297 research outputs found

    Chinese Spoken Document Summarization Using Probabilistic Latent Topical Information

    Get PDF
    [[abstract]]The purpose of extractive summarization is to automatically select a number of indicative sentences, passages, or paragraphs from the original document according to a target summarization ratio and then sequence them to form a concise summary. In the paper, we proposed the use of probabilistic latent topical information for extractive summarization of spoken documents. Various kinds of modeling structures and learning approaches were extensively investigated. In addition, the summarization capabilities were verified by comparison with the conventional vector space model and latent semantic indexing model, as well as the HMM model. The experiments were performed on the Chinese broadcast news collected in Taiwan. Noticeable performance gains were obtained.

    Beyond Stemming and Lemmatization: Ultra-stemming to Improve Automatic Text Summarization

    Full text link
    In Automatic Text Summarization, preprocessing is an important phase to reduce the space of textual representation. Classically, stemming and lemmatization have been widely used for normalizing words. However, even using normalization on large texts, the curse of dimensionality can disturb the performance of summarizers. This paper describes a new method for normalization of words to further reduce the space of representation. We propose to reduce each word to its initial letters, as a form of Ultra-stemming. The results show that Ultra-stemming not only preserve the content of summaries produced by this representation, but often the performances of the systems can be dramatically improved. Summaries on trilingual corpora were evaluated automatically with Fresa. Results confirm an increase in the performance, regardless of summarizer system used.Comment: 22 pages, 12 figures, 9 table

    Extractive Chinese Spoken Document Summarization Using Probabilistic Ranking Models

    Full text link
    Abstract. The purpose of extractive summarization is to automatically select indicative sentences, passages, or paragraphs from an original document according to a certain target summarization ratio, and then sequence them to form a concise summary. In this paper, in contrast to conventional approaches, our objective is to deal with the extractive summarization problem under a probabilistic modeling framework. We investigate the use of the hidden Markov model (HMM) for spoken document summarization, in which each sentence of a spoken document is treated as an HMM for generating the document, and the sentences are ranked and selected according to their likelihoods. In addition, the relevance model (RM) of each sentence, estimated from a contemporary text collection, is integrated with the HMM model to improve the representation of the sentence model. The experiments were performed on Chinese broadcast news compiled in Taiwan. The proposed approach achieves noticeable performance gains over conventional summarization approaches

    Semantics-driven Abstractive Document Summarization

    Get PDF
    The evolution of the Web over the last three decades has led to a deluge of scientific and news articles on the Internet. Harnessing these publications in different fields of study is critical to effective end user information consumption. Similarly, in the domain of healthcare, one of the key challenges with the adoption of Electronic Health Records (EHRs) for clinical practice has been the tremendous amount of clinical notes generated that can be summarized without which clinical decision making and communication will be inefficient and costly. In spite of the rapid advances in information retrieval and deep learning techniques towards abstractive document summarization, the results of these efforts continue to resemble extractive summaries, achieving promising results predominantly on lexical metrics but performing poorly on semantic metrics. Thus, abstractive summarization that is driven by intrinsic and extrinsic semantics of documents is not adequately explored. Resources that can be used for generating semantics-driven abstractive summaries include: • Abstracts of multiple scientific articles published in a given technical field of study to generate an abstractive summary for topically-related abstracts within the field, thus reducing the load of having to read semantically duplicate abstracts on a given topic. • Citation contexts from different authoritative papers citing a reference paper can be used to generate utility-oriented abstractive summary for a scientific article. • Biomedical articles and the named entities characterizing the biomedical articles along with background knowledge bases to generate entity and fact-aware abstractive summaries. • Clinical notes of patients and clinical knowledge bases for abstractive clinical text summarization using knowledge-driven multi-objective optimization. In this dissertation, we develop semantics-driven abstractive models based on intra- document and inter-document semantic analyses along with facts of named entities retrieved from domain-specific knowledge bases to produce summaries. Concretely, we propose a sequence of frameworks leveraging semantics at various granularity (e.g., word, sentence, document, topic, citations, and named entities) levels, by utilizing external resources. The proposed frameworks have been applied to a range of tasks including 1. Abstractive summarization of topic-centric multi-document scientific articles and news articles. 2. Abstractive summarization of scientific articles using crowd-sourced citation contexts. 3. Abstractive summarization of biomedical articles clustered based on entity-relatedness. 4. Abstractive summarization of clinical notes of patients with heart failure and Chest X-Rays recordings. The proposed approaches achieve impressive performance in terms of preserving semantics in abstractive summarization while paraphrasing. For summarization of topic-centric multiple scientific/news articles, we propose a three-stage approach where abstracts of scientific articles or news articles are clustered based on their topical similarity determined from topics generated using Latent Dirichlet Allocation (LDA), followed by extractive phase and abstractive phase. Then, in the next stage, we focus on abstractive summarization of biomedical literature where we leverage named entities in biomedical articles to 1) cluster related articles; and 2) leverage the named entities towards guiding abstractive summarization. Finally, in the last stage, we turn to external resources such as citation contexts pointing to a scientific article to generate a comprehensive and utility-centric abstractive summary of a scientific article, domain-specific knowledge bases to fill gaps in information about entities in a biomedical article to summarize and clinical notes to guide abstractive summarization of clinical text. Thus, the bottom-up progression of exploring semantics towards abstractive summarization in this dissertation starts with (i) Semantic Analysis of Latent Topics; builds on (ii) Internal and External Knowledge-I (gleaned from abstracts and Citation Contexts); and extends it to make it comprehensive using (iii) Internal and External Knowledge-II (Named Entities and Knowledge Bases)

    NATSUM: Narrative abstractive summarization through cross-document timeline generation

    Get PDF
    A new approach to narrative abstractive summarization (NATSUM) is presented in this paper. NATSUM is centered on generating a narrative chronologically ordered summary about a target entity from several news documents related to the same topic. To achieve this, first, our system creates a cross-document timeline where a time point contains all the event mentions that refer to the same event. This timeline is enriched with all the arguments of the events that are extracted from different documents. Secondly, using natural language generation techniques, one sentence for each event is produced using the arguments involved in the event. Specifically, a hybrid surface realization approach is used, based on over-generation and ranking techniques. The evaluation demonstrates that NATSUM performed better than extractive summarization approaches and competitive abstractive baselines, improving the F1-measure at least by 50%, when a real scenario is simulated.This research work has been partially funded by the Ministerio de Economía y Competitividad. España through projects TIN2015-65100-R, TIN2015-65136-C2-2-R, as well as by the project “Analisis de Sentimientos Aplicado a la Prevencion del Suicidio en las Redes Sociales (ASAP)” funded by Ayudas Fundación BBVA a equipos de investigacion cientifica. Moreover, it has been also funded by Generalitat Valenciana through project “SIIA: Tecnologías del lenguaje humano para una sociedad inclusiva, igualitaria, y accesible” with grant reference PROMETEU/2018/089

    Leveraging Deep Learning for Abstractive Code Summarization of Unofficial Documentation

    Full text link
    Usually, programming languages have official documentation to guide developers with APIs, methods, and classes. However, researchers identified insufficient or inadequate documentation examples and flaws with the API's complex structure as barriers to learning an API. As a result, developers may consult other sources (StackOverflow, GitHub, etc.) to learn more about an API. Recent research studies have shown that unofficial documentation is a valuable source of information for generating code summaries. We, therefore, have been motivated to leverage such a type of documentation along with deep learning techniques towards generating high-quality summaries for APIs discussed in informal documentation. This paper proposes an automatic approach using the BART algorithm, a state-of-the-art transformer model, to generate summaries for APIs discussed in StackOverflow. We built an oracle of human-generated summaries to evaluate our approach against it using ROUGE and BLEU metrics which are the most widely used evaluation metrics in text summarization. Furthermore, we evaluated our summaries empirically against a previous work in terms of quality. Our findings demonstrate that using deep learning algorithms can improve summaries' quality and outperform the previous work by an average of %57 for Precision, %66 for Recall, and %61 for F-measure, and it runs 4.4 times faster
    corecore