25 research outputs found

    Program simplification as a means of approximating undecidable propositions

    Get PDF
    We describe an approach which mixes testing, slicing, transformation and formal verification to investigate speculative hypotheses concerning a program, formulated during program comprehension activity. Our philosophy is that such hypotheses (which are typically undecidable) can, in some sense, be `answered' by a partly automated system which returns neither `true' nor `false' but a program (the `test program') which computes the answer. The motivation for this philosophy is the way in which, as we demonstrate, static analysis and manipulation technology can be applied to ensure that the resulting test program is significantly simpler than the original program, thereby simplifying the process of investigating the original hypothesi

    Node coarsening calculi for program slicing

    Get PDF
    Several approaches to reverse and re-engineering are based upon program slicing. Unfortunately, for large systems, such as those which typically form the subject of reverse engineering activities, the space and time requirements of slicing can be a barrier to successful application. Faced with this problem, several authors have found it helpful to merge control flow graph (CFG) nodes, thereby improving the space and time requirements of standard slicing algorithms. The node-merging process essentially creates a 'coarser' version of the original CFG. The paper introduces a theory for defining control flow graph node coarsening calculi. The theory formalizes properties of interest, when coarsening is used as a precursor to program slicing. The theory is illustrated with a case study of a coarsening calculus, which is proved to have the desired properties of sharpness and consistency

    Pre/post conditioned slicing

    Get PDF
    Th paper shows how analysis of programs in terms of pre- and postconditions can be improved using a generalisation of conditioned program slicing called pre/post conditioned slicing. Such conditions play an important role in program comprehension, reuse, verification and reengineering. Fully automated analysis is impossible because of the inherent undecidability of pre- and post- conditions. The method presented reformulates the problem to circumvent this. The reformulation is constructed so that programs which respect the pre- and post-conditions applied to them have empty slices. For those which do not respect the conditions, the slice contains statements which could potentially break the conditions. This separates the automatable part of the analysis from the human analysis

    ConSUS: A light-weight program conditioner

    Get PDF
    Program conditioning consists of identifying and removing a set of statements which cannot be executed when a condition of interest holds at some point in a program. It has been applied to problems in maintenance, testing, re-use and re-engineering. All current approaches to program conditioning rely upon both symbolic execution and reasoning about symbolic predicates. The reasoning can be performed by a ‘heavy duty’ theorem prover but this may impose unrealistic performance constraints. This paper reports on a lightweight approach to theorem proving using the FermaT Simplify decision procedure. This is used as a component to ConSUS, a program conditioning system for the Wide Spectrum Language WSL. The paper describes the symbolic execution algorithm used by ConSUS, which prunes as it conditions. The paper also provides empirical evidence that conditioning produces a significant reduction in program size and, although exponential in the worst case, the conditioning system has low degree polynomial behaviour in many cases, thereby making it scalable to unit level applications of program conditioning

    Safe integration of annotated components in open source projects

    Get PDF
    The decision of using existing software components versus building from scratch custom software is one of the most complex and important choices of the entire development/integration process. However, the reuse of software components raises a spectrum of issues, from requirements negotiation to product selection and integration. The correct tradeoff is reached after having analyzed advantages and issues correlated to the reuse. Despite the reuse failures in real cases, many efforts have been made to make this idea successful. In this context of software reuse in open source projects, we address the problem of reusing annotated components proposing a rigorous approach to assure the quality of the application under construction. We introduce the concept of caller-based slicing as a way of certifying that the integration of a component annotated with a contract into a system will preserve the correct behavior of the former, avoiding malfunctioning after integration. To complement the efforts done and the benefits of slicing techniques, there is also a need to find an efficient way to visualize the main program with the annotated components and the slices. To take full profit of visualization, it is crucial to combine the visualization of the control/data flow with the textual representation of source code. To attain this objective, we extend the notions of System Dependence Graph and Slicing Criterion to cope with annotations.Fundação para a Ciência e a Tecnologia (FCT

    Understanding Program Slices

    Get PDF
    Program slicing is a useful analysis for aiding different software engineering activities. In the past decades, various notions of program slices have been evolved as well as a number of methods to compute them. By now program slicing has numerous applications in software maintenance, program comprehension, reverse engineering, program integration, and software testing. Usability of program slicing for real world programs depends on many factors such as precision, speed, and scalability, which have already been addressed in the literature. However, only a little attention has been brought to the practical demand: when the slices are large or difficult to understand, which often occur in the case of larger programs, how to give an explanation for the user why a particular element has been included in the resulting slice. This paper describes a reasoning method about elements of static program slices

    PROGRAM SLICING TECHNIQUES AND ITS APPLICATIONS

    Get PDF
    Program understanding is an important aspect in Software Maintenance and Reengineering. Understanding the program is related to execution behaviour and relationship of variable involved in the program. The task of finding all statements in a program that directly or indirectly influence the value for an occurrence of a variable gives the set of statements that can affect the value of a variable at some point in a program is called a program slice. Program slicing is a technique for extracting parts of computer programs by tracing the programs’ control and data flow related to some data item. This technique is applicable in various areas such as debugging, program comprehension and understanding, program integration, cohesion measurement, re-engineering, maintenance, testing where it is useful to be able to focus on relevant parts of large programs. This paper focuses on the various slicing techniques (not limited to) like static slicing, quasi static slicing, dynamic slicing and conditional slicing. This paper also includes various methods in performing the slicing like forward slicing, backward slicing, syntactic slicing and semantic slicing. The slicing of a program is carried out using Java which is a object oriented programming language

    Property Differencing for Incremental Checking

    Get PDF
    This paper introduces iProperty, a novel approach that facilitates incremental checking of programs based on a property di erencing technique. Speci cally, iProperty aims to reduce the cost of checking properties as they are initially developed and as they co-evolve with the program. The key novelty of iProperty is to compute the di erences between the new and old versions of expected properties to reduce the number and size of the properties that need to be checked during the initial development of the properties. Furthermore, property di erencing is used in synergy with program behavior di erencing techniques to optimize common regression scenarios, such as detecting regression errors or checking feature additions for conformance to new expected properties. Experimental results in the context of symbolic execution of Java programs annotated with properties written as assertions show the e ectiveness of iProperty in utilizing change information to enable more ecient checking

    Reducing GUI Test Suites via Program Slicing

    Get PDF
    ABSTRACT A crucial problem in GUI testing is the identification of accurate event sequences that encode corresponding user interactions with the GUI. Ultimately, event sequences should be both feasible (i. e., executable on the GUI) and relevant (i. e., cover as much of the code as possible). So far, most work on GUI testing focused on approaches to generate feasible event sequences. In addition, based on event dependency analyses, a recently proposed static analysis approach systematically aims at selecting both relevant and feasible event sequences. However, statically analyzing event dependencies can cause the generation of a huge number of event sequences, leading to unmanageable GUI test suites that are not executable within reasonable time. In this paper we propose a refined static analysis approach based on program slicing. On the theoretical side, our approach identifies and eliminates redundant event sequences in GUI test suites. Redundant event sequences have the property that they are guaranteed to not affect the test effectiveness. On the practical side, we have implemented a slicing-based test suite reduction algorithm that approximatively identifies redundant event sequences. Our experiments on six open source GUI applications show that our reduction algorithm significantly reduces the size of GUI test suites. As a result, the overall execution time could significantly be reduced without losing test effectiveness
    corecore