2,004 research outputs found

    Using Ontology-Based Approaches to Representing Speech Transcripts for Automated Speech Scoring

    Get PDF
    Text representation is a process of transforming text into some formats that computer systems can use for subsequent information-related tasks such as text classification. Representing text faces two main challenges: meaningfulness of representation and unknown terms. Research has shown evidence that these challenges can be resolved by using the rich semantics in ontologies. This study aims to address these challenges by using ontology-based representation and unknown term reasoning approaches in the context of content scoring of speech, which is a less explored area compared to some common ones such as categorizing text corpus (e.g. 20 newsgroups and Reuters). From the perspective of language assessment, the increasing amount of language learners taking second language tests makes automatic scoring an attractive alternative to human scoring for delivering rapid and objective scores of written and spoken test responses. This study focuses on the speaking section of second language tests and investigates ontology-based approaches to speech scoring. Most previous automated speech scoring systems for spontaneous responses of test takers assess speech by primarily using acoustic features such as fluency and pronunciation, while text features are less involved and exploited. As content is an integral part of speech, the study is motivated by the lack of rich text features in speech scoring and is designed to examine the effects of different text features on scoring performance. A central question to the study is how speech transcript content can be represented in an appropriate means for speech scoring. Previously used approaches from essay and speech scoring systems include bag-of-words and latent semantic analysis representations, which are adopted as baselines in this study; the experimental approaches are ontology-based, which can help improving meaningfulness of representation units and estimating importance of unknown terms. Two general domain ontologies, WordNet and Wikipedia, are used respectively for ontology-based representations. In addition to comparison between representation approaches, the author analyzes which parameter option leads to the best performance within a particular representation. The experimental results show that on average, ontology-based representations slightly enhances speech scoring performance on all measurements when combined with the bag-of-words representation; reasoning of unknown terms can increase performance on one measurement (cos.w4) but decrease others. Due to the small data size, the significance test (t-test) shows that the enhancement of ontology-based representations is inconclusive. The contributions of the study include: 1) it examines the effects of different representation approaches on speech scoring tasks; 2) it enhances the understanding of the mechanisms of representation approaches and their parameter options via in-depth analysis; 3) the representation methodology and framework can be applied to other tasks such as automatic essay scoring

    Integrating natural language processing and pragmatic argumentation theories for argumentation support

    Get PDF
    Natural language processing (NLP) research and design that aims to model and detect opposition in text for the purpose of opinion classification, sentiment analysis, and meeting tracking, generally excludes the interactional, pragmatic aspects of online text. We propose that a promising direction for NLP is to incorporate the insights of pragmatic, dialectical theories of argumentation to more fully exploit the potential of NLP to offer sound, robust systems for various kinds of argumentation support

    Diagnosing Reading strategies: Paraphrase Recognition

    Get PDF
    Paraphrase recognition is a form of natural language processing used in tutoring, question answering, and information retrieval systems. The context of the present work is an automated reading strategy trainer called iSTART (Interactive Strategy Trainer for Active Reading and Thinking). The ability to recognize the use of paraphrase—a complete, partial, or inaccurate paraphrase; with or without extra information—in the student\u27s input is essential if the trainer is to give appropriate feedback. I analyzed the most common patterns of paraphrase and developed a means of representing the semantic structure of sentences. Paraphrases are recognized by transforming sentences into this representation and comparing them. To construct a precise semantic representation, it is important to understand the meaning of prepositions. Adding preposition disambiguation to the original system improved its accuracy by 20%. The preposition sense disambiguation module itself achieves about 80% accuracy for the top 10 most frequently used prepositions. The main contributions of this work to the research community are the preposition classification and generalized preposition disambiguation processes, which are integrated into the paraphrase recognition system and are shown to be quite effective. The recognition model also forms a significant part of this contribution. The present effort includes the modeling of the paraphrase recognition process, featuring the Syntactic-Semantic Graph as a sentence representation, the implementation of a significant portion of this design demonstrating its effectiveness, the modeling of an effective preposition classification based on prepositional usage, the design of the generalized preposition disambiguation module, and the integration of the preposition disambiguation module into the paraphrase recognition system so as to gain significant improvement

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    Real-Time Topic and Sentiment Analysis in Human-Robot Conversation

    Get PDF
    Socially interactive robots, especially those designed for entertainment and companionship, must be able to hold conversations with users that feel natural and engaging for humans. Two important components of such conversations include adherence to the topic of conversation and inclusion of affective expressions. Most previous approaches have concentrated on topic detection or sentiment analysis alone, and approaches that attempt to address both are limited by domain and by type of reply. This thesis presents a new approach, implemented on a humanoid robot interface, that detects the topic and sentiment of a user’s utterances from text-transcribed speech. It also generates domain-independent, topically relevant verbal replies and appropriate positive and negative emotional expressions in real time. The front end of the system is a smartphone app that functions as the robot’s face. It displays emotionally expressive eyes, transcribes verbal input as text, and synthesizes spoken replies. The back end of the system is implemented on the robot’s onboard computer. It connects with the app via Bluetooth, receives and processes the transcribed input, and returns verbal replies and sentiment scores. The back end consists of a topic-detection subsystem and a sentiment-analysis subsystem. The topic-detection subsystem uses a Latent Semantic Indexing model of a conversation corpus, followed by a search in the online database ConceptNet 5, in order to generate a topically relevant reply. The sentiment-analysis subsystem disambiguates the input words, obtains their sentiment scores from SentiWordNet, and returns the averaged sum of the scores as the overall sentiment score. The system was hypothesized to engage users more with both subsystems working together than either subsystem alone, and each subsystem alone was hypothesized to engage users more than a random control. In computational evaluations, each subsystem performed weakly but positively. In user evaluations, users reported a higher level of topical relevance and emotional appropriateness in conversations in which the subsystems were working together, and they reported higher engagement especially in conversations in which the topic-detection system was working. It is concluded that the system partially fulfills its goals, and suggestions for future work are presented

    A study of the use of natural language processing for conversational agents

    Get PDF
    Language is a mark of humanity and conscience, with the conversation (or dialogue) as one of the most fundamental manners of communication that we learn as children. Therefore one way to make a computer more attractive for interaction with users is through the use of natural language. Among the systems with some degree of language capabilities developed, the Eliza chatterbot is probably the first with a focus on dialogue. In order to make the interaction more interesting and useful to the user there are other approaches besides chatterbots, like conversational agents. These agents generally have, to some degree, properties like: a body (with cognitive states, including beliefs, desires and intentions or objectives); an interactive incorporation in the real or virtual world (including perception of events, communication, ability to manipulate the world and communicate with others); and behavior similar to a human (including affective abilities). This type of agents has been called by several terms, including animated agents or embedded conversational agents (ECA). A dialogue system has six basic components. (1) The speech recognition component is responsible for translating the user’s speech into text. (2) The Natural Language Understanding component produces a semantic representation suitable for dialogues, usually using grammars and ontologies. (3) The Task Manager chooses the concepts to be expressed to the user. (4) The Natural Language Generation component defines how to express these concepts in words. (5) The dialog manager controls the structure of the dialogue. (6) The synthesizer is responsible for translating the agents answer into speech. However, there is no consensus about the necessary resources for developing conversational agents and the difficulties involved (especially in resource-poor languages). This work focuses on the influence of natural language components (dialogue understander and manager) and analyses, in particular the use of parsing systems as part of developing conversational agents with more flexible language capabilities. This work analyses what kind of parsing resources contributes to conversational agents and discusses how to develop them targeting Portuguese, which is a resource-poor language. To do so we analyze approaches to the understanding of natural language, and identify parsing approaches that offer good performance, based on which we develop a prototype to evaluate the impact of using a parser in a conversational agent.linguagem é uma marca da humanidade e da consciência, sendo a conversação (ou diálogo) uma das maneiras de comunicacão mais fundamentais que aprendemos quando crianças. Por isso uma forma de fazer um computador mais atrativo para interação com usuários é usando linguagem natural. Dos sistemas com algum grau de capacidade de linguagem desenvolvidos, o chatterbot Eliza é, provavelmente, o primeiro sistema com foco em diálogo. Com o objetivo de tornar a interação mais interessante e útil para o usuário há outras aplicações alem de chatterbots, como agentes conversacionais. Estes agentes geralmente possuem, em algum grau, propriedades como: corpo (com estados cognitivos, incluindo crenças, desejos e intenções ou objetivos); incorporação interativa no mundo real ou virtual (incluindo percepções de eventos, comunicação, habilidade de manipular o mundo e comunicar com outros agentes); e comportamento similar ao humano (incluindo habilidades afetivas). Este tipo de agente tem sido chamado de diversos nomes como agentes animados ou agentes conversacionais incorporados. Um sistema de diálogo possui seis componentes básicos. (1) O componente de reconhecimento de fala que é responsável por traduzir a fala do usuário em texto. (2) O componente de entendimento de linguagem natural que produz uma representação semântica adequada para diálogos, normalmente utilizando gramáticas e ontologias. (3) O gerenciador de tarefa que escolhe os conceitos a serem expressos ao usuário. (4) O componente de geração de linguagem natural que define como expressar estes conceitos em palavras. (5) O gerenciador de diálogo controla a estrutura do diálogo. (6) O sintetizador de voz é responsável por traduzir a resposta do agente em fala. No entanto, não há consenso sobre os recursos necessários para desenvolver agentes conversacionais e a dificuldade envolvida nisso (especialmente em línguas com poucos recursos disponíveis). Este trabalho foca na influência dos componentes de linguagem natural (entendimento e gerência de diálogo) e analisa em especial o uso de sistemas de análise sintática (parser) como parte do desenvolvimento de agentes conversacionais com habilidades de linguagem mais flexível. Este trabalho analisa quais os recursos do analisador sintático contribuem para agentes conversacionais e aborda como os desenvolver, tendo como língua alvo o português (uma língua com poucos recursos disponíveis). Para isto, analisamos as abordagens de entendimento de linguagem natural e identificamos as abordagens de análise sintática que oferecem um bom desempenho. Baseados nesta análise, desenvolvemos um protótipo para avaliar o impacto do uso de analisador sintático em um agente conversacional
    corecore