1,741 research outputs found

    Data-Driven Modeling and Prediction for Reservoir Characterization and Simulation Using Seismic and Petrophysical Data Analyses

    Get PDF
    This study explores the application of data-driven modeling and prediction in reservoir characterization and simulation using seismic and petrophysical data analyses. Different aspects of the application of data-driven modeling methods are studied, which include rock facies classification, seismic attribute analyses, petrophysical properties prediction, seismic facies segmentation, and reservoir dimension reduction. The application of using petrophysical well logs to predict rock facies is explored using different data analytics methods including decision tree, random forest, support vector machine and neural network. Different models are trained from a set of well logs and pre-interpreted rock facies data. Among the compared methods, the random forest method has the best performance in classifying rock facies in the dataset. Seismic attribute values from a 3D seismic survey and petrophysical properties from well logs are collected to explore the relationships between seismic data and well logs. In this study, deep learning neural network models are created to establish the relationships. The results show that a deep learning neural network model with multi-hidden layers is capable to predict porosity values using extracted seismic attribute values. The utilization of a set of seismic attributes improves the model performance in predicting porosity values from seismic data. This study also presents a novel deep learning approach to automatically identify salt bodies directly from seismic images. A wavelet convolutional neural network (Wavelet CNN) model, which combines wavelet transformation analyses with a traditional convolutional neural network (CNN), is developed and demonstrated to increase the accuracy in predicting salt boundaries from seismic images. The Wavelet CNN model outperforms the conventional image recognition techniques, providing higher accuracy, to identify salt bodies from seismic images. Besides, this study evaluates the effect of singular value decomposition (SVD) in dimension reduction of permeability fields during reservoir modeling. Reservoir simulation results show that SVD is valid in the parameterization of the permeability field. The reconstructed permeability fields after SVD processing are good approximations of the original permeability values. This study also evaluates the application of SVD on upscaling for reservoir modeling. Different upscaling schemes are applied on the permeability field, and their performance are evaluated using reservoir simulation

    Machine Learning for Seismic Exploration: where are we and how far are we from the Holy Grail?

    Get PDF
    Machine Learning (ML) applications in seismic exploration are growing faster than applications in other industry fields, mainly due to the large amount of acquired data for the exploration industry. The ML algorithms are constantly being implemented to almost all the steps involved in seismic processing and interpretation workflow, mainly for automation, processing time reduction, efficiency and in some cases for improving the results. We carried out a literature-based analysis of existing ML-based seismic processing and interpretation published in SEG and EAGE literature repositories and derived a detailed overview of the main ML thrusts in different seismic applications. For each publication, we extracted various metadata about ML implementations and performances. The data indicate that current ML implementations in seismic exploration are focused on individual tasks rather than a disruptive change in processing and interpretation workflows. The metadata shows that the main targets of ML applications for seismic processing are denoising, velocity model building and first break picking, whereas for seismic interpretation, they are fault detection, lithofacies classification and geo-body identification. Through the metadata available in publications, we obtained indices related to computational power efficiency, data preparation simplicity, real data test rate of the ML model, diversity of ML methods, etc. and we used them to approximate the level of efficiency, effectivity and applicability of the current ML-based seismic processing and interpretation tasks. The indices of ML-based processing tasks show that current ML-based denoising and frequency extrapolation have higher efficiency, whereas ML-based QC is more effective and applicable compared to other processing tasks. Among the interpretation tasks, ML-based impedance inversion shows high efficiency, whereas high effectivity is depicted for fault detection. ML-based Lithofacies classification, stratigraphic sequence identification and petro/rock properties inversion exhibit high applicability among other interpretation tasks

    Generative adversarial networks review in earthquake-related engineering fields

    Get PDF
    Within seismology, geology, civil and structural engineering, deep learning (DL), especially via generative adversarial networks (GANs), represents an innovative, engaging, and advantageous way to generate reliable synthetic data that represent actual samples' characteristics, providing a handy data augmentation tool. Indeed, in many practical applications, obtaining a significant number of high-quality information is demanding. Data augmentation is generally based on artificial intelligence (AI) and machine learning data-driven models. The DL GAN-based data augmentation approach for generating synthetic seismic signals revolutionized the current data augmentation paradigm. This study delivers a critical state-of-art review, explaining recent research into AI-based GAN synthetic generation of ground motion signals or seismic events, and also with a comprehensive insight into seismic-related geophysical studies. This study may be relevant, especially for the earth and planetary science, geology and seismology, oil and gas exploration, and on the other hand for assessing the seismic response of buildings and infrastructures, seismic detection tasks, and general structural and civil engineering applications. Furthermore, highlighting the strengths and limitations of the current studies on adversarial learning applied to seismology may help to guide research efforts in the next future toward the most promising directions

    Black shale lithofacies prediction and distribution Pattern analysis of middle Devonian Marcellus Shale in the Appalachian Basin, northeastern U.S.A.

    Get PDF
    The Marcellus Shale, marine organic-rich mudrock deposited during Middle Devonian in the Appalachian basin, is considered the largest unconventional shale-gas resource in United State. Although homogeneous in the appearance, the mudstone shows heterogeneity in mineral composition, organic matter richness, gas content, and fracture density. Two critical factors for unconventional mudstone reservoirs are units amenable to hydraulic fracture stimulation and rich of organic matter. The effectiveness of hydraulic fracture stimulation is influenced by rock geomechanical properties, which are related to rock mineralogy. The natural gas content in mudrock reservoirs has a strong relationship with organic matter, which is measured by total organic carbon (TOC). In place of using petrographic information and sedimentary structures, Marcellus Shale lithofacies were based on mineral composition and organic matter richness and were predicted by conventional logs to make the lithofacies \u27meaningful’, ‘predictable’ and ‘mappable’ at multiple scales from the well bore to basin. Core X-ray diffraction (XRD) and TOC data was used to classify Marcellus Shale into seven lithofacies according to three criteria: clay volume, the ratio of quartz to carbonate, and TOC. Pulsed neutron spectroscopy (PNS) logs provide similar mineral concentration and TOC content, and were used to classify shale lithofacies by the same three criteria. Artificial neural network (ANN) with improvements (i.e., learning algorithms, performance function and topology design) was utilized to predict Marcellus Shale lithofacies in 707 wells with conventional logs. To improve the effectiveness of wireline logs to predict lithofacies, the effects of barite and pyrite were partly removed and eight petrophysical parameters commonly used for a conventional reservoir analysis were derived from conventional logs by petrophysical analysis. These parameters were used as input to the ANN analysis. Geostatistical analysis was used to develop the experimental variogram models and vertical proportion of each lithofacies. Indictor kriging, truncated Gaussian simulation (TGS), and sequential indicator simulation (SIS) were compared, and SIS algorithm performed well for modeling Marcellus Shale lithofacies in three-dimensions. Controlled primarily by sediment dilution, organic matter productivity, and organic matter preservation/decomposition, Marcellus Shale lithofacies distribution was dominantly affected by the water depth and the distance to shoreline. The Marcellus Shale lithofacies with the greatest organic content and highest measure of brittleness is concentrated along a crescent shape region paralleling the inferred shelf and shoreline, showing shape of crescent paralleling with shoreline. The normalized average gas production rate from horizontal wells supported the proposed approach to modeling Marcellus Shale lithofacies. The proposed 3-D modeling approach may be helpful for (1) investigating the distribution of each lithofacies at a basin-scale; (2) developing a better understanding of the factors controlling the deposition and preservation of organic matter and the depositional model of marine organic-rich mudrock; (3) identifying organic-rich units and areas and brittle units and areas in shale-gas reservoirs; (4) assisting in the design of horizontal drilling trajectories and location of stimulation activity; and (5) providing input parameters for the simulation of gas flow and production in mudrock (e.g., porosity, permeability and fractures)

    Machine learning based seismic classification for facies prediction

    Get PDF
    This thesis explores the performance of machine learning (ML) methods for predicting facies from seismic attributes for 2D and 3D datasets. It focuses on building, training, and testing four supervised methods: Logistic Regression, Support Vector Machines, K-Nearest Neighbors, and Random Forest; and one deep learning method: Neural Network with two hidden layers. A realistic synthetic facies model with complex depositional systems, and a synthetic seismic cube from the facies model are used for the comparison of facies prediction performed by the ML approach with the ground-truth facies distribution. This comparison makes it possible to validate the ML models’ prediction based on wells and seismic. In addition, the research evaluates the role of the number of wells and their locations, the impact of seismic data frequency, and the effect of using various seismic attributes. The most important features for facies prediction are seismic inversion and relative acoustic impedance. Instantaneous frequency and envelope have little effect on the accuracy of the ML prediction. Incorporating information about the lateral geometry of the facies in the reservoir also improves the accuracy of the ML prediction
    • …
    corecore