860 research outputs found

    Classifying Relations using Recurrent Neural Network with Ontological-Concept Embedding

    Get PDF
    Relation extraction and classification represents a fundamental and challenging aspect of Natural Language Processing (NLP) research which depends on other tasks such as entity detection and word sense disambiguation. Traditional relation extraction methods based on pattern-matching using regular expressions grammars and lexico-syntactic pattern rules suffer from several drawbacks including the labor involved in handcrafting and maintaining large number of rules that are difficult to reuse. Current research has focused on using Neural Networks to help improve the accuracy of relation extraction tasks using a specific type of Recurrent Neural Network (RNN). A promising approach for relation classification uses an RNN that incorporates an ontology-based concept embedding layer in addition to word embeddings. This dissertation presents several improvements to this approach by addressing its main limitations. First, several different types of semantic relationships between concepts are incorporated into the model; prior work has only considered is-a hierarchical relationships. Secondly, a significantly larger vocabulary of concepts is used. Thirdly, an improved method for concept matching was devised. The results of adding these improvements to two state-of-the-art baseline models demonstrated an improvement to accuracy when evaluated on benchmark data used in prior studies

    DrugExBERT for Pharmacovigilance – A Novel Approach for Detecting Drug Experiences from User-Generated Content

    Get PDF
    Pharmaceutical companies have to maintain drug safety through pharmacovigilance systems by monitoring various sources of information about adverse drug experiences. Recently, user-generated content (UGC) has emerged as a valuable source of real-world drug experiences, posing new challenges due to its high volume and variety. We present DrugExBERT, a novel approach to extract adverse drug experiences (adverse reaction, lack of effect) and supportive drug experiences (effectiveness, intervention, indication, and off-label use) from UGC. To be able to verify the extracted drug experiences, DrugExBERT additionally provides explications in the form of UGC phrases that were critical for the extraction. In our evaluation, we demonstrate that DrugExBERT outperforms state-of-the-art pharmacovigilance approaches as well as ChatGPT on several performance measures and that DrugExBERT is data- and drug-agnostic. Thus, our novel approach can help pharmaceutical companies meet their legal obligations and ethical responsibility while ensuring patient safety and monitoring drug effectiveness

    Knowledge-based Biomedical Data Science 2019

    Full text link
    Knowledge-based biomedical data science (KBDS) involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey the progress in the last year in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing, and the expansion of knowledge-based approaches to novel domains, such as Chinese Traditional Medicine and biodiversity.Comment: Manuscript 43 pages with 3 tables; Supplemental material 43 pages with 3 table

    DDI Extraction Based on Transfer Weight Matrix and Memory Network

    Get PDF
    Extracting drug-drug interaction (DDI) in the text is the process of identifying how two target drugs in a given sentence interact. Previous methods, which were limited to conventional machine learning techniques, we are susceptible to issues such as “vocabulary gap” and unattainable automation processes in feature extraction. Inspired by deep learning in natural language preprocessing, we addressed the aforementioned problems based on dynamic transfer matrix and memory networks. A TM-RNN method is proposed by adding the transfer weight matrix in multilayer bidirectional LSTM to improve robustness and introduce a memory network for feature fusion. We evaluated the TM-RNN model on the DDIExtraction 2013 Task. The proposed model achieved an overall F-score of 72.43, which outperforms the latest methods based on support vector machine and other neural networks. Meanwhile, the experimental results also indicated that the proposed model is more stable and less affected by negative samples

    Evaluation of pooling operations in convolutional architectures for drug-drug interaction extraction

    Get PDF
    Background: Deep Neural Networks (DNN), in particular, Convolutional Neural Networks (CNN), has recently achieved state-of-art results for the task of Drug-Drug Interaction (DDI) extraction. Most CNN architectures incorporate a pooling layer to reduce the dimensionality of the convolution layer output, preserving relevant features and removing irrelevant details. All the previous CNN based systems for DDI extraction used max-pooling layers. Results: In this paper, we evaluate the performance of various pooling methods (in particular max-pooling, average-pooling and attentive pooling), as well as their combination, for the task of DDI extraction. Our experiments show that max-pooling exhibits a higher performance in F1-score (64.56%) than attentive pooling (59.92%) and than average-pooling (58.35%). Conclusions: Max-pooling outperforms the others alternatives because is the only one which is invariant to the special pad tokens that are appending to the shorter sentences known as padding. Actually, the combination of max-pooling and attentive pooling does not improve the performance as compared with the single max-pooling technique.Publication of this article was supported by the Research Program of the Ministry of Economy and Competitiveness - Government of Spain, (DeepEMR project TIN2017-87548-C2-1-R) and the TEAM project (Erasmus Mundus Action 2-Strand 2 Programme) funded by the European Commission

    Optimizing text mining methods for improving biomedical natural language processing

    Get PDF
    The overwhelming amount and the increasing rate of publication in the biomedical domain make it difficult for life sciences researchers to acquire and maintain all information that is necessary for their research. Pubmed (the primary citation database for the biomedical literature) currently contains over 21 million article abstracts and more than one million of them were published in 2020 alone. Even though existing article databases provide capable keyword search services, typical everyday-life queries usually return thousands of relevant articles. For instance, a cancer research scientist may need to acquire a complete list of genes that interact with BRCA1 (breast cancer 1) gene. The PubMed keyword search for BRCA1 returns over 16,500 article abstracts, making manual inspection of the retrieved documents impractical. Missing even one of the interacting gene partners in this scenario may jeopardize successful development of a potential new drug or vaccine. Although manually curated databases of biomolecular interactions exist, they are usually not up-to-date and they require notable human effort to maintain. To summarize, new discoveries are constantly being shared within the community via scientific publishing, but unfortunately the probability of missing vital information for research in life sciences is increasing. In response to this problem, the biomedical natural language processing (BioNLP) community of researchers has emerged and strives to assist life sciences researchers by building modern language processing and text mining tools that can be applied at large-scale and scan the whole publicly available literature and extract, classify, and aggregate the information found within, thus keeping life sciences researchers always up-to-date with the recent relevant discoveries and facilitating their research in numerous fields such as molecular biology, biomedical engineering, bioinformatics, genetics engineering and biochemistry. My research has almost exclusively focused on biomedical relation and event extraction tasks. These foundational information extraction tasks deal with automatic detection of biological processes, interactions and relations described in the biomedical literature. Precisely speaking, biomedical relation and event extraction systems can scan through a vast amount of biomedical texts and automatically detect and extract the semantic relations of biomedical named entities (e.g. genes, proteins, chemical compounds, and diseases). The structured outputs of such systems (i.e., the extracted relations or events) can be stored as relational databases or molecular interaction networks which can easily be queried, filtered, analyzed, visualized and integrated with other structured data sources. Extracting biomolecular interactions has always been the primary interest of BioNLP researcher because having knowledge about such interactions is crucially important in various research areas including precision medicine, drug discovery, drug repurposing, hypothesis generation, construction and curation of signaling pathways, and protein function and structure prediction. State-of-the-art relation and event extraction methods are based on supervised machine learning, requiring manually annotated data for training. Manual annotation for the biomedical domain requires domain expertise and it is time-consuming. Hence, having minimal training data for building information extraction systems is a common case in the biomedical domain. This demands development of methods that can make the most out of available training data and this thesis gathers all my research efforts and contributions in that direction. It is worth mentioning that biomedical natural language processing has undergone a revolution since I started my research in this field almost ten years ago. As a member of the BioNLP community, I have witnessed the emergence, improvement– and in some cases, the disappearance–of many methods, each pushing the performance of the best previous method one step further. I can broadly divide the last ten years into three periods. Once I started my research, feature-based methods that relied on heavy feature engineering were dominant and popular. Then, significant advancements in the hardware technology, as well as several breakthroughs in the algorithms and methods enabled machine learning practitioners to seriously utilize artificial neural networks for real-world applications. In this period, convolutional, recurrent, and attention-based neural network models became dominant and superior. Finally, the introduction of transformer-based language representation models such as BERT and GPT impacted the field and resulted in unprecedented performance improvements on many data sets. When reading this thesis, I demand the reader to take into account the course of history and judge the methods and results based on what could have been done in that particular period of the history

    BioVerbNet: a large semantic-syntactic classification of verbs in biomedicine.

    Get PDF
    BackgroundRecent advances in representation learning have enabled large strides in natural language understanding; However, verbal reasoning remains a challenge for state-of-the-art systems. External sources of structured, expert-curated verb-related knowledge have been shown to boost model performance in different Natural Language Processing (NLP) tasks where accurate handling of verb meaning and behaviour is critical. The costliness and time required for manual lexicon construction has been a major obstacle to porting the benefits of such resources to NLP in specialised domains, such as biomedicine. To address this issue, we combine a neural classification method with expert annotation to create BioVerbNet. This new resource comprises 693 verbs assigned to 22 top-level and 117 fine-grained semantic-syntactic verb classes. We make this resource available complete with semantic roles and VerbNet-style syntactic frames.ResultsWe demonstrate the utility of the new resource in boosting model performance in document- and sentence-level classification in biomedicine. We apply an established retrofitting method to harness the verb class membership knowledge from BioVerbNet and transform a pretrained word embedding space by pulling together verbs belonging to the same semantic-syntactic class. The BioVerbNet knowledge-aware embeddings surpass the non-specialised baseline by a significant margin on both tasks.ConclusionThis work introduces the first large, annotated semantic-syntactic classification of biomedical verbs, providing a detailed account of the annotation process, the key differences in verb behaviour between the general and biomedical domain, and the design choices made to accurately capture the meaning and properties of verbs used in biomedical texts. The demonstrated benefits of leveraging BioVerbNet in text classification suggest the resource could help systems better tackle challenging NLP tasks in biomedicine

    A study on developing novel methods for relation extraction

    Get PDF
    Relation Extraction (RE) is a task of Natural Language Processing (NLP) to detect and classify the relations between two entities. Relation extraction in the biomedical and scientific literature domain is challenging as text can contain multiple pairs of entities in the same instance. During the course of this research, we developed an RE framework (RelEx), which consists of five main RE paradigms: rule-based, machine learning-based, Convolutional Neural Network (CNN)-based, Bidirectional Encoder Representations from Transformers (BERT)-based, and Graph Convolutional Networks (GCNs)-based approaches. RelEx\u27s rule-based approach uses co-location information of the entities to determine whether a relation exists between a selected entity and the other entities. RelEx\u27s machine learning-based approach consists of traditional feature representations into traditional machine learning algorithms. RelEx\u27s CNN-based approach consists of three CNN architectures: Segment-CNN, single-label Sentence-CNN, and multi-label Sentence-CNN. RelEx\u27s BERT-based approach utilizes BERT\u27s contextualized word embeddings into a feed-forward neural network. Finally, RelEx\u27s GCN-based approach consists of two GCN-based architectures: GCN-Vanilla, GCN-BERT. We evaluated variations of these approaches in two different domains across four distinct relation types. Overall our findings showed that the rule-based approach is applicable for data with fewer instances in the training data. In contrast, the CNN-based, BERT-based, and GCN-based approaches perform better with labeled data with many training instances. These approaches automatically identify patterns in the data efficiently, whereas rule-based approaches require expert knowledge to generate rules. The CNN-based, BERT-based approaches capture the local contextual information within a sentence or document by embedding both semantic and syntactic information in a learned representation. However, their ability to capture the long-range dependency global information in a text is limited. GCN-based approaches capture the global association information by performing convolution operations on neighbor nodes in a graph and incorporating information from neighbors. Combining GCN with BERT integrates the local contextual and global association information of the words and generates better representations for the words

    Deep Neural Architectures for End-to-End Relation Extraction

    Get PDF
    The rapid pace of scientific and technological advancements has led to a meteoric growth in knowledge, as evidenced by a sharp increase in the number of scholarly publications in recent years. PubMed, for example, archives more than 30 million biomedical articles across various domains and covers a wide range of topics including medicine, pharmacy, biology, and healthcare. Social media and digital journalism have similarly experienced their own accelerated growth in the age of big data. Hence, there is a compelling need for ways to organize and distill the vast, fragmented body of information (often unstructured in the form of natural human language) so that it can be assimilated, reasoned about, and ultimately harnessed. Relation extraction is an important natural language task toward that end. In relation extraction, semantic relationships are extracted from natural human language in the form of (subject, object, predicate) triples such that subject and object are mentions of discrete concepts and predicate indicates the type of relation between them. The difficulty of relation extraction becomes clear when we consider the myriad of ways the same relation can be expressed in natural language. Much of the current works in relation extraction assume that entities are known at extraction time, thus treating entity recognition as an entirely separate and independent task. However, recent studies have shown that entity recognition and relation extraction, when modeled together as interdependent tasks, can lead to overall improvements in extraction accuracy. When modeled in such a manner, the task is referred to as end-to-end relation extraction. In this work, we present four studies that introduce incrementally sophisticated architectures designed to tackle the task of end-to-end relation extraction. In the first study, we present a pipeline approach for extracting protein-protein interactions as affected by particular mutations. The pipeline system makes use of recurrent neural networks for protein detection, lexicons for gene normalization, and convolutional neural networks for relation extraction. In the second study, we show that a multi-task learning framework, with parameter sharing, can achieve state-of-the-art results for drug-drug interaction extraction. At its core, the model uses graph convolutions, with a novel attention-gating mechanism, over dependency parse trees. In the third study, we present a more efficient and general-purpose end-to-end neural architecture designed around the idea of the table-filling paradigm; for an input sentence of length n, all entities and relations are extracted in a single pass of the network in an indirect fashion by populating the cells of a corresponding n by n table using metric-based features. We show that this approach excels in both the general English and biomedical domains with extraction times that are up to an order of magnitude faster compared to the prior best. In the fourth and last study, we present an architecture for relation extraction that, in addition to being end-to-end, is able to handle cross-sentence and N-ary relations. Overall, our work contributes to the advancement of modern information extraction by exploring end-to-end solutions that are fast, accurate, and generalizable to many high-value domains
    corecore