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Understanding Program Slices

Ákos Hajnal∗ and István Forgács†

Abstract

Program slicing is a useful analysis for aiding different software engineer-

ing activities. In the past decades, various notions of program slices have

been evolved as well as a number of methods to compute them. By now

program slicing has numerous applications in software maintenance, program

comprehension, reverse engineering, program integration, and software test-

ing. Usability of program slicing for real world programs depends on many

factors such as precision, speed, and scalability, which have already been ad-

dressed in the literature. However, only a little attention has been brought

to the practical demand: when the slices are large or difficult to understand,

which often occur in the case of larger programs, how to give an explanation

for the user why a particular element has been included in the resulting slice.

This paper describes a reasoning method about elements of static program

slices.
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1 Introduction

Program slicing is a source code analysis technique proposed by Mark Weiser [35]
capable of automatically identifying the set of program statements, called the slice,
which may affect the values of the selected variables at a program point of interest,
called the slicing criterion. Program slicing uses dependence analysis that examines
the source code to trace control- and data flow to determine the statements that
belong to the slice.

Weiser’s original method – motivated to aid debugging activities – has been
classified later as a “backward static” program slicing technique. Backward, because
in constructing the slice, statements affecting the selected statement are traced
backwards, and static, because the analysis is made without having specified any
particular program execution, i.e. all possible program executions are taken into
account. Forward static program slicing determines the part of the program that
is directly or indirectly affected by the selected statement.
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Since Weiser’s method other variants of program slicing have been evolved such
as dynamic slicing [30, 2], quasi-static slicing [34], conditioned slicing [8], amor-
phous slicing [22], hybrid slicing [19], and relevant slicing [20]. In the past decades,
numerous applications of program slicing have been proposed in different areas
of software engineering, including software maintenance [16, 15, 10, 11], program
comprehension [12, 24], reverse engineering [9], program integration [27, 7], and
software testing [18, 23, 4, 5, 14, 25, 26].

Program slicing allows the users to focus on the selected aspects of semantics
by breaking the whole program into smaller pieces, and when these slices are small
they can be more easily maintained. However, lager program slices, but even slices
containing only some tens of program instructions can be very difficult to under-
stand. As William Griswold [17] pointed out in his talk: Making Slicing Practical:
The Final Mile, one of the problems why slicers are not widely used is that it is
not enough to dump the results onto the screen without explanation.

Slices computed based on execution traces (dynamic) are typically smaller than
the ones that consider all possible program executions (static). Furthermore, as
a particular execution history is available during dynamic slicing, the chain of
dependences caused a given program statement to be included in the slice can
be more easily discovered. This is not the case in static slicing, where neither
a particular dependence chain nor an execution trace covering these dependences
are presented. Some applications such as program comprehension, re- and reverse
engineering rely on static slicing, and it may occur that code under analysis cannot
be even compiled and run (legacy systems, program under development).

Static program slicing gives a wider view to the connected parts of the pro-
gram code, which is essential in program comprehension or at extracting reusable
functions from legacy systems – considering all possible program executions. Note
that without an automated slicing tool revealing dependences in the program text
is very labor-intensive, tedious, and time consuming task. These techniques cal-
culate the set of statements that directly or indirectly affect (or affected by) the
slicing criterion. However, beyond claiming that there is dependence between the
slicing criterion and the computed slice element, no explanation of the result is
provided, which could help in understanding the effects between different parts of
the program code by the human users.

For example, in regression testing, one can use static program slicing to deter-
mine those parts of the code that are affected by the program modification. It can
occur that one or more slice elements fall out of the software component that the
change supposed to be influenced, so the user may be curious how the effect has
reached that point. By showing a particular chain of dependences from the slicing
criterion to the selected slice element the user could be convinced that the influ-
ence indeed exists, and either there is an unforeseen, undesired side effect of the
modification, or this effect has not been taken into consideration at determining
the impact of the change.

The more precise the applied slicing technique the less the resulting slice sizes
are. There are no fully precise static slicing methods for real programming lan-
guages, so false positives, i.e. slice elements identified on dependences that actually
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cannot occur during real program executions are unavoidable. One source of such
imprecision is due to following non-realizable program paths during the analysis
(paths along which procedure calls and returns are incorrectly nested). By apply-
ing context-sensitive techniques, these false positives can be filtered out. Other
sources of imprecision are due to infeasible program paths (no such program input
that results in the execution of the traversed conditional branches) and program-
ming language constructs that make impossible to recover the precise flow of data
statically (use of pointers, dynamic constructs). The latter two problems are not
solvable in general; static slicing techniques typically use a conservative approach
to provide safe results (consider all potential but not necessarily “real” effects).

In this case, reasoning about slice elements could help programmers to recognize
false positives. In regression testing, for example, an unexpected impact of a pro-
gram change may be proven to be false, when the presented chain of dependences
is infeasible (it can be realized along infeasible paths only), and it is rejected by
a human user. This is a manual process, but it can still be less expensive than
retesting all the slicer indicated parts of the code.

This paper concerns with the token propagation-based context-sensitive, static
program slicing technique [21], and proposes a method to reason about the com-
puted slice elements. Reasoning means showing a specific dependence chain –
along with control-flow information – from the slicing criterion to the selected slice
element.

The rest of the paper is organized as follows. Section 2 provides an overview of
the necessary concepts, and summarizes the basic rules of the token propagation-
based slicing method. Section 3 describes how a dependence trace for the slice
elements can be derived by computing a particular dependence chain. Section 4
discusses the related work. Finally, Section 5 concludes the paper.

2 Background

Computer programs can be represented by directed graphs called control flow graphs
(CFGs). Control flow graphs are constructed by assigning a directed graph to each
procedure (intraprocedural control flow graph) with unique entry and exit nodes,
in which nodes correspond to the statements and predicates in the procedure, and
edges represent the possible flow of control. A call statement is represented by two
nodes, a call site and a return site, which are linked to the entry and exit node of
the called procedure, respectively (interprocedural control flow graph). We refer to
the related call site c and return site r using the callSiteOf, returnSiteOf operators,
such that, c=callSiteOf(r) and r=returnSiteOf(c).

Variable references and assignments are referred to as uses and definitions in
nodes. A definition is influenced by a use in the same node if the assigned value is
dependent on the value of the referenced variable. A path containing no definition
for a variable v (excluding start and end nodes) is a definition-clear path with
respect to variable v. The definition of v in node n and the use of the same variable
in node m form a definition-use pair if there is a definition-clear path with respect
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to v from n to m. Node m is said to be (directly) data dependent on node n.
A statement S is control dependent on predicate P if the outcome of P de-

termines whether S executes. Intuitively it means that statements contained by
conditionally executed branches are control dependent on the predicate. Control
dependent procedure calls extend the control scope to statements in the called
procedure(s). There are different definitions and computations of control depen-
dence, the particular notion is however orthogonal to how to compute the slice. We
assume that (intraprocedural) control dependences are available in the program
graph, represented by control edges. We treat interprocedural control dependences
indirectly, by introducing control edges from call sites to procedure entry nodes,
and from entry to other nodes in the procedure – except entry- and exit nodes, as
shown in Figure 1.

The transitive flow of data and control dependences form a dependence chain,
which is a sequence of nodes n1, n2, ..., nk, where node ni+1 is either directly data-
or control dependent on node ni for all i, 1 ≤ i ≤ k − 1. Nodes n2, n3, ..., nk

are said to be affected by node n1. A path p covers the dependence chain if it
goes through chain nodes n1, n2, ..., nk, and each subpath of p between nodes ni

and ni+1 is either definition-clear with respect to the variable defined at ni (data
dependence), or all the nodes of the subpath are control dependent on ni (control
dependence), respectively. The dependence chain is realizable if it can be covered
by a realizable path.

A slicing criterion is a pair C=<I, V>, where I is a program point and V is a
subset of program variables. The backward static program slice S with respect to
slicing criterion C consists of all the parts of the program that have direct or indirect
effect on the values computed for variables V at I. In forward static program slicing,
statements depending on the slicing criterion C are computed, where V is a set of
variables defined at I. Computing a program slice requires determining the nodes of
possible dependence chains that end (backward slicing), or start (forward slicing)
at the slicing criterion, respectively. The program slicing method is considered to
be precise up to realizable program paths if the slice is computed upon realizable
dependence chains.

2.1 Program Slicing via Token Propagation

The token propagation-based static program slicing method has been presented
in [21]. The idea of the approach is to discover possible dependence chains by
propagating tokens of the control flow graph starting from the slicing criterion.
Tokens contain a token index corresponding to a defined variable (initially the
variable of the slicing criterion) and a backtrack index used to control token propa-
gations from procedure exit nodes (considering realizable program paths). Tokens
are propagated along definition-clear paths wrt. variable corresponding to the to-
ken index; tokens propagated to affected nodes (containing use of the token index)
causing these nodes marked as in the slice. Influenced definitions induce new token
propagations from the affected nodes. A special ∅ backtrack index value is used to
distinguish tokens having no previous “calling context”, otherwise backtrack indices
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correspond to variable identifiers.
The token propagation rules of forward data-flow slice computation (data-

dependences are considered only) can be summarized as follows:

Rule 0. A token RD∅
x is created for slicing criterion C=<n, {x}>, which is prop-

agated to the successor node of n. Node n is marked as in the slice.

Rule 1. If a token RDy
x is propagated to a node n that does not (re)define variable

x, the token is propagated to the successor node(s) of n unchanged.

Rule 2. If a token RDy
x is propagated to a node n that uses variable x, n is

marked as in the slice. A new token RDy
z is created for definition of variable

z influenced by use of x, which is propagated to the successor node of n.

Rule 3. If a token RDy
x is propagated to a call site, token RDx

x is propagated to
the entry node of the called procedure.

Rule 4. Any call site c that contains a token RDy
x and exit node e (of the called

procedure) that contains a token RDx
z induce the propagation of a token RDy

z

from return site returnSiteOf(c). Token RD∅
z is propagated from an exit node

to all return sites unchanged.

The token propagation stops when no more propagation is possible (a given
token is propagated to a given node once), and the slice is given by the set of nodes
marked as in the slice. Notice that a token RDx

z propagated to a procedure exit
node directly corresponds to procedure summary edge: x→z of Horwitz et al. [28].
(Summary edges represent the transitive dependences due to the procedure call.)

Control tokens are created at affected predicate nodes (using a special token
index value C ) and propagated along control edges to accommodate control depen-
dences. Nodes reached by control tokens are marked as in the slice; definitions in
control dependent nodes start new (data) token propagations. The rules of the full
forward slicing are shown below:

Rule 5. If a token RDy
x is propagated to a predicate node n that uses variable x,

a new token RD
y
C is created and propagated to the nodes that are control

dependent on n.

Rule 6. If a token RD
y
C is propagated to a predicate node n, token RD

y
C is prop-

agated to the nodes that are control dependent on n.

Rule 7. If a token RD
y
C is propagated to a node n, n is marked as in the slice. A

new token RDy
z is created for definition of variable z, which is propagated to

the successor node of n.

Rule 8. If a token RDC
C is propagated to an entry node, token RDC

C is propagated
to all the nodes of the procedure (except entry and exit nodes).

Backward slicing can be obtained by reversing the token propagation rules of
forward slicing, where tokens are propagated to predecessor nodes, backwards.
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3 The Reason-why Algorithm

This section presents a method capable of reasoning about an arbitrarily selected
element of the resulting slice, called the “reason-why algorithm”. First, we restrict
to forward data-flow slices; then, we extended to full forward slices. Reasoning
about backward slices is just the dual of the presented method, which is hence
omitted to save space. For clarity of the presentation we consider programs con-
taining global and scalar variables. Local variables and parameter passing can be
treated as described in [21].

3.1 Reasoning Data-flow Slices

We assume that we are given a slicing criterion C=<n, {x}> for which the data-flow
slice has been computed using the token propagation method. We also assume all
the tokens propagated during slicing are available, and the resulting slice contains
a node m to be explained; m contains a use of variable y and a token RDz

y caused
m to be marked as in the slice (Rule 2). To justify why m is included in the slice
our goal is to present a definition-use chain from n to m – along with a potential
execution trace that covers it. The pair (n, RD∅

x) will be referred to as the source;
the pair (m, RDz

y) is referred to as the target. We note that we provide one single,
any of the possible definition-use chains between the source and the target, which
is not necessarily the shortest one.

To our experiences providing a complete CFG path covering a definition-use
chain contains too much detail (instructions) to overview by a human user; provid-
ing merely the nodes of the chain is not enough to see how this dependence chain can
be covered by a potential program execution. The path to be constructed, called
the “reason-why path”, will hence be a definition-use chain augmented with proce-
dure calls and returns (intraprocedural path segments between the use-definition
nodes and the procedure boundaries are omitted).

To reveal a definition-use chain between n and m we trace back the token
propagation performed during slicing. We start from target node m, and investigate
the tokens propagated to the predecessor nodes. Based on this information we can
deduce to the previously applied token propagation rule(s), and determine the
node(s) from where the token propagated to m may have been originated. The
predecessor node and the (possibly) new token propagated to the predecessor node
become the new target. Then, we continue finding such predecessors as far as we
reach the source. From procedure entry nodes we “return” to call sites, and from
return sites we enter procedure exit nodes, respectively. The traversed definition-
use chain nodes, as well as procedure call- and return sites are recorded; finally,
this node sequence is reversed. We bypass recovering applications of Rule 1 (which
propagates tokens unchanged to successors iteratively) by identifying reachable
nodes along definition-clear paths backwards.

The construction of the reason-why path is performed in two passes: in Pass
1 we traverse intraprocedural-, summary- and call edges backwards (to callers),
whereas in Pass 2 we traverse intraprocedural-, summary- and return edges (to
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called procedures). As procedure summary edges – represented by exit node to-
kens in the called procedures – are available, we can cross procedure calls without
ascending into the called procedures. Exploited summary edges are resolved in a
subsequent step. Finally, the path is reversed to get a forward path. Note that
using the two-pass method procedure calls and returns are correctly nested, i.e. the
resulting reason-why path is realizable.

Pass 1

Pass 1 (as well as Pass 2) consists of a sequence of intra- and interprocedural path
search steps. In the intraprocedural step our goal is to get to the entry node of
the current procedure, whereas in the interprocedural step we select one of the
potential callers of the current procedure from where the token propagation had
been originated.

First, we consider the initial target: node m and token RDz
y, where z 6= ∅.

(If z = ∅, we skip Pass 1.) To determine the node from where RDz
y had been

propagated to m, we determine the set of nodes in the current procedure reachable
along definition-clear path wrt. y backwards. The possible source(s) of RDz

y among
these nodes is either (a) the procedure entry node if z = y and the entry node
contains RDy

y , (b) a node containing a definition of variable y, a use of a variable v,
and a token RDz

v (RDz
y had been started by Rule 2), or (c) a return site of a called

procedure P such that the related call site of P contains a token RDz
v and there is a

summary edge v→y (Rule 4 had been applied to RDv
y in the called procedure’s exit

node). Note that as the backtrack index is not ∅, slicing criterion node n cannot
be the source of RDz

y . In either case, we record- and set the new node and the new
token as the new target. In the case of (b) and (c), we continue searching for the
next predecessor of the current target as far as we reach the entry. In the case of
(c), we record the call- and the return site, as well as the summary edge used to
cross the call (resolved later). To avoid infinite loop we traverse each node-token
pair at most once, and use backtracking if necessary.

In the interprocedural step, we select one of the potential callers that resulted
in the propagation of RDy

y to the entry node. These call sites contain a token
RDv

y (Rule 3 had been applied). We select one of them, and apply the above
intraprocedural path search for the new target (call site and RDv

y) to get to the
entry node of the caller procedure.

We continue the above procedure as far as any of the call sites contains a token
RD∅

y , when we turn to Pass 2. In the presence of strongly-connected components
(SCCs), we visit each call site and call site token at most once, which avoids infinite
cycle.

As an example, let us consider the program shown in Figure 1. For slicing
criterion C=(a2, {x}), we obtain the data-flow slice: S={a2, a4, b2, m6, c5}.
(The related instructions are highlighted in boldface characters; tokens propagated
during slicing are indicated next to the nodes in the figure). Assume that we choose
node c5 to be explained.

In Pass 1, we start from target (c5, RDy
y). After identifying the set of nodes

reachable (backwards) along definition-clear paths wrt. y we find return site c3,
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procedure MAIN

begin

call A ();

call C ();

end procedure

print ( x );

x := 0;

y := z;

procedure A

begin

y := 0;

call B ();

else

y := 2007;

endif

x := y;

end procedure

x := read ();

if ( x > 0 )

procedure C

begin

end procedure

call B ();

print ( z );

print ( y );

procedure B

begin

end procedure

z := x;
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Figure 1: Example program graph and the tokens propagated during data-flow
slicing

whose call site contains a token RDy
y and the called procedure contains summary

edge y→y (exit node token RDy
y in procedure B; case c). The new target is set as

node c2 and token RDy
y . In the next step, we reach procedure entry node c1 (case

a).
In the interprocedural step, we return to call site m7, as it contains a token

RD∅
y, so we finish Pass 1. The reason-why path constructed during Pass 1 is shown

below:

1. (c5, RDy
y) -- use of y

2. (c3, RDy
y) -- return from B, summary edge: y → y

3. (c2, RDy
y) -- call B

4. (c1, RDy
y) -- entry C

5. (m7, RD∅
y) -- call C

Pass 2

During Pass 2 we traverse intraprocedural- and return edges, and trace back the
propagation of RD∅

y towards the slicing criterion.
The intraprocedural path search starts from a call site (following Pass 2), or

from node m, respectively (m contains a token RD∅
y). The potential source of this

token is a node reachable from the current target along definition clear-path wrt.
y backwards, which is either (a) node n if y = x, (b) a node containing a definition
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of variable y, a use of a variable v, and a token RD∅
v (Rule 2), (c) a return site such

that the related call site contains a token RD∅
v and there is summary edge RDy

v

(Rule 4), or (d) a return site such that the called procedure’s exit node contains
the token RD∅

y (Rule 4 is applied to a token with ∅ backtrack index). In the case
of (a), we finish Pass 2; in the case of (b) or (c), we continue the intraprocedural
search; in the case (d), we set the exit node of the called procedure and RD∅

y as
the new target (interprocedural step). We continue the above procedure as far as
we reach n.

In the example, in Pass 2, we start from node m7 and token RD∅
y. The only

reachable node is node m6, which defines y, uses z, and contains a token RD∅
z (case

b). The new target is set as (m6, RD∅
z). In the next steps, we select return site

m3 and exit node a9 of procedure A, which contains RD∅
z (case d). The source of

token RD∅
z propagated to a9 is return site a6, since there is a token RD∅

x in a5, and
the called procedure contains summary edge x→z. From target (a5, RD∅

x) slicing
criterion node a2 is reachable, and token index x corresponds to the variable of the
slicing criterion (case a), so Pass 2 finishes too.

The path constructed in Pass 2 is as follows:

6. (m6, RD∅
z) -- use of z, definition of y

7. (m3, RD∅
z) -- return from A

8. (a9, RD∅
z) -- exit A

9. (a6, RD∅
z) -- return from B, summary edge: x → z

10. (a5, RD∅
x) -- call B

11. (a2, RD∅
x) -- definition of x

Resolving Summary Edges

The reason-why path potentially contains “jumps” from return- to call sites via
summary edges that need to be resolved. It requires constructing a coverage path
for a dependence-chain realizing the procedure summary. We iterate over each
adjacent call- and return sites contained in the reason-why path, resolve them
one-by-one, and insert the related summary edge coverage path into the original
reason-why path between the related call- and return site pair.

The construction of the coverage path for a summary edge v→y is performed
correspondingly to the intraprocedural path search applied in Pass 1: for a given
call site c and return site r we construct a reason-why path from the exit node
of the called procedure and token RDv

y (target) to the entry node of the called
procedure and token RDv

v (source). Once this path has been constructed, it is
inserted between the call- and return site pair.

Resolving a summary edge may introduce new summary edges (case c), which
also need to be resolved, recursively. In the presence of SCCs, during resolving
a summary edge the same summary edge could potentially be reused. As during
resolving a summary edge there must exists a path that does not reuse itself (oth-
erwise, it would mean an infinite loop in the code, so the summary edge would have
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never been computed), excluding the reuse of the same summary edge currently
being resolved, the infinite loop can be avoided.

By reversing the resulting path we obtain the required definition-use chain con-
taining a proper sequence of call- and return sites.

Continuing with the example, the reason-why path contains two summary edges,
at positions 2 and 9, which need to be resolved. The first summary edge y→y is
resolved by starting from exit node b3 in procedure B and token RDy

y (target).
Since the entry node is reachable from the exit, and the entry node contains RDy

y

(source), the path search finishes. The path to be inserted between positions 2 and
3 is as follows:

1. (b3, RDy
y) -- exit B

2. (b1, RDy
y) -- entry B

During resolving summary edge x→z of procedure B we have to traverse node
b2 as well, which results in the following path to be inserted between positions 9
and 10:

1. (b3, RDx
z) -- exit B

2. (b2, RDx
x) -- use of x, definition of z

3. (b1, RDx
x) -- entry B

The resulting reason-why path is then reversed. The reason-why path from a2
to c5 is shown below (only target token indices are indicated – corresponding to the
most recently defined variable; procedure calls and returns are tabbed; comments
are substituted by actual program instructions):

1. a2, x -- x := read()

2. a5, x -- call B ()

3. b1, x -- entry B

4. b2, x -- z := x

5. b3, z -- exit B

6. a6, z -- return from B

7. a9, z -- exit A

8. m3, z -- return from A

9. m6, z -- y := z

10. m7, y -- call C ()

11. c1, y -- entry C

12. c2, y -- call B ()

13. b1, y -- entry B

14. b3, y -- exit B

15. c3, y -- return from B

16. c5, y -- print (y)
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3.2 Reasoning Full Slices

In full slicing, data dependent predicates induce propagations of control tokens
along control edges, which also need to be considered at constructing the reason-
why path.

If target node m contains control token only, the initial target is of the form (m,
RDz

C). During the intraprocedural path search we determine the set of controlling
nodes, i.e. the nodes from where there is a control edge to m. The possible source(s)
of token RDz

C among these nodes is either (a) a predicate node containing a use
of a variable v and a token RDz

v (Rule 5), (b) a predicate node containing RDz
C

(Rule 6), or (c) the procedure entry node if z = C and the entry node contains
RDC

C (Rule 8). The new node and the new token are set as the new target. This
intraprocedural search step is applied in passes 1 and 2 each time the origin of a
control token needs to be determined.

Another change in reasoning full slices is that control tokens induce data-tokens
at definition nodes (Rule 7); hence, at determining the possible sources of a data
token RDz

y, nodes containing definition of variable y and token RDz
C need to be

investigated as well. If it holds for some node, this node and RDz
C are also a

potential new target during the intraprocedural path search.

When the target token is a control token, the interprocedural step in Pass 1
requires determining the set of call sites containing control token. In Pass 2, as
no control token can be propagated to a procedure exit node, the interprocedural
traversal is unchanged.

Using the above extensions, a reason-why path can also be calculated for ele-
ments of full slices.

4 Related Work

Various algorithms for calculating interprocedural slices exist. The first method
published by Weiser [35] is not context-sensitive. There are studies [1, 32, 6, 31]
investigating whether considering calling-context has significant affect on the size
of the slices. It may occur that inaccurate slices due to following non-realizable
paths are several times larger than precise ones – what is more, the computation
of these extra large slices may take more time.

There are a number of context-sensitive static slicing methods. Most of them
are based on system dependence graphs published first by Horwitz et al. [28]. By
computing transitive dependences due to procedure calls (summary edges), slicing
is reduced to a graph reachability problem. Agrawal and Guo [1] have presented an
explicitly context-sensitive slicing method over the SDG (without summary edges),
in which the call stack is maintained during the propagation. Krinke [32] presented
a corrected explicitly context-sensitive algorithm. Atkinson and Griswold [3] used
CFGs and the invocation graph approach [13] for context-sensitive slicing. Liang
and Harrold [33] proposed a precise slice computation method also based on data-
flow information propagation over the CFG.
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To our knowledge no reasoning technique has been proposed to justify slice
elements computed by these methods.

Hajnal and Forgács [21] presented a context-sensitive static slicing method
which combines the demand-driven nature of the CFG-based slicing and the ef-
ficiency of the SDG-based slicing, using token propagation. The reason-why algo-
rithm proposed in this paper makes it possible to justify slice elements computed
that method but also applicable to reason about slice elements computed by any
other technique which is at least as precise as our token propagation-based method.
For example, our method can be applied for SDG-based slicing considered the most
wide-spread method nowadays

Chopping [29] is a variant of program slicing capable of revealing statements
involved in a transitive dependence from one specific statement (source criterion) to
another one (target criterion). A chop is basically the intersection of the forward
slice of the forward criterion and the backward slice of the backward criterion,
which provides a more focused approach to investigating how one statement affects
the other. Considering a chop, which gives a set of nodes composed of (all) the
dependence chains between the source and the target, it can be still very difficult
to construct a dependence chain from source to target – and, if given that, an
appropriate calling sequence that covers these nodes. The solution proposed in this
paper answers both questions. We are aware of no other similar techniques for this
problem.

5 Conclusions

To our knowledge no automated reasoning technique about the computed slice
elements has been proposed in the literature so far. Without such a tool verification
or understanding of the resulting program slices requires considerable expertise and
time. This paper proposes a solution to “explain” slice elements by computing a
specific dependence chain from the slicing criterion to the chosen slice element. This
definition-use chain, augmented with control information, is more easily overviewed
or analyzed by a human user.

We implemented the presented reason-why algorithm in the Java programming
language and integrated with the slicing tool presented in [21]. We carried out
several experiments on the same COBOL systems and slices computed in programs
of different sizes. The results showed that in all the cases the slice computation
time dominates the time of the reason-why path computation (it took only a few
seconds in the worst case). It is because the reason-why algorithm only reads the
available token information and performs no compute-intensive operations (such
as slicing). Note that slice computation has to be performed once; then several
reasoning tasks can be initiated on the resulting slice elements.

In the presented method, the dependence chain is determined arbitrarily – trac-
ing back any of the possible token propagations performed during previous slicing.
Shorter chains are however easier to understand, therefore we plan to investigate
how to provide shorter paths from source to target (e.g., by also introducing a
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kind of distance information from source into tokens). As the number of tokens
may be huge in the case of large programs, it is an interesting question how the
increased memory requirements and its maintenance cost affect the overall slicing
performance, and in what extent the reason-why chains can be shortened. Also, to
our experiences data-dependences are easier to follow mentally, hence, we should
be able to give option for selecting data-dependences (priorize or let the user decide
interactively) where both types of dependences arise. It would also be worth inves-
tigating that if the provided path has been found infeasible by the user, how the
algorithm can search for alternative path. The latter issues imply further possibil-
ities for improvement: how to visualize or represent the reason-why path (which is
currently plain XML), and how to make the path search interactive, respectively.
These serve as the basis of our future work.
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[20] Gyimóthy, T., Beszédes, Á., and Forgács, I. An efficient relevant slicing method
for debugging. Lecture Notes in Computer Science, pages 303–321, 1999.
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