3,745 research outputs found

    Partial shape matching using CCP map and weighted graph transformation matching

    Get PDF
    La détection de la similarité ou de la différence entre les images et leur mise en correspondance sont des problèmes fondamentaux dans le traitement de l'image. Pour résoudre ces problèmes, on utilise, dans la littérature, différents algorithmes d'appariement. Malgré leur nouveauté, ces algorithmes sont pour la plupart inefficaces et ne peuvent pas fonctionner correctement dans les situations d’images bruitées. Dans ce mémoire, nous résolvons la plupart des problèmes de ces méthodes en utilisant un algorithme fiable pour segmenter la carte des contours image, appelée carte des CCPs, et une nouvelle méthode d'appariement. Dans notre algorithme, nous utilisons un descripteur local qui est rapide à calculer, est invariant aux transformations affines et est fiable pour des objets non rigides et des situations d’occultation. Après avoir trouvé le meilleur appariement pour chaque contour, nous devons vérifier si ces derniers sont correctement appariés. Pour ce faire, nous utilisons l'approche « Weighted Graph Transformation Matching » (WGTM), qui est capable d'éliminer les appariements aberrants en fonction de leur proximité et de leurs relations géométriques. WGTM fonctionne correctement pour les objets à la fois rigides et non rigides et est robuste aux distorsions importantes. Pour évaluer notre méthode, le jeu de données ETHZ comportant cinq classes différentes d'objets (bouteilles, cygnes, tasses, girafes, logos Apple) est utilisé. Enfin, notre méthode est comparée à plusieurs méthodes célèbres proposées par d'autres chercheurs dans la littérature. Bien que notre méthode donne un résultat comparable à celui des méthodes de référence en termes du rappel et de la précision de localisation des frontières, elle améliore significativement la précision moyenne pour toutes les catégories du jeu de données ETHZ.Matching and detecting similarity or dissimilarity between images is a fundamental problem in image processing. Different matching algorithms are used in literature to solve this fundamental problem. Despite their novelty, these algorithms are mostly inefficient and cannot perform properly in noisy situations. In this thesis, we solve most of the problems of previous methods by using a reliable algorithm for segmenting image contour map, called CCP Map, and a new matching method. In our algorithm, we use a local shape descriptor that is very fast, invariant to affine transform, and robust for dealing with non-rigid objects and occlusion. After finding the best match for the contours, we need to verify if they are correctly matched. For this matter, we use the Weighted Graph Transformation Matching (WGTM) approach, which is capable of removing outliers based on their adjacency and geometrical relationships. WGTM works properly for both rigid and non-rigid objects and is robust to high order distortions. For evaluating our method, the ETHZ dataset including five diverse classes of objects (bottles, swans, mugs, giraffes, apple-logos) is used. Finally, our method is compared to several famous methods proposed by other researchers in the literature. While our method shows a comparable result to other benchmarks in terms of recall and the precision of boundary localization, it significantly improves the average precision for all of the categories in the ETHZ dataset

    Toward Large Scale Semantic Image Understanding and Retrieval

    Get PDF
    Semantic image retrieval is a multifaceted, highly complex problem. Not only does the solution to this problem require advanced image processing and computer vision techniques, but it also requires knowledge beyond what can be inferred from the image content alone. In contrast, traditional image retrieval systems are based upon keyword searches on filenames or metadata tags, e.g. Google image search, Flickr search, etc. These conventional systems do not analyze the image content and their keywords are not guaranteed to represent the image. Thus, there is significant need for a semantic image retrieval system that can analyze and retrieve images based upon the content and relationships that exist in the real world.In this thesis, I present a framework that moves towards advancing semantic image retrieval in large scale datasets. At a conceptual level, semantic image retrieval requires the following steps: viewing an image, understanding the content of the image, indexing the important aspects of the image, connecting the image concepts to the real world, and finally retrieving the images based upon the index concepts or related concepts. My proposed framework addresses each of these components in my ultimate goal of improving image retrieval. The first task is the essential task of understanding the content of an image. Unfortunately, typically the only data used by a computer algorithm when analyzing images is the low-level pixel data. But, to achieve human level comprehension, a machine must overcome the semantic gap, or disparity that exists between the image data and human understanding. This translation of the low-level information into a high-level representation is an extremely difficult problem that requires more than the image pixel information. I describe my solution to this problem through the use of an online knowledge acquisition and storage system. This system utilizes the extensible, visual, and interactable properties of Scalable Vector Graphics (SVG) combined with online crowd sourcing tools to collect high level knowledge about visual content.I further describe the utilization of knowledge and semantic data for image understanding. Specifically, I seek to incorporate knowledge in various algorithms that cannot be inferred from the image pixels alone. This information comes from related images or structured data (in the form of hierarchies and ontologies) to improve the performance of object detection and image segmentation tasks. These understanding tasks are crucial intermediate steps towards retrieval and semantic understanding. However, the typical object detection and segmentation tasks requires an abundance of training data for machine learning algorithms. The prior training information provides information on what patterns and visual features the algorithm should be looking for when processing an image. In contrast, my algorithm utilizes related semantic images to extract the visual properties of an object and also to decrease the search space of my detection algorithm. Furthermore, I demonstrate the use of related images in the image segmentation process. Again, without the use of prior training data, I present a method for foreground object segmentation by finding the shared area that exists in a set of images. I demonstrate the effectiveness of my method on structured image datasets that have defined relationships between classes i.e. parent-child, or sibling classes.Finally, I introduce my framework for semantic image retrieval. I enhance the proposed knowledge acquisition and image understanding techniques with semantic knowledge through linked data and web semantic languages. This is an essential step in semantic image retrieval. For example, a car class classified by an image processing algorithm not enhanced by external knowledge would have no idea that a car is a type of vehicle which would also be highly related to a truck and less related to other transportation methods like a train . However, a query for modes of human transportation should return all of the mentioned classes. Thus, I demonstrate how to integrate information from both image processing algorithms and semantic knowledge bases to perform interesting queries that would otherwise be impossible. The key component of this system is a novel property reasoner that is able to translate low level image features into semantically relevant object properties. I use a combination of XML based languages such as SVG, RDF, and OWL in order to link to existing ontologies available on the web. My experiments demonstrate an efficient data collection framework and novel utilization of semantic data for image analysis and retrieval on datasets of people and landmarks collected from sources such as IMDB and Flickr. Ultimately, my thesis presents improvements to the state of the art in visual knowledge representation/acquisition and computer vision algorithms such as detection and segmentation toward the goal of enhanced semantic image retrieval

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Map-Based Localization for Unmanned Aerial Vehicle Navigation

    Get PDF
    Unmanned Aerial Vehicles (UAVs) require precise pose estimation when navigating in indoor and GNSS-denied / GNSS-degraded outdoor environments. The possibility of crashing in these environments is high, as spaces are confined, with many moving obstacles. There are many solutions for localization in GNSS-denied environments, and many different technologies are used. Common solutions involve setting up or using existing infrastructure, such as beacons, Wi-Fi, or surveyed targets. These solutions were avoided because the cost should be proportional to the number of users, not the coverage area. Heavy and expensive sensors, for example a high-end IMU, were also avoided. Given these requirements, a camera-based localization solution was selected for the sensor pose estimation. Several camera-based localization approaches were investigated. Map-based localization methods were shown to be the most efficient because they close loops using a pre-existing map, thus the amount of data and the amount of time spent collecting data are reduced as there is no need to re-observe the same areas multiple times. This dissertation proposes a solution to address the task of fully localizing a monocular camera onboard a UAV with respect to a known environment (i.e., it is assumed that a 3D model of the environment is available) for the purpose of navigation for UAVs in structured environments. Incremental map-based localization involves tracking a map through an image sequence. When the map is a 3D model, this task is referred to as model-based tracking. A by-product of the tracker is the relative 3D pose (position and orientation) between the camera and the object being tracked. State-of-the-art solutions advocate that tracking geometry is more robust than tracking image texture because edges are more invariant to changes in object appearance and lighting. However, model-based trackers have been limited to tracking small simple objects in small environments. An assessment was performed in tracking larger, more complex building models, in larger environments. A state-of-the art model-based tracker called ViSP (Visual Servoing Platform) was applied in tracking outdoor and indoor buildings using a UAVs low-cost camera. The assessment revealed weaknesses at large scales. Specifically, ViSP failed when tracking was lost, and needed to be manually re-initialized. Failure occurred when there was a lack of model features in the cameras field of view, and because of rapid camera motion. Experiments revealed that ViSP achieved positional accuracies similar to single point positioning solutions obtained from single-frequency (L1) GPS observations standard deviations around 10 metres. These errors were considered to be large, considering the geometric accuracy of the 3D model used in the experiments was 10 to 40 cm. The first contribution of this dissertation proposes to increase the performance of the localization system by combining ViSP with map-building incremental localization, also referred to as simultaneous localization and mapping (SLAM). Experimental results in both indoor and outdoor environments show sub-metre positional accuracies were achieved, while reducing the number of tracking losses throughout the image sequence. It is shown that by integrating model-based tracking with SLAM, not only does SLAM improve model tracking performance, but the model-based tracker alleviates the computational expense of SLAMs loop closing procedure to improve runtime performance. Experiments also revealed that ViSP was unable to handle occlusions when a complete 3D building model was used, resulting in large errors in its pose estimates. The second contribution of this dissertation is a novel map-based incremental localization algorithm that improves tracking performance, and increases pose estimation accuracies from ViSP. The novelty of this algorithm is the implementation of an efficient matching process that identifies corresponding linear features from the UAVs RGB image data and a large, complex, and untextured 3D model. The proposed model-based tracker improved positional accuracies from 10 m (obtained with ViSP) to 46 cm in outdoor environments, and improved from an unattainable result using VISP to 2 cm positional accuracies in large indoor environments. The main disadvantage of any incremental algorithm is that it requires the camera pose of the first frame. Initialization is often a manual process. The third contribution of this dissertation is a map-based absolute localization algorithm that automatically estimates the camera pose when no prior pose information is available. The method benefits from vertical line matching to accomplish a registration procedure of the reference model views with a set of initial input images via geometric hashing. Results demonstrate that sub-metre positional accuracies were achieved and a proposed enhancement of conventional geometric hashing produced more correct matches - 75% of the correct matches were identified, compared to 11%. Further the number of incorrect matches was reduced by 80%

    Study of object recognition and identification based on shape and texture analysis

    Get PDF
    The objective of object recognition is to enable computers to recognize image patterns without human intervention. According to its applications, it is mainly divided into two parts: recognition of object categories and detection/identification of objects. My thesis studied the techniques of object feature analysis and identification strategies, which solve the object recognition problem by employing effective and perceptually important object features. The shape information is of particular interest and a review of the shape representation and description is presented, as well as the latest research work on object recognition. In the second chapter of the thesis, a novel content-based approach is proposed for efficient shape classification and retrieval of 2D objects. Two object detection approaches, which are designed according to the characteristics of the shape context and SIFT descriptors, respectively, are analyzed and compared. It is found that the identification strategy constructed on a single type of object feature is only able to recognize the target object under specific conditions which the identifier is adapted to. These identifiers are usually designed to detect the target objects which are rich in the feature type captured by the identifier. In addition, this type of feature often distinguishes the target object from the complex scene. To overcome this constraint, a novel prototyped-based object identification method is presented to detect the target object in the complex scene by employing different types of descriptors to capture the heterogeneous features. All types of descriptors are modified to meet the requirement of the detection strategy’s framework. Thus this new method is able to describe and identify various kinds of objects whose dominant features are quite different. The identification system employs the cosine similarity to evaluate the resemblance between the prototype image and image windows on the complex scene. Then a ‘resemblance map’ is established with values on each patch representing the likelihood of the target object’s presence. The simulation approved that this novel object detection strategy is efficient, robust and of scale and rotation invariance
    • …
    corecore