://doi.org/10.1371/journal.pone.0180543


can conclude that the difference between ARI performance of SOTXTSTREAM is significant

with repect to the performance of both LSTREAM and SOSTREAM.

By comparing ARI performance of the algorithms with respect to synthetic versus non-syn-

thetic datasets, one can observe the impact of concept drift. In most cases, performance

decreases, in varying degrees, with the presence of concept drift. An interesting case is the

arxiv2015 dataset where ARI performance actually increases across all streaming algorithms.

The reason for these changes in ARI performance can be observed in Figs 2 and 3, which show

boxplots of ARI performance for SOTXTSTREAM and SOSTREAM in the presence of concept

drift. Namely, the variance in ARI performance for the randomly generated stream orderings

is greater with concept drift.

In fact one might conclude that performance of SOSTREAM is less effected by concept

drift, though with an overall lower average performance. However, this difference in variance

is most likely attributed to the number of micro-clusters produced by the two algorithms.

Fig 2. ARI performance of SOTXTSTREAM in the presence of concept drift. ARI performance box-plots for

SOTXTSTREAM with respect to synthetic and non-synthetic random stream orderings. In each run, parameters were

set to those listed in Table 2.

https://doi.org/10.1371/journal.pone.0180543.g002

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 17 / 25

https://doi.org/10.1371/journal.pone.0180543.g002
https://doi.org/10.1371/journal.pone.0180543


Also, this may primarily speak to the robustness of the selected parameters with respect to con-

cept drift. In particular, as parameters were optimized with respect to average performance

over all random orderings.

Parameter analysis

In Fig 4, the ARI performance of SOTXTSTREAM versus values for parameters k, mthresh, and

λ are plotted. With respect to the choice of k, Fig 4A, for all datasets, optimal performance is

observed at relatively small values of k with respect to the specified range. Additionally, in all

cases, a decrease in ARI performance is observable following some clear change point (peak or

elbow). Furthermore, the rate of decrease following the change point appears to be dataset

dependent. Fortunately, an acceptable default value of k is observed around k = 10 (i.e., near

maximum performance for all datasets).

Fig 3. ARI performance of SOSTREAM in the presence of concept drift. ARI performance box-plots for

SOSTREAM with respect to synthetic and non-synthetic random stream orderings. In each run, parameters were set to

those listed in Table 2.

https://doi.org/10.1371/journal.pone.0180543.g003

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 18 / 25

https://doi.org/10.1371/journal.pone.0180543.g003
https://doi.org/10.1371/journal.pone.0180543


For the choice of the λ parameter, Fig 4C, the performance of each dataset is optimal at the

same point. Unsurprisingly, as for all datasets, this point is at the constant chosen for each

dataset as a function of its size (i.e., parameter optimization was performed at this value). Not-

withstanding the aforementioned bias, in some cases poor performance is observed as λ
approaches zero (at which point no fading is performed). Note that in practice, larger values of

λ, will result in vectors being faded to 0. In order to avoid this from happening, the largest

value of λ considered here is 0.01. Additionally, this situation can be avoided completely

through the periodic removal of aging clusters.

Fig 4. Parameter analysis of SOTXTSTREAM. ARI performance plots for SOTXTSTREAM algorithm parameters (k (A), mthresh (B), λ
(C)) on all datasets. In each run, parameters were set to those listed in Table 2 (sans the parameter under investigation). Additionally, ARI

performance is the average value across 100 random stream orderings.

https://doi.org/10.1371/journal.pone.0180543.g004

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 19 / 25

https://doi.org/10.1371/journal.pone.0180543.g004
https://doi.org/10.1371/journal.pone.0180543


In the case of the mthresh parameter, Fig 4B, performance of each dataset is optimal within

the [0.5–0.6] range. This appear to be a good threshold in general given text documents, and

the use of TF-IDF weighting and cosine distance (see optimal parameters for LSTREAM,

SOSTREAM, and SOTXTSTREAM in Table 2). As with the choice of k, these results suggest the

existence of a reasonable default value for the mthresh parameter.

Finally, in Fig 5 ARI performance of SOSTREAM versus values for parameters α, k, mthresh,

and λ are plotted. With respect to α, Fig 5A, the optimal choice of α appears to be dataset

dependent, though performance does converge to zero as α approaches one. Additionally, a

Fig 5. Parameter analysis of SOSTREAM. ARI performance plots for the SOSTREAM algorithm parameters (α (A), k (B), mthresh (C),

λ (D)) on all datasets. In each run, parameters were set to those listed in Table 2 (sans the parameter under investigation). Additionally,

ARI performance is the average value across 100 random stream orderings.

https://doi.org/10.1371/journal.pone.0180543.g005

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 20 / 25

https://doi.org/10.1371/journal.pone.0180543.g005
https://doi.org/10.1371/journal.pone.0180543


good default value is observable at α = 0. However, at α = 0 the self-organizing phase has no

effect on results (i.e., learning rate is zero).

For the choice of k, Fig 5B, in all datasets performance drops sharply where k> 1. In fact,

over the course of these experiments it was observed that such cases, k> 1, were only viable at

α = 0. Similarly, note that in all of the cases where α> 0 the optimal choice of k is one (see

Table 2). These last two observations suggest that k is highly dependent on α and vice versa.

This dependence is complicated in SOSTREAM as the value k is reused in three cluster micro-

cluster maintenance operations (insertion, neighborhood adjusting, and merging), whereas

only one of these operations (neighborhood adjusting) is dependent on α.

As with SOTXTSTREAM, performance is optimal for all datasets within the [0.5–0.6] range

of the mthresh parameter, Fig 5C. Additionally, recall the optional use of mthresh in SOSTREAM,

as a merge criterion of overlapping micro-cluster radii is applied. Performance of this option is

seen here where mthresh = 1, and it is decidedly poor. Lastly, for the λ parameter, Fig 5D, perfor-

mance seems to be unaffected by the choice of this value. This supports the previous assertion

with SOTXTSTREAM. In particular, that variability in performance over λ is primarily due to

its use in the self-organizing phase. However, as all of the datasets are randomly ordered, it’s

difficult to draw conclusions with respect to the effect of the fading parameter λ on

performance.

Conclusion

A new density-based self-organizing text stream clustering algorithm SOTXTSTREAMwas

presented, and shown to perform better than the SOSTREAM algorithm (the sole prior

approach to density-based self-organizing stream clustering) on several real-world text

streams. This improved performance was achieved by addressing several shortcomings of

SOSTREAM. Specifically, this involved removing the use of a fixed learning rate, and decou-

pling the dependence of three cluster maintenance phases (insertion, adjusting, and merging)

on a single neighborhood size parameter. This had the added benefit of eliminating the high

dependence the fixed learning rate has on the choice of the neighborhood size parameter in

SOSTREAM. Likewise, SOTXTSTREAMwas shown superior, in several cases, and competitive,

in the remaining cases, to a popular non-streaming clustering approach. This comparison is

significant as SOTXTSTREAM is limited to a single pass over the data.

In addition to improving performance, SOTXTSTREAM is dependent on two parameters

(k and mthresh), as compared to SOSTREAM’s three (k, mthresh, and α). Note that here the choice

of the λ parameter, which both algorithms employ, is expected to be made with some degree of

domain knowledge with respect to the desired clusterings.

Future work includes investigating insertion criteria for the nearest cluster of a new stream

instance, and methods for calculating influence of an instance on neighboring clusters. Also,

experiments conducted over the course of this work has shown potential for replacing the

fixed mthresh parameter with a dynamic one (e.g., an online mean k distance of instances within

a sliding window).

Acknowledgments

This work was funded in part by the Naval Surface Warfare Center Dahlgren Division’s In-

house Laboratory Independent Research Program. There was no additional external funding

received for this study.

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 21 / 25

https://doi.org/10.1371/journal.pone.0180543


Author Contributions

Conceptualization: Avory C. Bryant, Krzysztof J. Cios.

Data curation: Avory C. Bryant.

Formal analysis: Avory C. Bryant, Krzysztof J. Cios.

Funding acquisition: Avory C. Bryant, Krzysztof J. Cios.

Investigation: Avory C. Bryant, Krzysztof J. Cios.

Methodology: Avory C. Bryant, Krzysztof J. Cios.

Project administration: Krzysztof J. Cios.

Resources: Avory C. Bryant.

Software: Avory C. Bryant.

Supervision: Krzysztof J. Cios.

Validation: Avory C. Bryant, Krzysztof J. Cios.

Visualization: Avory C. Bryant.

Writing – original draft: Avory C. Bryant, Krzysztof J. Cios.

Writing – review & editing: Avory C. Bryant, Krzysztof J. Cios.

References
1. Lee CH. Mining Spatio-temporal Information on Microblogging Streams Using a Density-based Online

Clustering Method. Expert Syst Appl. 2012; 39(10):9623–9641. https://doi.org/10.1016/j.eswa.2012.02.

136

2. Petrović S, Osborne M, Lavrenko V. Streaming First Story Detection with Application to Twitter. In:

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the

Association for Computational Linguistics. HLT’10. Stroudsburg, PA, USA: Association for Computa-

tional Linguistics; 2010. p. 181–189. Available from: http://dl.acm.org/citation.cfm?id=1857999.

1858020

3. Cataldi M, Di Caro L, Schifanella C. Emerging Topic Detection on Twitter Based on Temporal and

Social Terms Evaluation. In: Proceedings of the Tenth International Workshop on Multimedia Data Min-

ing. MDMKDD’10. New York, NY, USA: ACM; 2010. p. 4:1–4:10. Available from: http://doi.acm.org/10.

1145/1814245.1814249

4. Wen JR, Nie JY, Zhang HJ. Query Clustering Using User Logs. ACM Trans Inf Syst. 2002; 20(1):59–

81. https://doi.org/10.1145/503104.503108

5. Yang Y, Pierce T, Carbonell J. A Study of Retrospective and On-line Event Detection. In: Proceedings

of the 21st Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval. SIGIR’98. New York, NY, USA: ACM; 1998. p. 28–36. Available from: http://doi.acm.org/10.

1145/290941.290953

6. Allan J, Papka R, Lavrenko V. On-line New Event Detection and Tracking. In: Proceedings of the 21st

Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.

SIGIR’98. New York, NY, USA: ACM; 1998. p. 37–45. Available from: http://doi.acm.org/10.1145/

290941.290954

7. Brants T, Chen F, Farahat A. A System for New Event Detection. In: Proceedings of the 26th Annual

International ACM SIGIR Conference on Research and Development in Informaion Retrieval.

SIGIR’03. New York, NY, USA: ACM; 2003. p. 330–337. Available from: http://doi.acm.org/10.1145/

860435.860495

8. Ackermann MR, Märtens M, Raupach C, Swierkot K, Lammersen C, Sohler C. StreamKM++: A Cluster-

ing Algorithm for Data Streams. J Exp Algorithmics. 2012; 17:2.4:2.1–2.4:2.30. https://doi.org/10.1145/

2133803.2184450

9. Gama Ja, Žliobaitė Ie, Bifet A, Pechenizkiy M, Bouchachia A. A Survey on Concept Drift Adaptation.

ACM Comput Surv. 2014; 46(4):44:1–44:37. https://doi.org/10.1145/2523813

10. Duda RO, Hart PE, Stork DG. Pattern Classification (2Nd Edition). Wiley-Interscience; 2000.

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 22 / 25

https://doi.org/10.1016/j.eswa.2012.02.136
https://doi.org/10.1016/j.eswa.2012.02.136
http://dl.acm.org/citation.cfm?id=1857999.1858020
http://dl.acm.org/citation.cfm?id=1857999.1858020
http://doi.acm.org/10.1145/1814245.1814249
http://doi.acm.org/10.1145/1814245.1814249
https://doi.org/10.1145/503104.503108
http://doi.acm.org/10.1145/290941.290953
http://doi.acm.org/10.1145/290941.290953
http://doi.acm.org/10.1145/290941.290954
http://doi.acm.org/10.1145/290941.290954
http://doi.acm.org/10.1145/860435.860495
http://doi.acm.org/10.1145/860435.860495
https://doi.org/10.1145/2133803.2184450
https://doi.org/10.1145/2133803.2184450
https://doi.org/10.1145/2523813
https://doi.org/10.1371/journal.pone.0180543


11. Moore B. ART1 and pattern clustering. In: Touretzky D, Hinton G, Sejnowski T, editors. Proceedings of

the 1988 Connectionist Models Summer School. San Mateo, CA: Morgan Kaufmann; 1988. p. 174–

185.

12. Aggarwal CC, Han J, Wang J, Yu PS. A Framework for Clustering Evolving Data Streams. In: Proceed-

ings of the 29th International Conference on Very Large Data Bases—Volume 29. VLDB’03. VLDB

Endowment; 2003. p. 81–92. Available from: http://dl.acm.org/citation.cfm?id=1315451.1315460

13. Cao F, Ester M, Qian W, Zhou A. Density-based clustering over an evolving data stream with noise. In:

In 2006 SIAM Conference on Data Mining; 2006. p. 328–339.

14. Tasoulis DK, Ross G, Adams NM. Visualising the Cluster Structure of Data Streams. In: Proceedings of

the 7th International Conference on Intelligent Data Analysis. IDA’07. Berlin, Heidelberg: Springer-Ver-

lag; 2007. p. 81–92.

15. Wan L, Ng WK, Dang XH, Yu PS, Zhang K. Density-based Clustering of Data Streams at Multiple Reso-

lutions. ACM Trans Knowl Discov Data. 2009; 3(3):14:1–14:28. https://doi.org/10.1145/1552303.

1552307

16. Kranen P, Assent I, Baldauf C, Seidl T. The ClusTree: Indexing Micro-clusters for Anytime Stream Min-

ing. Knowl Inf Syst. 2011; 29(2):249–272. https://doi.org/10.1007/s10115-010-0342-8

17. Isaksson C, Dunham MH, Hahsler M. SOStream: Self Organizing Density-based Clustering over Data

Stream. In: Proceedings of the 8th International Conference on Machine Learning and Data Mining in

Pattern Recognition. MLDM’12. Berlin, Heidelberg: Springer-Verlag; 2012. p. 264–278. Available from:

http://dx.doi.org/10.1007/978-3-642-31537-4_21

18. Hassani M, Spaus P, Seidl T. Adaptive Multiple-Resolution Stream Clustering. In: Perner P, editor.

Machine Learning and Data Mining in Pattern Recognition: 10th International Conference, MLDM 2014,

St. Petersburg, Russia, July 21-24, 2014. Proceedings. Cham: Springer International Publishing; 2014.

p. 134–148. Available from: http://dx.doi.org/10.1007/978-3-319-08979-9_11

19. Hassani M, Spaus P, Cuzzocrea A, Seidl T. Adaptive Stream Clustering Using Incremental Graph Main-

tenance. In: Proceedings of the 4th International Workshop on Big Data, Streams and Heterogeneous

Source Mining: Algorithms, Systems, Programming Models and Applications, BigMine 2015, Sydney,

Australia, August 10, 2015; 2015. p. 49–64. Available from: http://jmlr.org/proceedings/papers/v41/

hassani15.html

20. Ankerst M, Breunig MM, Kriegel HP, Sander J. OPTICS: Ordering Points to Identify the Clustering

Structure. In: Proceedings of the 1999 ACM SIGMOD International Conference on Management of

Data. SIGMOD’99. New York, NY, USA: ACM; 1999. p. 49–60. Available from: http://doi.acm.org/10.

1145/304182.304187

21. Campello RGB, Moulavi D, Sander J. Density-Based Clustering Based on Hierarchical Density Esti-

mates. In: Pei J, Tseng V, Cao L, Motoda H, Xu G, editors. Advances in Knowledge Discovery and Data

Mining. vol. 7819 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2013. p. 160–

172. Available from: http://dx.doi.org/10.1007/978-3-642-37456-2_14

22. Kohonen T, Schroeder MR, Huang TS, editors. Self-Organizing Maps. 3rd ed. Secaucus, NJ, USA:

Springer-Verlag New York, Inc.; 2001.

23. Ester M, Kriegel HP, Sander J, Wimmer M, Xu X. Incremental Clustering for Mining in a Data Warehous-

ing Environment. In: Proceedings of the 24rd International Conference on Very Large Data Bases.

VLDB’98. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.; 1998. p. 323–333. Available

from: http://dl.acm.org/citation.cfm?id=645924.671201

24. Ester M, peter Kriegel H, S J, Xu X. A density-based algorithm for discovering clusters in large spatial

databases with noise. AAAI Press; 1996. p. 226–231.

25. Zhong S. Efficient streaming text clustering. Neural Networks. 2005; 18(5-6):790–798. https://doi.org/

10.1016/j.neunet.2005.06.008 PMID: 16085385

26. Chitta R, Jin R, Jain AK. Stream Clustering: Efficient Kernel-Based Approximation Using Importance

Sampling. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW); 2015. p. 607–

614.

27. Arthur D, Vassilvitskii S. K-means++: The Advantages of Careful Seeding. In: Proceedings of the Eigh-

teenth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA’07. Philadelphia, PA, USA: Soci-

ety for Industrial and Applied Mathematics; 2007. p. 1027–1035. Available from: http://dl.acm.org/

citation.cfm?id=1283383.1283494

28. Indyk P, Motwani R. Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality.

In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing. STOC’98. New

York, NY, USA: ACM; 1998. p. 604–613. Available from: http://doi.acm.org/10.1145/276698.276876

29. Charikar MS. Similarity Estimation Techniques from Rounding Algorithms. In: Proceedings of the Thiry-

fourth Annual ACM Symposium on Theory of Computing. STOC’02. New York, NY, USA: ACM; 2002.

p. 380–388. Available from: http://doi.acm.org/10.1145/509907.509965

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 23 / 25

http://dl.acm.org/citation.cfm?id=1315451.1315460
https://doi.org/10.1145/1552303.1552307
https://doi.org/10.1145/1552303.1552307
https://doi.org/10.1007/s10115-010-0342-8
http://dx.doi.org/10.1007/978-3-642-31537-4_21
http://dx.doi.org/10.1007/978-3-319-08979-9_11
http://jmlr.org/proceedings/papers/v41/hassani15.html
http://jmlr.org/proceedings/papers/v41/hassani15.html
http://doi.acm.org/10.1145/304182.304187
http://doi.acm.org/10.1145/304182.304187
http://dx.doi.org/10.1007/978-3-642-37456-2_14
http://dl.acm.org/citation.cfm?id=645924.671201
https://doi.org/10.1016/j.neunet.2005.06.008
https://doi.org/10.1016/j.neunet.2005.06.008
http://www.ncbi.nlm.nih.gov/pubmed/16085385
http://dl.acm.org/citation.cfm?id=1283383.1283494
http://dl.acm.org/citation.cfm?id=1283383.1283494
http://doi.acm.org/10.1145/276698.276876
http://doi.acm.org/10.1145/509907.509965
https://doi.org/10.1371/journal.pone.0180543


30. Papapetrou O, Chen L. XStreamCluster: An Efficient Algorithm for Streaming XML Data Clustering. In:

Yu J, Kim M, Unland R, editors. Database Systems for Advanced Applications. vol. 6587 of Lecture

Notes in Computer Science. Springer Berlin Heidelberg; 2011. p. 496–510. Available from: http://dx.

doi.org/10.1007/978-3-642-20149-3_36

31. Broder AZ, Charikar M, Frieze AM, Mitzenmacher M. Min-Wise Independent Permutations. J Comput

Syst Sci. 2000; 60(3):630–659. https://doi.org/10.1006/jcss.1999.1690

32. Banerjee A, Basu S. 40. In: Topic Models over Text Streams: A Study of Batch and Online Unsuper-

vised Learning; 2007. p. 431–436. Available from: http://epubs.siam.org/doi/abs/10.1137/1.

9781611972771.40

33. Liu YB, Cai JR, Fu AWC. Clustering Text Data Streams. Journal of Computer Science and Technology.

2008; 23(1):112–128. https://doi.org/10.1007/s11390-008-9115-1

34. Aggarwal C, Yu P. On clustering massive text and categorical data streams. Knowledge and Informa-

tion Systems. 2010; 24(2):171–196. https://doi.org/10.1007/s10115-009-0241-z

35. Aggarwal CC, Subbian K. Event Detection in Social Streams. In: SDM. SIAM / Omnipress; 2012.

p. 624–635. Available from: http://dblp.uni-trier.de/db/conf/sdm/sdm2012.html#AggarwalS12

36. PhridviRaj Srinivas C, GuruRao CV. Clustering Text Data Streams - A Tree based Approach with Ter-

nary Function and Ternary Feature Vector. Procedia Computer Science. 2014; 31:976–984. https://doi.

org/10.1016/j.procs.2014.05.350

37. Agarwal MK, Ramamritham K, Bhide M. Real Time Discovery of Dense Clusters in Highly Dynamic

Graphs: Identifying Real World Events in Highly Dynamic Environments. Proc VLDB Endow. 2012; 5

(10):980–991. https://doi.org/10.14778/2336664.2336671

38. Angel A, Sarkas N, Koudas N, Srivastava D. Dense Subgraph Maintenance Under Streaming Edge

Weight Updates for Real-time Story Identification. Proc VLDB Endow. 2012; 5(6):574–585. https://doi.

org/10.14778/2168651.2168658

39. Reed JW, Jiao Y, Potok TE, Klump BA, Elmore MT, Hurson AR. TF-ICF: A New Term Weighting

Scheme for Clustering Dynamic Data Streams. In: Proceedings of the 5th International Conference on

Machine Learning and Applications. ICMLA’06. Washington, DC, USA: IEEE Computer Society; 2006.

p. 258–263. Available from: http://dx.doi.org/10.1109/ICMLA.2006.50

40. Callan J. Document Filtering with Inference Networks. In: Proceedings of the 19th Annual International

ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR’96. New York,

NY, USA: ACM; 1996. p. 262–269. Available from: http://doi.acm.org/10.1145/243199.243273

41. He Q, Chang K, Lim EP, Zhang J. 50. In: Bursty Feature Representation for Clustering Text Streams;

2007. p. 491–496. Available from: http://epubs.siam.org/doi/abs/10.1137/1.9781611972771.50

42. Lee CH, Wu CH, Chien TF. BursT: A Dynamic Term Weighting Scheme for Mining Microblogging Mes-

sages. In: Proceedings of the 8th International Conference on Advances in Neural Networks—Volume

Part III. ISNN’11. Berlin, Heidelberg: Springer-Verlag; 2011. p. 548–557. Available from: http://dl.acm.

org/citation.cfm?id=2009463.2009531

43. Fung GPC, Yu JX, Yu PS, Lu H. Parameter Free Bursty Events Detection in Text Streams. In: Proceed-

ings of the 31st International Conference on Very Large Data Bases. VLDB’05. VLDB Endowment;

2005. p. 181–192. Available from: http://dl.acm.org/citation.cfm?id=1083592.1083616

44. Kleinberg J. Bursty and Hierarchical Structure in Streams. In: Proceedings of the Eighth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. KDD’02. New York, NY, USA:

ACM; 2002. p. 91–101. Available from: http://doi.acm.org/10.1145/775047.775061

45. Feigenblat G, Itzhaki O, Porat E. The frequent items problem, under polynomial decay, in the streaming

model. Theoretical Computer Science. 2010; 411(34-36):3048–3054. https://doi.org/10.1016/j.tcs.

2010.04.029

46. Bun KK, Ishizuka M. Topic Extraction from News Archive Using TF*PDF Algorithm. In: Proceedings of

the 3rd International Conference on Web Information Systems Engineering. WISE’02. Washington, DC,

USA: IEEE Computer Society; 2002. p. 73–82. Available from: http://dl.acm.org/citation.cfm?id=

645962.674082

47. Zhang T, Ramakrishnan R, Livny M. BIRCH: An Efficient Data Clustering Method for Very Large Data-

bases. In: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data.

SIGMOD’96. New York, NY, USA: ACM; 1996. p. 103–114. Available from: http://doi.acm.org/10.1145/

233269.233324

48. Hubert L, Arabie P. Comparing partitions. Journal of Classification. 1985; 2(1):193–218. https://doi.org/

10.1007/BF01908075

49. Lang K. 20 newsgroups data set;. Available from: http://www.ai.mit.edu/people/jrennie/20Newsgroups/

50. Cai D. Text datasets in matlab format; Accessed: 2016-04-01. http://www.cad.zju.edu.cn/home/

dengcai/Data/TextData.htm

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 24 / 25

http://dx.doi.org/10.1007/978-3-642-20149-3_36
http://dx.doi.org/10.1007/978-3-642-20149-3_36
https://doi.org/10.1006/jcss.1999.1690
http://epubs.siam.org/doi/abs/10.1137/1.9781611972771.40
http://epubs.siam.org/doi/abs/10.1137/1.9781611972771.40
https://doi.org/10.1007/s11390-008-9115-1
https://doi.org/10.1007/s10115-009-0241-z
http://dblp.uni-trier.de/db/conf/sdm/sdm2012.html#AggarwalS12
https://doi.org/10.1016/j.procs.2014.05.350
https://doi.org/10.1016/j.procs.2014.05.350
https://doi.org/10.14778/2336664.2336671
https://doi.org/10.14778/2168651.2168658
https://doi.org/10.14778/2168651.2168658
http://dx.doi.org/10.1109/ICMLA.2006.50
http://doi.acm.org/10.1145/243199.243273
http://epubs.siam.org/doi/abs/10.1137/1.9781611972771.50
http://dl.acm.org/citation.cfm?id=2009463.2009531
http://dl.acm.org/citation.cfm?id=2009463.2009531
http://dl.acm.org/citation.cfm?id=1083592.1083616
http://doi.acm.org/10.1145/775047.775061
https://doi.org/10.1016/j.tcs.2010.04.029
https://doi.org/10.1016/j.tcs.2010.04.029
http://dl.acm.org/citation.cfm?id=645962.674082
http://dl.acm.org/citation.cfm?id=645962.674082
http://doi.acm.org/10.1145/233269.233324
http://doi.acm.org/10.1145/233269.233324
https://doi.org/10.1007/BF01908075
https://doi.org/10.1007/BF01908075
http://www.ai.mit.edu/people/jrennie/20Newsgroups/
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.htm
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.htm
https://doi.org/10.1371/journal.pone.0180543


51. Library CU. arXiv; Accessed: 2016-04-01. https://arxiv.org/

52. Delany S. ECUE Spam Datasets; Accessed: 2016-04-01. http://www.comp.dit.ie/sjdelany/dataset.htm

53. Lewis DD. Reuters-21578;. Available from: http://www.daviddlewis.com/resources/testcollections/

reuters21578

54. Cieri C, Strassel S, Graff D, Martey N, Rennert K, Liberman M. Topic Detection and Tracking. Norwell,

MA, USA: Kluwer Academic Publishers; 2002. p. 33–66. Available from: http://dl.acm.org/citation.cfm?

id=772260.772264

55. Wilcoxon F. Individual Comparisons by Ranking Methods. Biometrics Bulletin. 1945; 1(6):80–83.

https://doi.org/10.2307/3001968

56. Demšar J. Statistical Comparisons of Classifiers over Multiple Data Sets. J Mach Learn Res. 2006; 7:

1–30.

SOTXTSTREAM: Density-based self-organizing clustering of text streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0180543 July 7, 2017 25 / 25

https://arxiv.org/
http://www.comp.dit.ie/sjdelany/dataset.htm
http://www.daviddlewis.com/resources/testcollections/reuters21578
http://www.daviddlewis.com/resources/testcollections/reuters21578
http://dl.acm.org/citation.cfm?id=772260.772264
http://dl.acm.org/citation.cfm?id=772260.772264
https://doi.org/10.2307/3001968
https://doi.org/10.1371/journal.pone.0180543

	Virginia Commonwealth University
	VCU Scholars Compass
	2017

	SOTXTSTREAM: Density-based self-organizing clustering of text streams
	Avory C. Bryant
	Krzysztof J. Cios
	Downloaded from


	SOTXTSTREAM: Density-based self-organizing clustering of text streams

