9 research outputs found

    Detection and Application of Influence Rankings in Small Group Meetings

    Get PDF
    We address the problem of automatically detecting participant's influence levels in meetings. The impact and social psychological background are discussed. The more influential a participant is, the more he or she influences the outcome of a meeting. Experiments on 40 meetings show that application of statistical (both dynamic and static) models while using simply obtainable features results in a best prediction performance of 70.59\% when using a static model, a balanced training set, and three discrete classes: high, normal and low. Application of the detected levels are shown in various ways i.e. in a virtual meeting environment as well as in a meeting browser system

    Algoritmos de aprendizagem adaptativos para classificadores de redes Bayesianas

    Get PDF
    Doutoramento em MatemáticaNesta tese consideramos o desenvolvimento de algoritmos adaptativos para classificadores de redes Bayesianas (BNCs) num cenário on-line. Neste cenário os dados são apresentados sequencialmente. O modelo de decisão primeiro faz uma predição e logo este é actualizado com os novos dados. Um cenário on-line de aprendizagem corresponde ao cenário “prequencial” proposto por Dawid. Um algoritmo de aprendizagem num cenário prequencial é eficiente se este melhorar o seu desempenho dedutivo e, ao mesmo tempo, reduzir o custo da adaptação. Por outro lado, em muitas aplicações pode ser difícil melhorar o desempenho e adaptar-se a fluxos de dados que apresentam mudança de conceito. Neste caso, os algoritmos de aprendizagem devem ser dotados com estratégias de controlo e adaptação que garantem o ajuste rápido a estas mudanças. Todos os algoritmos adaptativos foram integrados num modelo conceptual de aprendizagem adaptativo e prequencial para classificação supervisada designado AdPreqFr4SL, o qual tem como objectivo primordial atingir um equilíbrio óptimo entre custo-qualidade e controlar a mudança de conceito. O equilíbrio entre custo-qualidade é abordado através do controlo do viés (bias) e da adaptação do modelo. Em vez de escolher uma única classe de BNCs durante todo o processo, propomo-nos utilizar a classe de classificadores Bayesianos k-dependentes (k-DBCs) e começar com o seu modelo mais simples: o classificador Naïve Bayes (NB) (quando o número máximo de dependências permissíveis entre os atributos, k, é 0). Podemos melhorar o desempenho do NB se reduzirmos o bias produto das restrições de independência. Com este fim, propomo-nos incrementar k gradualmente de forma a que em cada etapa de aprendizagem sejam seleccionados modelos de k-DBCs com uma complexidade crescente que melhor se vai ajustando ao actual montante de dados. Assim podemos evitar os problemas causados por demasiado viés (underfitting) ou demasiada variância (overfiting). Por outro lado, a adaptação da estrutura de um BNC com novos dados implica um custo computacional elevado. Propomo-nos reduzir nos custos da adaptação se, sempre que possível, usarmos os novos dados para adaptar os parâmetros. A estrutura é adaptada só em momentos esporádicos, quando é detectado que a sua adaptação é vital para atingir uma melhoria no desempenho. Para controlar a mudança de conceito, incluímos um método baseado no Controlo de Qualidade Estatístico que tem mostrado ser efectivo na detecção destas mudanças. Avaliamos os algoritmos adaptativos usando a classe de classificadores k-DBC em diferentes problemas artificiais e reais e mostramos as vantagens da sua implementação quando comparado com as versões no adaptativas.This thesis mainly addresses the development of adaptive learning algorithms for Bayesian network classifiers (BNCs) in an on-line leaning scenario. In this scenario data arrives at the learning system sequentially. The actual predictive model must first make a prediction and then update the current model with new data. This scenario corresponds to the Dawid’s prequential approach for statistical validation of models. An efficient adaptive algorithm in a prequential learning framework must be able, above all, to improve its predictive accuracy over time while reducing the cost of adaptation. However, in many real-world situations it may be difficult to improve and adapt to existing changing environments, a problem known as concept drift. In changing environments, learning algorithms should be provided with some control and adaptive mechanisms that effort to adjust quickly to these changes. We have integrated all the adaptive algorithms into an adaptive prequential framework for supervised learning called AdPreqFr4SL, which attempts to handle the cost-performance trade-off and also to cope with concept drift. The cost-quality trade-off is approached through bias management and adaptation control. The rationale is as follows. Instead of selecting a particular class of BNCs and using it during all the learning process, we use the class of k-Dependence Bayesian classifiers and start with the simple Naïve Bayes (by setting the maximum number of allowable attribute dependence k to 0). We can then improve the performance of Naïve Bayes over time if we trade-off the bias reduction which leads to the addition of new attribute dependencies with the variance reduction by accurately estimating the parameters. However, as the learning process advances we should place more focus on bias management. We reduce the bias resulting from the independence assumption by gradually adding dependencies between the attributes over time. To this end, we gradually increase k so that at each learning step we can use a class-model of k-DBCs that better suits the available data. Thus, we can avoid the problems caused by either too much bias (underfitting) or too much variance (overfitting). On the other hand, updating the structure of BNCs with new data is a very costly task. Hence some adaptation control is desirable to decide whether it is inevitable to adapt the structure. We reduce the cost of updating by using new data to primarily adapt the parameters. Only when it is detected that the use of the current structure no longer guarantees the desirable improvement in the performance, do we adapt the structure. To handle concept drift, our framework includes a method based on Statistical Quality Control, which has been demonstrated to be efficient for recognizing concept changes. We experimentally evaluated the AdPreqFr4SL on artificial domains and benchmark problems and show its advantages in comparison against its nonadaptive versions

    Probabilistic Inference Using Partitioned Bayesian Networks:Introducing a Compositional Framework

    Get PDF
    Probability theory offers an intuitive and formally sound way to reason in situations that involve uncertainty. The automation of probabilistic reasoning has many applications such as predicting future events or prognostics, providing decision support, action planning under uncertainty, dealing with multiple uncertain measurements, making a diagnosis, and so forth. Bayesian networks in particular have been used to represent probability distributions that model the various applications of uncertainty reasoning. However, present-day automated reasoning approaches involving uncertainty struggle when models increase in size and complexity to fit real-world applications.In this thesis, we explore and extend a state-of-the-art automated reasoning method, called inference by Weighted Model Counting (WMC), when applied to increasingly complex Bayesian network models. WMC is comprised of two distinct phases: compilation and inference. The computational cost of compilation has limited the applicability of WMC. To overcome this limitation we have proposed theoretical and practical solutions that have been tested extensively in empirical studies using real-world Bayesian network models.We have proposed a weighted variant of OBDDs, called Weighted Positive Binary Decision Diagrams (WPBDD), which in turn is based on the new notion of positive Shannon decomposition. WPBDDs are particularly well suited to represent discrete probabilistic models. The conciseness of WPBDDs leads to a reduction in the cost of probabilistic inference.We have introduced Compositional Weighted Model Counting (CWMC), a language-agnostic framework for probabilistic inference that partitions a Bayesian network into subproblems. These subproblems are then compiled and subsequently composed in order to perform inference. This approach significantly reduces the cost of compilation, yet increases the cost of inference. The best results are obtained by seeking a partitioning that allows compilation to (barely) become feasible, but no more, as compilation cost can be amortized over multiple inference queries.Theoretical concepts have been implemented in a readily available open-source tool called ParaGnosis. Further implementational improvements have been found through parallelism, by exploiting independencies that are introduced by CWMC. The proposed methods combined push the boundaries of WMC, allowing this state-of-the-art method to be used on much larger models than before

    Machine Learning Solutions for Transportation Networks

    Get PDF
    This thesis brings a collection of novel models and methods that result from a new look at practical problems in transportation through the prism of newly available sensor data. There are four main contributions: First, we design a generative probabilistic graphical model to describe multivariate continuous densities such as observed traffic patterns. The model implements a multivariate normal distribution with covariance constrained in a natural way, using a number of parameters that is only linear (as opposed to quadratic) in the dimensionality of the data. This means that learning these models requires less data. The primary use for such a model is to support inferences, for instance, of data missing due to sensor malfunctions. Second, we build a model of traffic flow inspired by macroscopic flow models. Unlike traditional such models, our model deals with uncertainty of measurement and unobservability of certain important quantities and incorporates on-the-fly observations more easily. Because the model does not admit efficient exact inference, we develop a particle filter. The model delivers better medium- and long- term predictions than general-purpose time series models. Moreover, having a predictive distribution of traffic state enables the application of powerful decision-making machinery to the traffic domain. Third, two new optimization algorithms for the common task of vehicle routing are designed, using the traffic flow model as their probabilistic underpinning. Their benefits include suitability to highly volatile environments and the fact that optimization criteria other than the classical minimal expected time are easily incorporated. Finally, we present a new method for detecting accidents and other adverse events. Data collected from highways enables us to bring supervised learning approaches to incident detection. We show that a support vector machine learner can outperform manually calibrated solutions. A major hurdle to performance of supervised learners is the quality of data which contains systematic biases varying from site to site. We build a dynamic Bayesian network framework that learns and rectifies these biases, leading to improved supervised detector performance with little need for manually tagged data. The realignment method applies generally to virtually all forms of labeled sequential data

    Feature-based pronunciation modeling for automatic speech recognition

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 131-140).Spoken language, especially conversational speech, is characterized by great variability in word pronunciation, including many variants that differ grossly from dictionary prototypes. This is one factor in the poor performance of automatic speech recognizers on conversational speech. One approach to handling this variation consists of expanding the dictionary with phonetic substitution, insertion, and deletion rules. Common rule sets, however, typically leave many pronunciation variants unaccounted for and increase word confusability due to the coarse granularity of phone units. We present an alternative approach, in which many types of variation are explained by representing a pronunciation as multiple streams of linguistic features rather than a single stream of phones. Features may correspond to the positions of the speech articulators, such as the lips and tongue, or to acoustic or perceptual categories. By allowing for asynchrony between features and per-feature substitutions, many pronunciation changes that are difficult to account for with phone-based models become quite natural. Although it is well-known that many phenomena can be attributed to this "semi-independent evolution" of features, previous models of pronunciation variation have typically not taken advantage of this. In particular, we propose a class of feature-based pronunciation models represented as dynamic Bayesian networks (DBNs).(cont.) The DBN framework allows us to naturally represent the factorization of the state space of feature combinations into feature-specific factors, as well as providing standard algorithms for inference and parameter learning. We investigate the behavior of such a model in isolation using manually transcribed words. Compared to a phone-based baseline, the feature-based model has both higher coverage of observed pronunciations and higher recognition rate for isolated words. We also discuss the ways in which such a model can be incorporated into various types of end-to-end speech recognizers and present several examples of implemented systems, for both acoustic speech recognition and lipreading tasks.by Karen Livescu.Ph.D

    Learning with mistures of trees

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 125-129).by Marina Meilă-Predoviciu.Ph.D

    Using multinets for learner modelling

    No full text
    International audienceIn this paper we shall introduce a new conceptual model for learner modelling based on multinets, which are Bayesian networks mixture. This conceptuel model makes it possible to take into account in a single student model different Bayesian networks, with the same nodes but different structures. We also present experiemental results obtained with real students data
    corecore