44,624 research outputs found

    A design science framework for research in health analytics

    Get PDF
    Data analytics provide the ability to systematically identify patterns and insights from a variety of data as organizations pursue improvements in their processes, products, and services. Analytics can be classified based on their ability to: explore, explain, predict, and prescribe. When applied to the field of healthcare, analytics presents a new frontier for business intelligence. In 2013 alone, the Centers for Medicare and Medicaid Services (CMS) reported that the national health expenditure was $2.9 trillion, representing 17.4% of the total United States GDP. The Patient Protection and Affordable Care Act of 2010 (ACA) requires all hospitals to implement electronic medical record (EMR) technologies by year 2014 (Patient Protection and Affordable Care Act, 2010). Moreover, the ACA makes healthcare process and outcomes more transparent by making related data readily available for research. Enterprising organizations are employing analytics and analytical techniques to find patterns in healthcare data (I. R. Bardhan & Thouin, 2013; Hansen, Miron-Shatz, Lau, & Paton, 2014). The goal is to assess the cost and quality of care and identify opportunities for improvement for organizations as well as the healthcare system as a whole. Yet, there remains a need for research to systematically understand, explain, and predict the sources and impacts of the widely observed variance in the cost and quality of care available. This is a driving motivation for research in healthcare. This dissertation conducts a design theoretic examination of the application of advanced data analytics in healthcare. Heart Failure is the number one cause of death and the biggest contributor healthcare costs in the United States. An exploratory examination of the application of predictive analytics is conducted in order to understand the cost and quality of care provided to heart failure patients. The specific research question is addressed: How can we improve and expand upon our understanding of the variances in the cost of care and the quality of care for heart failure? Using state level data from the State Health Plan of North Carolina, a standard readmission model was assessed as a baseline measure for prediction, and advanced analytics were compared to this baseline. This dissertation demonstrates that advanced analytics can improve readmission predictions as well as expand understanding of the profile of a patient readmitted for heart failure. Implications are assessed for academics and practitioners

    Modelling and simulating unplanned and urgent healthcare: the contribution of scenarios of future healthcare systems.

    Get PDF
    The current financial challenges being faced by the UK economy have meant that the NHS will have to make £20 billion of savings between 2010 and 2014 requiring it to be innovative about how it delivers healthcare. This paper presents the methodology of a research project that is simulating the whole healthcare system with the aim of reducing waste within urgent unscheduled care streams whilst understanding the impact of such changes on the whole system. The research is aimed at care commissioners who could use such simulation in their decision-making practice, and the paper presents the findings from early stakeholder discussions about the scope and focus of the research and the relevance of stakeholder consultation and scenarios in the development of a valid decision-support tool that is fit for purpose

    A conceptual analytics model for an outcome-driven quality management framework as part of professional healthcare education

    Get PDF
    BACKGROUND: Preparing the future health care professional workforce in a changing world is a significant undertaking. Educators and other decision makers look to evidence-based knowledge to improve quality of education. Analytics, the use of data to generate insights and support decisions, have been applied successfully across numerous application domains. Health care professional education is one area where great potential is yet to be realized. Previous research of Academic and Learning analytics has mainly focused on technical issues. The focus of this study relates to its practical implementation in the setting of health care education. OBJECTIVE: The aim of this study is to create a conceptual model for a deeper understanding of the synthesizing process, and transforming data into information to support educators’ decision making. METHODS: A deductive case study approach was applied to develop the conceptual model. RESULTS: The analytics loop works both in theory and in practice. The conceptual model encompasses the underlying data, the quality indicators, and decision support for educators. CONCLUSIONS: The model illustrates how a theory can be applied to a traditional data-driven analytics approach, and alongside the context- or need-driven analytics approach

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    Business Process Redesign in the Perioperative Process: A Case Perspective for Digital Transformation

    Get PDF
    This case study investigates business process redesign within the perioperative process as a method to achieve digital transformation. Specific perioperative sub-processes are targeted for re-design and digitalization, which yield improvement. Based on a 184-month longitudinal study of a large 1,157 registered-bed academic medical center, the observed effects are viewed through a lens of information technology (IT) impact on core capabilities and core strategy to yield a digital transformation framework that supports patient-centric improvement across perioperative sub-processes. This research identifies existing limitations, potential capabilities, and subsequent contextual understanding to minimize perioperative process complexity, target opportunity for improvement, and ultimately yield improved capabilities. Dynamic technological activities of analysis, evaluation, and synthesis applied to specific perioperative patient-centric data collected within integrated hospital information systems yield the organizational resource for process management and control. Conclusions include theoretical and practical implications as well as study limitations

    A multi-faceted approach to optimising a complex unplanned healthcare system

    Get PDF
    Unscheduled and urgent health care represents the largest area of activity and cost for the UK’s National Health Service (NHS). Like typical complex systems unplanned care has the features of interdependence and having structures at different scales which requires modelling at different levels. The aim of this paper is to discuss the development of a multifaceted approach to study and optimise this complex system. We aim to integrate four different methodologies to gain better understanding of the nature of the system and to develop ways to enhance its performance. These methodologies are: (a) Lean/ Flow theory to look at the process and patients and other flows; (b) Simulation/ System Dynamics to undertake analytical analysis and multi-level modelling; (c) stakeholder consultation and use of system thinking to analyse the system and identify options, barriers and good practice; and (d) visual analytic modelling to facilitate effective decision making in this complex environment. Of particular concern are the boundary issues i.e. how changes in unplanned care will impact on the adjacent facilities and ultimately on the whole Healthcare system
    corecore