62 research outputs found

    Signature Sequence of Intersection Curve of Two Quadrics for Exact Morphological Classification

    Full text link
    We present an efficient method for classifying the morphology of the intersection curve of two quadrics (QSIC) in PR3, 3D real projective space; here, the term morphology is used in a broad sense to mean the shape, topological, and algebraic properties of a QSIC, including singularity, reducibility, the number of connected components, and the degree of each irreducible component, etc. There are in total 35 different QSIC morphologies with non-degenerate quadric pencils. For each of these 35 QSIC morphologies, through a detailed study of the eigenvalue curve and the index function jump we establish a characterizing algebraic condition expressed in terms of the Segre characteristics and the signature sequence of a quadric pencil. We show how to compute a signature sequence with rational arithmetic so as to determine the morphology of the intersection curve of any two given quadrics. Two immediate applications of our results are the robust topological classification of QSIC in computing B-rep surface representation in solid modeling and the derivation of algebraic conditions for collision detection of quadric primitives

    The Euclidean distance degree of an algebraic variety

    Get PDF
    The nearest point map of a real algebraic variety with respect to Euclidean distance is an algebraic function. For instance, for varieties of low rank matrices, the Eckart-Young Theorem states that this map is given by the singular value decomposition. This article develops a theory of such nearest point maps from the perspective of computational algebraic geometry. The Euclidean distance degree of a variety is the number of critical points of the squared distance to a generic point outside the variety. Focusing on varieties seen in applications, we present numerous tools for exact computations.Comment: to appear in Foundations of Computational Mathematic

    Computing the topology of a planar or space hyperelliptic curve

    Full text link
    We present algorithms to compute the topology of 2D and 3D hyperelliptic curves. The algorithms are based on the fact that 2D and 3D hyperelliptic curves can be seen as the image of a planar curve (the Weierstrass form of the curve), whose topology is easy to compute, under a birational mapping of the plane or the space. We report on a {\tt Maple} implementation of these algorithms, and present several examples. Complexity and certification issues are also discussed.Comment: 34 pages, lot of figure

    Likelihood Geometry

    Full text link
    We study the critical points of monomial functions over an algebraic subset of the probability simplex. The number of critical points on the Zariski closure is a topological invariant of that embedded projective variety, known as its maximum likelihood degree. We present an introduction to this theory and its statistical motivations. Many favorite objects from combinatorial algebraic geometry are featured: toric varieties, A-discriminants, hyperplane arrangements, Grassmannians, and determinantal varieties. Several new results are included, especially on the likelihood correspondence and its bidegree. These notes were written for the second author's lectures at the CIME-CIRM summer course on Combinatorial Algebraic Geometry at Levico Terme in June 2013.Comment: 45 pages; minor changes and addition

    Intersection Testing between an Ellipsoid and an Algebraic Surface

    Get PDF
    International audienceThis paper presents a new method on the intersection testing problem between an ellipsoid and an algebraic surface. In the new method, the testing problem is turned into a new testing problem whether a univariate polynomial has a positive or negative real root. Examples are shown to illustrate the robustness and efficiency of the new method
    corecore