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resumo 
 
 

Nesta tese consideramos o desenvolvimento de algoritmos adaptativos para
classificadores de redes Bayesianas (BNCs) num cenário on-line. Neste
cenário os dados são apresentados sequencialmente. O modelo de decisão
primeiro faz uma predição e logo este é actualizado com os novos dados. Um
cenário on-line de aprendizagem corresponde ao cenário “prequencial”
proposto por Dawid. Um algoritmo de aprendizagem num cenário prequencial
é eficiente se este melhorar o seu desempenho dedutivo e, ao mesmo tempo,
reduzir o custo da adaptação. Por outro lado, em muitas aplicações pode ser
difícil melhorar o desempenho e adaptar-se a fluxos de dados que apresentam
mudança de conceito. Neste caso, os algoritmos de aprendizagem devem ser
dotados com estratégias de controlo e adaptação que garantem o ajuste rápido
a estas mudanças.  
Todos os algoritmos adaptativos foram integrados num modelo conceptual de
aprendizagem adaptativo e prequencial para classificação supervisada
designado AdPreqFr4SL, o qual tem como objectivo primordial atingir um
equilíbrio óptimo entre custo-qualidade e controlar a mudança de conceito. O
equilíbrio entre custo-qualidade é abordado através do controlo do viés (bias) e
da adaptação do modelo. Em vez de escolher uma única classe de BNCs
durante todo o processo, propomo-nos utilizar a classe de classificadores
Bayesianos k-dependentes (k-DBCs) e começar com o seu modelo mais
simples: o classificador Naïve Bayes (NB) (quando o número máximo de
dependências permissíveis entre os atributos, k, é 0). Podemos melhorar o
desempenho do NB se reduzirmos o bias produto das restrições de
independência. Com este fim, propomo-nos incrementar k gradualmente de
forma a que em cada etapa de aprendizagem sejam seleccionados modelos
de k-DBCs com uma complexidade crescente que melhor se vai ajustando ao
actual montante de dados. Assim podemos evitar os problemas causados por
demasiado viés (underfitting) ou demasiada variância (overfiting). Por outro
lado, a adaptação da estrutura de um BNC com novos dados implica um custo
computacional elevado. Propomo-nos reduzir nos custos da adaptação se,
sempre que possível, usarmos os novos dados para adaptar os parâmetros. A
estrutura é adaptada só em momentos esporádicos, quando é detectado que a
sua adaptação é vital para atingir uma melhoria no desempenho. Para
controlar a mudança de conceito, incluímos um método baseado no Controlo
de Qualidade Estatístico que tem mostrado ser efectivo na detecção destas
mudanças. 
Avaliamos os algoritmos adaptativos usando a classe de classificadores k-DBC
em diferentes problemas artificiais e reais e mostramos as vantagens da sua
implementação quando comparado com as versões no adaptativas.  
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abstract 
 

This thesis mainly addresses the development of adaptive learning algorithms
for Bayesian network classifiers (BNCs) in an on-line leaning scenario. In this
scenario data arrives at the learning system sequentially. The actual predictive
model must first make a prediction and then update the current model with new
data. This scenario corresponds to the Dawid’s prequential approach for
statistical validation of models. An efficient adaptive algorithm in a prequential
learning framework must be able, above all, to improve its predictive accuracy
over time while reducing the cost of adaptation. However, in many real-world
situations it may be difficult to improve and adapt to existing changing
environments, a problem known as concept drift. In changing environments,
learning algorithms should be provided with some control and adaptive
mechanisms that effort to adjust quickly to these changes.  
We have integrated all the adaptive algorithms into an adaptive prequential
framework for supervised learning called AdPreqFr4SL, which attempts to
handle the cost-performance trade-off and also to cope with concept drift.
The cost-quality trade-off is approached through bias management and
adaptation control. The rationale is as follows. Instead of selecting a particular
class of BNCs and using it during all the learning process, we use the class of
k-Dependence Bayesian classifiers and start with the simple Naïve Bayes (by
setting the maximum number of allowable attribute dependence k to 0). We can
then improve the performance of Naïve Bayes over time if we trade-off the bias
reduction which leads to the addition of new attribute dependencies with the
variance reduction by accurately estimating the parameters. However, as the
learning process advances we should place more focus on bias management.
We reduce the bias resulting from the independence assumption by gradually
adding dependencies between the attributes over time. To this end, we
gradually increase k so that at each learning step we can use a class-model of
k-DBCs that better suits the available data.  Thus, we can avoid the problems
caused by either too much bias (underfitting) or too much variance (overfitting).
On the other hand, updating the structure of BNCs with new data is a very
costly task. Hence some adaptation control is desirable to decide whether it is
inevitable to adapt the structure. We reduce the cost of updating by using new
data to primarily adapt the parameters. Only when it is detected that the use of
the current structure no longer guarantees the desirable improvement in the
performance, do we adapt the structure. To handle concept drift, our
framework includes a method based on Statistical Quality Control, which has
been demonstrated to be efficient for recognizing concept changes.  
We experimentally evaluated the AdPreqFr4SL on artificial domains and
benchmark problems and show its advantages in comparison against its non-
adaptive versions. 
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Introduction

The need for understanding large, complex collected data is becoming increasingly important

to many fields of business, science and engineering in today’s competitive world. Bayesian

networks (also known as belief networks, probabilistic networks) have become one of the most

popular probabilistic models used in Artificial Intelligence to model data. Bayesian networks

were introduced by Pearl in [108] and provide a sound theoretical framework to represent

and manipulate probabilistic dependencies between random variables. A Bayesian network

is composed of two components: the qualitative part (its structure) and the quantitative

part (the set of parameters that quantifies the network). The structure is a directed acyclic

graph (DAG) in which nodes represent random variables, and the arcs represent dependencies

between these variables. The parameters are conditional probabilities that represent the

strength of the dependencies.

In the last years there has been an increasing interest in inducing Bayesian networks which

are efficient for classification. Classification means the task of assigning one of predefined

classes to objects described by a set of attribute values. Data classification can be applied

to a wide variety of domains: medical diagnosing, loan applications, user modeling, pattern

recognition, biomedical informatics, fault diagnosing, etc. Bayesian networks when used as

classifiers are known as Bayesian network classifiers, BNCs from now on. BNCs are becoming

increasingly popular as a classification tool due to recent developments in learning Bayesian

networks. As pointed out in [6] learning Bayesian networks from data offers a lot of advantages

when compared with other models. First, Bayesian networks are an effective representation

for decision making and reasoning. This allows the learned model to be easily integrated

as a component of a complex system. Second, they have a compact and comprehensible

representation, which allows human experts to provide prior knowledge in the form of strong

xiii



xiv Introduction

constrains on the initial structure of the network. Third, the output of the learning process

is also very comprehensible to humans.

The task of learning a Bayesian network from data is two-fold: learning the network

structure and learning the set of parameters. Learning the structure is related to model selec-

tion, a subject of statistical inference concerned with the selection among a set of competing

models, the one that “best fits” the available data in some sense. The notion of “best fits”

is defined via a model selection criterion. Model selection can be approached as a discrete

optimization problem where the model selection criterion that measures the quality of each

candidate model is optimized in the space of feasible hypotheses. The choice of an appro-

priate model selection criterion according to the learning goals is crucial for model selection

tasks. In the case when a Bayesian network is induced for classification, the main goal is to

build an accurate classifier. Hence, the model selection task is to choose the model which

yields the most accurate classifications with respect to a given loss function (as a rule, the

zero-one loss is used) [78].

In recent years the issue of the selection of an appropriate model selection criterion for

learning BNCs has received a lot of attention [32, 38, 43, 52, 78]. It has been suggested

that search strategies for learning BNCs should select among models using selection criteria

specialized for classification; otherwise it can result in suboptimal choices during the search

process. In this thesis, instead, we are more interested in exploring other aspects of model

selection criteria that can affect the performance of BNCs. All model selection criteria that

are used in practice either implicitly or explicitly choose a trade-off between goodness of fit

and complexity of the models involved [53]. Indeed, model selection makes a bias-variance

trade-off in order to select a model with the appropriate complexity for the amount of data

available [25, 57]. Van Allen et al. in [4] have carried out an empirical comparison of several

model selection criteria in order to identify how each one handles the bias-variance trade-off in

learning Bayesian networks. Whereas their work explored the behaviour of different criteria

for small samples and in the general framework of Bayesian networks, we have investigated

these issues for the particular case when Bayesian networks are induced for classification in

a prequential learning scenario.

During the past several years there has been an explosive growth of methods for learning

BNCs from data [8, 11, 23, 43, 44, 49, 52, 66, 86, 121, 141]. Nevertheless, most of them are
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implemented in a batch learning scenario, where all training examples are given at the same

time to the learning algorithms and the induced classifier is no more revised with future data.

However, nowadays in many current real-world applications the data processing system is or-

ganized in the form of a data stream rather than a static data repository. Since data often

needs to be processed in an on-line manner, on-line learning systems are becoming increas-

ingly important in today’s real-world applications. An on-line, predictive learning scenario

corresponds to the situation where the data arrives at the learning system sequentially, not at

the same time. The actual predictive model must first make a prediction and then the current

model is updated with new data. This philosophy about on-line learning paradigms has been

exposed by Dawid [35] in his prequential approach for statistical validation of models.

Efficient learning algorithms in a prequential learning scenario involve an artful trade-off

between the gain in the quality of the model and the cost of updating the model in the light

of new data. Since the quality of a BNC is determined by its predictive capability, an efficient

learning algorithm for BNCs must be able, above all, to improve its predictive accuracy over

time while optimizing the cost of updating. Bayesian networks suffer from several drawbacks

for updating purposes. While sequential updating of the parameters is straightforward (if

data is complete); updating the structure is a more costly task [61]. We can reduce the cost

of updating if we try to use new data to primarily adapt the parameters and only if this is

really necessary, do we adapt the structure. On the other hand, in many real-world situations

it may be difficult to improve and adapt to existing changing environments. This problem is

known as concept drift, which refers to unforeseen changes in the distribution underlying the

data that can lead to changes in the target concept that the learning system is trying to learn.

In changing environments the predictive model should be adapted quickly to these changes

in order to maintain its performance level. Learning systems that track concept drift are

often called adaptive systems. Many adaptive systems employ regular model updates while

new data arrives. However, a better approach is to provide the system with some controlling

mechanisms aimed at selecting the best adaptive actions according to the current learning

goal.

The main purpose of this work has been the development of adaptive algorithms for BNCs

in a prequential learning scenario, which attempt to handle the cost-quality trade-off and cope

with concept drift. We have integrated all the adaptive algorithms into an unified, adaptive
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prequential framework for supervised learning called AdPreqFr4SL. During all the learning

process the AdPreqFr4SL aims to satisfy the following goals:

1. Improvement in the predictive accuracy while reducing the cost of updating, thus

performing an artful cost-quality trade-off.

2. Recoverability if the performance goes down due to concept drift or another causes,

trying to improve it back to a level, at least, no worse than the previous best perfor-

mance.

3. Stability when a desirable level of performance has been achieved.

The Näıve Bayes classifier [39, 83] is one of the most used classifiers in real-world on-line

applications mainly due to its simplicity, effectiveness, easy interpretability and incremental

nature. Näıve Bayes significantly simplifies learning by assuming that attributes are indepen-

dent given the class. This can be viewed as a Bayesian network with a simple structure that

has the class node as the parent node of all other attribute nodes. In spite of the fact that

Näıve Bayes presents a high bias, it shows a good performance due to a high variance man-

agement, thus producing accurate classifications [13]. However, in practice, the independence

assumption is violated which can lead to a poor predictive performance. We can improve

Näıve Bayes if we trade-off the bias reduction which leads to the addition of new attribute

dependencies, and, consequently, to the estimation of more parameters, with the variance

reduction by accurately estimating the parameters [72]. Different classes of BNCs attempt to

reduce the bias of the Näıve Bayes by relaxing the attribute independence assumption. For

instance, a Tree Augmented Näıve Bayes (TAN) classifier [43, 44] extends the Näıve Bayes

structure by allowing the attributes to form a tree. A Bayesian network Augmented Näıve

Bayes (BAN) [22, 23, 43, 44] extends the Näıve Bayes structure by allowing the attributes to

form an arbitrary DAG. We can also use as a classifier a General Bayesian Network (GBN)

without any restriction about how the class node is treated [22, 23, 32, 43, 44, 52, 86, 93].

Nevertheless, not always do the more complex BNCs outperform the simple Näıve Bayes.

More complex classifiers allow for a better representational power, but suffer from a de-

creased ability to generalize to unseen data. They can overfit the training data. In turn,

simpler classifiers cannot capture the true structure in the data. They can underfit the data.

Both, overfitting and underfitting can lead to a deterioration of the performance.
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Finding the appropriate balance between complexity and performance is a matter of han-

dling the bias-variance trade-off. Increasing the model’s complexity decreases bias but in-

creases the variance in the parameter values. These issues are still more challenging in a

prequential framework, where the training data increases with time. In this case, we should

adjust the complexity of BNCs to suit the available data. One of the main differences among

the different class-models of BNCs is the way each of them restrict the number of parents for

each attribute node, and hence, the search space. We can control the complexity of BNCs if

we choose an appropriate class-model for the available training data. Thus, if we scale up the

complexity of BNCs slowly enough, the use of more training data will reduce bias at a rate

that also reduces variance and consequently the classification error. This regularization must

lead to the selection of simpler class-models when we have few data and of more complex

ones as training data increases, thus avoiding the problems caused by either too much bias

(underfitting) or too much variance (overfitting).

We chose the class of k-Dependence Bayesian Classifiers (k-DBCs) introduced by Sahami

in [121] for illustrating our approach. A k-DBC is a Bayesian network, which contains the

structure of Näıve Bayes and allows each attribute to have a maximum of k attribute nodes

as parents. For instance, Näıve Bayes is a 0-DBC, TAN is a 1-DBC, etc. k-DBCs are very

suitable for our adaptive proposal. By varying k we can obtain classifiers that move smoothly

along the spectrum of feature dependencies, thus providing a flexible control over the model’s

complexity.

The adaptive strategy in the AdPreqFr4SL for incorporating new data leads to a more

artful trade-off between the cost of updating and the gain in performance, even in changing en-

vironments. This is based upon two main policies: bias management and gradual adaptation.

Instead of selecting a particular class of BNCs and using it during all the learning process,

we propose to use the class of k-DBCs and start with the simple Näıve Bayes. Then, we use

simple control strategies to decide when to do the next move in the spectrum of attribute

dependencies (by gradually increasing k) and to start searching for new dependencies among

the attributes. The rationale is as follows. We define four levels of adaptation so that increas-

ing the level increases its cost. In the initial level a new model is built using the simplest

Näıve Bayes (by setting k = 0). Whenever we obtain new data, we first try to perform the

less costly first level of adaptation, that is, we adapt only the parameters. Only when
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we obtain some evidence indicating that the performance using the current structure stops

improving in the desirable tempo, do we move to a more costly second level of adaptation

and start adapting the structure by searching for new dependencies between the attributes.

If after searching, the resulting structure remains the same, then do we move to the third

level of adaptation. If it is still possible, k is increased by one, and the current structure is

once again adapted by searching for new attributes dependencies but now in the augmented

search space. In addition, we stop doing any adaptation when there is evidence that the use

of more training data will not result in significantly improved performance. Nevertheless, if

any significant change in the performance is further observed, then the adaptation procedures

are once again activated.

The AdPreqFr4SL integrates some monitoring tools for bias management with a method

for handling concept drift based on Statistical Quality Control first presented in [21]. In order

to achieve a desirable performance even when dealing with concept drift, the AdPreqFr4SL is

provided with simple controlling mechanisms based on the observation of some performance

indicators. If during the monitoring process a concept drift is detected, some actions to adapt

the learner to these changes are taken. Only in the case when an abrupt concept change is

identified, the adaptation process is re-launched from its initial level and a new Näıve

Bayes classifier is built using the examples suspected to belong to a new target concept.

Although the AdPreqFr4SL is presented in this thesis for the class of k-DBCs, we believe

that its adaptive and control strategies can be easily adapted to other families of classifiers

based on discrete search with a hierarchical and increasing control over the complexity of its

induced hypotheses.

We conclude the introduction with a brief outline of the contents of this thesis. In the first

part of this thesis (Chapter 1 and Chapter 2), we give an introduction to the more general

problem of learning Bayesian networks that due to its nature is more mathematically precise

than the remaining of the chapters. The following chapters deal with the more restricted

class of Bayesian network classifiers that are the subject of this thesis.

Chapter 1 presents the basic concepts, mathematical formalisms and philosophies un-

derlying the problem of learning probabilistic models from data in statistical inference. Two

related problems are introduced: parameter estimation and model selection. The focus here

is on the derivation of different model selection criteria. Because we are interested in compar-
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ing the performance of different BNCs induced with different model selection criteria (scoring

functions), a good understanding of the philosophies adopted under the different approaches

to derive the model selection criteria for the general problem of learning probabilistic models

from data is essential for a good understanding and objective evaluation of how these criteria

can affect the performance of score-based approaches to learn BNCs from data.

Chapter 2 describes the learning problem for the particular framework of Bayesian

networks along with the more relevant issues on the score-based approach. We overview the

three factors that affect the performance of score-based approaches for learning Bayesian

networks: i) the parameter estimator; ii) the scoring function; and iii) the search method; and

give the derivation of the different estimators and scoring functions for Bayesian networks.

Finally, we introduce heuristic search methods and the hill-climbing search procedure for

learning the structure of Bayesian Networks.

Chapter 3 begins with an introduction to the general problem of the supervised learning.

Next, it introduces the Näıve Bayes classifier and summarizes various reasons why we might

expect the surprisingly good performance of Näıve Bayes in practice. Through an overview of

previous work which attempted to improve the predictive accuracy of Näıve Bayes, different

classes of BNCs are then introduced. The chapter concludes with a broad discussion concern-

ing how the choice of the scoring function and the class-model can affect the performance of

BNCs learned from data.

Chapter 4 provides the results of a conducted experimental study using the class of

k-DBCs along with an in-depth analysis. The main goal is to compare how the choice of

different scores and class-models (varying k) affect the performance of k-DBCs induced with

the same underlying learning algorithm at different time points in a prequential learning

framework. This comparative study was basically motivated to test whether it makes sense

to gradually increase the k value in order to adjust the complexity of the k-DBC class-model,

and hence, the complexity of the induced k-DBCs to the current amount of training data.

Chapter 5 is the core of our contribution. The chapter first introduces the main factors

that are required for drawing up an efficient adaptive learning framework. Then it describes

the adaptive and control strategies that we have adopted to handle the cost-quality trade-off

and concept drift for learning BNCs in a prequential scenario. Finally, this chapter describes

the AdPreqFr4SL as a whole learning framework that integrates all the developed adaptive
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algorithms.

Chapter 6 describes the experiments we conducted that demonstrate the effectiveness

of our adaptive approach. We evaluated the adaptive algorithms for BNCs, using both,

artificially generated problems and benchmark problems from the UCI repository [102]. The

use of artificial domains allowed us to test the two main issues that the algorithm exhibit: bias

management and concept drift management knowing the true degree of attribute dependence

and whether concept drift actually occurs. Benchmark problems allow us to test our adaptive

algorithms in some real-world problems. Results in conducted experiments showed that

adaptive learning algorithms for BNCs work as expected. They are able to perform a more

artful cost-quality trade-off when compared against its non-adaptive versions and also efficient

to cope with drifting concepts.

Finally, we provide the conclusions with a summary of the main contributions of our

work in the area of machine learning and finish with an outlook on future research taking

into account the general open issues arising from the present work.



Chapter 1

Learning Probabilistic Models

1.1 Introduction

Almost all work in learning Bayesian Networks can be viewed in terms of learning a prob-

abilistic model from data. Given the available data and some background knowledge the

main goal is to build probabilistic models that best fit the data in some sense. Probability

theory and statistical inference [91] give a natural framework for the problem of learning a

probabilistic model from data. As described in [4], most learning problems can be solved

in the following form. First, a suitable class of model (class-model) such as Bayesian Net-

work, neural network, decision tree, etc. is chosen, based on our domain knowledge. Next,

within this class-model a structure is chosen. This structure defines a parametric class of

models. Finally, the parameters are estimated based on a sample. The problem of choosing

the structure, or a parametric class of models, is called the model selection problem.

This chapter provides an overview of some basic definitions and concepts of statistical

inference applied to model selection, which are involved in the problem of learning prob-

abilistic models from data. Model selection can be approached as a discrete optimization

problem where a model selection criterion that measures the quality of each candidate model

is optimized in the space of feasible hypotheses. Thus, model selection can be viewed as an

optimization problem with two separate issues. First, how to search the space of candidate

models. Second, what model selection criterion to optimize for. The main purpose of this

chapter is to give a theoretical background in order to contrast the fundamental philosophies

1
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underlying the derivation of different model selection criteria which are not always found all

together in the specialized literature. However, the range of concepts covered here is slightly

wider than strictly necessary for the rest of the thesis, in order to point out some connections

between the problem of learning probabilistic models and the particular problem of learning

Bayesian Networks.

1.2 Statistical Preliminaries

The following is a list of references to the material covered in this section. The notational

conventions are mainly based on the tutorials [53, 58, 74]. The basic concepts of parametric

probabilistic models are mainly based on the tutorial [53] and the book [103]. The comparison

between the frequentist and Bayesian approaches to model selection is based on [58, 89, 90,

114]. Through all this thesis we will use capital letters to denote random variables (e.g. X,Y )

and lowercase letters to denote specific values for these variables (e.g. x, y). Bold uppercase

letters denote sets of variables (e.g. X,Y) and bold lowercase letters denote assignments

(configuration) of values to the variables in these sets (e.g. x,y).

1.2.1 Basic Concepts

Probability theory views the world as a set of random variables X1,X2, . . . ,Xn, each of

which has a domain of possible values. The key concept is the joint probability distribution

P (X1,X2, . . . ,Xn), which specifies a probability for each possible combination of values for all

the random variables. Let us consider a finite set X = {X1,X2, . . . ,Xn} of random variables

where each variable Xi may take on values from its domain ΩXi . Suppose that we have

a random experiment for X, we run the experiment and at time t we observe a particular

outcome x(t) = (x1, x2, . . . , xn). We call this outcome a case or example, that is, an instance

of the random vector X(t). A case is said to be complete if every variable from X has a state

assigned to it. Otherwise, the case is said to be incomplete.

Definition 1. A dataset or data D =
{
x(1),x(2), . . . ,x(N)

}
is the result from a random

experiment in which N observed cases are sampled independently from some joint probability

distribution P (X1,X2, . . . ,Xn) over X. In this case we say that data D is a random sample

of N independent and identically distributed (i.i.d.) examples.
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Definition 2. A dataset is complete if all its cases are complete. Otherwise, we say that

the dataset has missing values.

A probabilistic model M for a set X of random variables is a set of joint probabilistic

distributions of a same functional form. Usually, a probabilistic model M is specified using a

parameter set Θ ∈ ΩΘ, where ΩΘ is some parameter space. Almost all probabilistic models

are in fact parametric families of models; that is, they are models governed by one or more

parameters that can be adjusted to fit the random process being modeled. We further consider

parametric families of models and define a probabilistic model more formally as follows:

Definition 3. A probabilistic model M for a set X of random variables is a set of joint

probability distributions parameterized by a set of parameters ΘM ∈ ΩΘ, that is,

M ≡ {P (X | Θ) | Θ ∈ ΩΘ}

For example, the family of all normal distributions on � is a probabilistic model param-

eterized by Θ = (µ, σ2) where µ is the mean and σ2 is the variance of the distribution. The

family of all Bayesian Networks for all possible structures is a class-model, but not a prob-

abilistic model. Instead, for some fixed structure S, the set of all possible joint probability

distributions P (X | S,ΘS) indexed by ΘS is a probabilistic model.

In learning probabilistic models from data we are interested in finding the best explana-

tions for the data from a set of possible explanations and any prior knowledge held by the

learner. These explanations are specified by a set of hypotheses that we are considering for

the current learning task.

Definition 4. Let M be a probabilistic model parameterized by a set of parameters ΘM .

A point hypothesis Mh is a probability distribution from M with a particular parameter

setting that can be tested.

Thus, each legal assignment of values to the parameters in ΘM defines a point hypothesis

Mh ∈ M , that is, a single probability distribution. For example, the standard normal

distribution N (0, 1) is a point hypothesis. A Bayesian network with a fixed structure S is

a probabilistic model containing a set of point hypotheses, each of them corresponding to

different choices of the probability parameters.
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To facilitate the reading, occasionally we may use the word “model” instead of probabilistic

model and the word “hypotheses” as a generic term, referring to some possibilities that we are

considering in the current learning task (this can refer to both models and point hypotheses

according to the actual context).

1.2.2 Likelihood

The concept of likelihood plays a central role in the classical statistical inference. The like-

lihood measures the “goodness of fit” provided by the observed data given a model. Let us

consider a probabilistic model M that defines a probability distribution over datasets D.

Definition 5. The likelihood of the model M given D is the probability of D given that

model, that is,

L(M : D) ≡ P (D |M) (1.1)

The likelihood viewed as a function of point hypothesis for a fixed data D is said to be

the likelihood function. Obviously, if we say that a point hypothesis Mh fits the data D well,

this means that the likelihood L(Mh : D) is high. The importance of the likelihood function

is summarized by the Fisher’s likelihood principle [41] that states that “a hypothesis is more

plausible or likely than another, in the light only of the observed data if it makes those data

more probable”.

A likelihood function can provide no absolute statement about the validity of any candi-

date models, but only relative comparison among them [91]. A criterion that is commonly

used to compare two hypotheses Mh1,Mh2 ∈M is the likelihood ratio defined by:

LR(Mh1,Mh2 : D) ≡ L(Mh1 : D)
L(Mh2 : D)

(1.2)

Often we use the natural logarithm (log) of the likelihood instead of the likelihood since

products converted to summations reduce problems of numerical underflow.

Definition 6. The log-likelihood of a model M given the observed dataset D is the natural

logarithm of the likelihood of M given D, that is,

l(M : D) ≡ log L(M : D) (1.3)
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We further introduce the concept of sufficient statistic, which will turn out to be very

useful to compute the likelihood of a model. Suppose we observe the dataset D with a view

of gaining information about the parameter ΘM ∈ ΩΘM
⊂ �k. A statistic is a function

T : D → �k that gives us an useful information about the data. Therefore, a statistic is

an observable, real-valued function of the observations. The term observable means that the

function should not contain any unknown parameters.

A sufficient statistic is just a function of dataset that summarizes the relevant information

for computing the likelihood. More precisely, a sufficient statistic summarizes all the available

information in D that allows to make inference on the parameter Θ. Therefore, if we gather

and store sufficient statistics from a dataset, we can drop the original data that we do not

lose any information related to the parameter. The concept of sufficient statistics is widely

discussed, for instance, in [74, 89, 91].

1.2.3 Frequentist versus Bayesian Approach to Statistical Inference

There are nowadays two main approaches of statistical thought: the frequentist, Fisherian

approach and the Bayesian approach. The former is named after Sir Ronald Fisher and com-

bines the frequency approach [41] (unbiased estimators, hypothesis tests, etc.) with likelihood

methods. The Bayesian approach is named after the Reverend Thomas Bayes and refers to

such concepts as prior and posterior knowledge, prior and posterior predictive distributions,

Bayes estimators, etc. Both, Fisherian and Bayesian statistics have different definitions of

what it means to be a probability. Whereas a frequentist probability is a physical property

of the world measured by repeated trials (e.g., the probability that a coin will land heads),

a Bayesian probability describes the person’s degree of belief in that event (e.g. your degree

of belief that the coin will land heads).

We further assume that some data is observed and we wish to make inferences about

one or more unknown features of the physical system which have been generated these data.

These unknown features may be expressed in terms of a discrete set of hypothesis (in model

selection problems) or in terms of a parameter space (in parameter estimation problems).

Bayesian inference methods are distinguished from frequentist methods by the fact that

Bayesian inference is based on a different view of what it means to learn from data. In fre-
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quentist inference the unknown features take single values whereas in Bayesian learning the

unknown features are treated as random variables which have both, prior and posterior dis-

tribution. Before observing the data, our prior beliefs can be expressed in a prior probability

distribution that represents the knowledge we have about the unknown features. After ob-

serving the data our revised beliefs are captured by a posterior distribution over the unknown

features. Bayes’ theorem (also known as Bayes’ rule) is the main tool in Bayesian inference.

Theorem 1.2.1. (Bayes) Given two events E and F such that P (E) �= 0 and P (F) �= 0, we

have

P (E | F) =
P (F | E)P (E)

P (F)

In Bayesian inference, Bayes’ theorem can be expressed in its more memorable form:

posterior ∝ prior × likelihood

by combining the prior distribution and the likelihood of the observed data in order to derive

the posterior distribution. This expression summarizes the way in which we should modify

our beliefs about the unknown quantities in order to take into account the observed data [89].

Informally speaking, the Bayesian methodology briefly comprises the following steps to

make inference:

1. Modeling Priors: Assign priors to all the unknown quantities (parameters or models).

2. Compute the Likelihood: Observe the data and compute the likelihood of a hypoth-

esis given the data.

3. Prior-to-Posterior Computation: Apply Bayes’ theorem to derive the posterior

probability of the unknown quantities given the data.

4. Make Inference: Use the posterior probability to derive appropriate inference: to

compute a point estimate of the parameters, to do model selection, or in general, to

obtain the predictive distributions.

In the Bayesian methodology, therefore, inference is a continuous, dynamic process in

which new data are used to revise the current knowledge. As pointed out in [114] when
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Bayesian methods are coupled with the conditional independence of the data given the pa-

rameters, the inference procedure can process data as a whole (in a batch mode), as frequentist

methods do, but it can also process data sequentially, one at the time, and the final results

will be the same. This incremental nature is a crucial advantage of Bayesian methods. On

the light of new data they do not require reprocessing all the data seen so far.

Bayesian methods are distinguished from frequentist methods also by the fact that they

can be applied to every type of problem and often represent the optimal method to use.

However, practical implementation of Bayesian methods usually requires substantial compu-

tation. This computational requirement is essential to calculate summaries of the posterior

distribution. The combination of the likelihood and prior generally produces a posterior

distribution too complex to summarization, even if the two constituents separately are suf-

ficiently simple. For some cases, however, the prior distributions and the likelihood have

sufficiently convenient forms that enable the necessary results to be obtained in closed-form

solutions. In spite of this, in practice, we need to work with much more complex models. On

the other hand, Bayesian methods require the specification of prior distributions to accurately

reflect the available prior information, which can also lead to complex modeling.

1.3 The Parameter Estimation Problem

The uncertainty in parameters is an issue in model selection. In the frequentist approaches

to parameter estimation the parameters are regarded as having a “true” but unknown value

which can be estimated from the data, using, for instance, the maximum likelihood estimator.

The obtained estimate then is used as the predictive probability. Bayesian approaches, alter-

natively, regard the parameters as random variables and the uncertainty about parameters

is expressed in terms of a prior distribution. Bayes’ theorem is then used to compute the

posterior distribution given the observed data, which can be further used to make predic-

tions. Bayesian methods usually involve integrals over the parameters to make inference,

whereas frequentist methods rely on optimization procedures. In the next subsections we

briefly overview the derivation of the mostly used parameter estimators in statistical infer-

ence, under both the frequentist and Bayesian framework1.

1All the material exposed in this section is mainly based on the references [58, 74, 114].
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1.3.1 Maximum Likelihood Estimator

Definition 7. An estimator for a parameter θ is a function that computes a putative value

for θ̂ = θ̂(D) given the observed data D.

The intuitive requirement that θ̂ should be “close” to the actual value is formalized by

the notions of bias and consistency. We can quantify the bias of an estimator as the expected

value of the error, that is, bias(θ̂) ≡ E(θ̂(D) | θ)− θ. An estimator is said to be unbiased if

its bias is 0 and consistent if it converges to the true value as data increases.

A frequentist approach to parameter estimation is to maximize the likelihood function.

This estimator is known as the Maximum Likelihood estimator [41]. Let us consider a prob-

abilistic model M parameterized by some parameter set ΘM ∈ ΩΘM
. We can consider the

likelihood as a function of point hypothesis Mh ∈M , where each hypothesis corresponds to a

different assignment of the parameter values over ΩΘM
. Hence, we can define the likelihood

function over the parameter space as follows:

Definition 8. The likelihood function of a parameter ΘM ∈ ΩΘM
given data D is the

probability of D given that parameter, that is

L(Θ : D,M) ≡ P (D |M,Θ) (1.4)

Definition 9. The Maximum Likelihood (ML) estimate of a parameter ΘM is that

value (parameter settings) the maximizes the likelihood function of ΘM given D, that is

Θ̂ML(D,M) = arg max
ΘM∈ΩΘM

L(ΘM : D,M) (1.5)

ML estimators are in most cases consistent, but in general biased. However, when N →∞
they become unbiased and efficient [41]. Hence, the ML estimator converges to the best

possible value, as close to the true value as possible as the number of examples grows given

a particular dataset. Moreover, the variance of the ML estimator is no greater than that of

any other unbiased estimator.

The ML estimate can be viewed as a point estimate. Because the likelihood function is

bounded above, the ML estimate always exists. However, the likelihood function may not
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have a unique maximum in the parameter space, which means that several hypotheses are

equally likely to describe the data [91]. Before going further, let us give an example. This

will allow us to illustrate the behavior of the likelihood function for the single parameter of

the thumbtack example2. If we throw the thumbtack up N times in the air, it will come to

rest either on its points (heads) or its head (tails). Thus, each observation is the realization

of a Bernoulli trial with one of two outcomes: head (H) or tail (T). The single parameter θ

represents the probability with which an individual toss lands heads. The likelihood function

of the parameter θ for the sequence H, T, T, H, H is given by θ3(1− θ)2. Figure 1.1 depicts

this likelihood function. In general, to compute the likelihood in the thumbtack example we

only need to obtain the sufficient statistics from data, that is the number of heads Nh and

the number of tails Nt. The likelihood function is then L(θ : D) = θNh(1− θ)Nt .

Figure 1.1: A likelihood function for the single parameter of the thumbtack example

The likelihood function is monotonically related to the log-likelihood. Therefore, maxi-

mizing the one is equivalent to maximizing the other. However, the log-likelihood is more

convenient to work with, since products converted to summations reduce problems of numer-

ical underflow. In particular, for the thumbtack example we have:

l(θ : D) = Nh log θ + Nt log(1 − θ)

The value that maximizes the likelihood, that is, the ML estimate of θ is given by the

observed relative frequencies:

θ̂ML =
Nh

(Nh + Nt)
2This example is taken from [58, 74] and Figure 1.1 from [74].
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1.3.2 Bayesian Estimators

In the Bayesian approach to parameter estimation we express our uncertainty on the param-

eters by regarding ΘM as a random vector over ΩΘM
. The first step is to assign a prior

distribution P (ΘM | M) in order to reflect our prior beliefs in the possible values of the

parameters. The next step is to derive the posterior distribution of ΘM given the observed

data D by means of Bayes’ theorem:

P (ΘM | D,M) =
P (D |M,ΘM )P (ΘM |M)

P (D |M)
(1.6)

The resulting posterior distribution P (ΘM | D,M) gives the probability of the parameters

after observing the data. The term P (D |M,ΘM ) is the likelihood L(ΘM : D,M). Whereas

the likelihood function plays a central role in classical methods for parameter estimation, for

the Bayesian approach it is only the instrument to perform the prior-to-posterior computation

via Bayes’ theorem [114]. The last term P (D | M) in Equation 1.6 is the probability of the

data given the model and is computed by integrating over the parameter space:

P (D |M) =
∫

P (D |M,ΘM )P (ΘM |M) dΘM (1.7)

This term is called the marginal density of data [114] to point out the fact that it is no

longer conditioned on ΘM . In fact, it is just a normalization constant that is independent

of the values of the parameters, and hence, this is usually ignored. However, the marginal

density of data is very important when comparing different models. The last step is to use

the obtained posterior distribution in order to compute the parameter estimates.

The Full Bayesian Approach

The key idea in Bayesian statistics is to work with full distributions of parameters instead

of single estimates. In computations that require a value for a certain parameter, instead

of choosing a single “best value”, we must obtain an estimate by averaging (integrating)

the probabilities over the parameter space weighting their results by the resulting posterior

probabilities. This method is called marginalising over the parameter space and this approach

is known as the full Bayesian approach. A standard point estimate of an individual parameter

θ ∈ ΘM is the posterior expectation EP (ΘM |D,M)(θ), that is, the expectation of θ with respect
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to the posterior distribution [114]. We call this estimate the Bayesian estimate and denote

it by θ̂Bayes.

Definition 10. The Bayesian estimate of an individual parameter θ ∈ ΘM is the posterior

expectation of θ with respect to the posterior distribution, that is,

θ̂Bayesian(D,M) = EP (ΘM |D,M)(θ) =
∫

θ P (ΘM | D,M) dΘM (1.8)

Although the full Bayesian approach gives the optimal method for performing statistical

inference, the exact use of those tools can become impractical. However, for the exponential

family of distribution (e.g. binomial, multinomial, normal, etc.) under some determined

assumptions, these computations can be done efficiently and in a closed form [58].

The MAP Approach

When the exact Bayesian inference is impossible, there are many methods that approximate it.

The simplest method is to approximate the posterior with a discrete distribution concentrated

at its maximum value. This gives a single estimate for all the parameters. This approach is

called maximum a posteriori estimation. The estimator is called the MAP estimator.

Definition 11. The MAP estimate of a parameter vector ΘM is the value of the parameter

Θ that maximizes the posterior distribution of ΘM given data D, that is,

Θ̂MAP (D,M) = arg max
ΘM∈ΩΘM

P (ΘM | D,M) (1.9)

The MAP estimator is the Bayesian counterpart to the ML estimator, and they become

equivalent when the prior is uniform. In this case only the likelihood term is maximized. We

can consider the Bayesian and MAP estimates as different ways of summarizing the posterior

distribution P (ΘM | D,M) around its peak. Note that the MAP estimate only takes into

account the location of the peak, while the Bayesian estimate takes into account the location

as well as the sharpness of the peak [128]. As stated in [31], the advantages of bayesian

estimates is that for smaller data sets, the results tend to be more robust and generally, less

sensitive to the presence of zeroes in marginal counts.
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Conjugate Priors

The Bayesian approach requires the specification of prior distributions. A prior distribution

is said to be informative if this is known; otherwise it is non-informative. The requirement of

a prior distribution can be both an advantage and a disadvantage. It is an advantage when

the prior is informative because the shape of the prior is taken into account to obtain the

posterior. It is a disadvantage when it is non-informative because we need to asses a great

number of parameters. Even when no information is available with respect to the parameter

being estimated, it is necessary to choose a prior. In such cases it is desirable to select a prior

that will have the least influence on the posterior. A commonly used approach is to use the

uniform distribution.

Modeling priors has been traditionally a compromise between a realistic assessment of

beliefs and choosing a convenient approximation to simplify the analytic calculations [58]. A

well-known strategy is to choose a prior with a suitable form so that the posterior belongs

to the same functional family as the prior. Prior and posterior chosen in this way are said

to be conjugate. The choice of the conjugate family depends on the likelihood. Conjugate

families are useful because for many distributions they allow the sequential updating of the

posterior distribution. In many cases we have a closed-form solution for the prior-to-posterior

computations [58]. In Section 2.5.2 we derive the Bayesian estimates for a Bayesian network

with discrete variables by using Dirichlet priors as conjugate to the multinomial distribution.

1.4 The Model Selection Problem

Model selection is a subject of statistical inference concerned with the selection among a set

of competing models. Let P (X1,X2, ...,Xn) denote the true, an unknown joint probability

distribution over a finite set X = {X1,X2, . . . ,Xn} of random variables for a domain under

study. LetM = {M1,M2, . . . ,Mm} be a set of candidate probabilistic models, each of them

containing a set of point hypotheses Mh. The model selection problem can be formally

posed as follows. Given a training dataset D =
{
x(1),x(2), . . . ,x(N)

}
of N i.i.d. examples

of X sampled from the unknown joint distribution P (X), and some prior information ξ

(background knowledge), find the model M ∈ M containing the hypothesis Mh ∈ M that

“best fits” D. The notion of “best fits” is defined via a model selection criterion [17].
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Let us give a standard example3 that allows us to better illustrate a model selection

problem. Suppose that we choose the class-model of polynomials to fit a given number of

points in the plane. Let the set of candidate models M be the set of different polynomials

where each Mk ∈ M represents the set of kth degree polynomials, each containing a set

of point hypotheses (e.g. individual polynomials). If we are interested in selecting both

the degree of a polynomial and its corresponding parameters (a hypothesis Mh ∈ M), it

is a hypothesis selection problem. If we are only interested in selecting the degree of the

polynomial (a model Mk ∈M) it is a model selection problem [53]. In the context of machine

learning, learning problems are rather posed as hypothesis selection problems.

Further we consider a model selection problem. We assume that some data is observed,

a set of models is given and that statistical inference is model-based. In this context, model

selection can be viewed as a discrete optimization problem where there are two separate

issues. First, how to search over the space of models. Second, what model selection criterion

to optimize for. The choice of an appropriate model selection criterion (also called scoring

function or score) is crucial for model selection tasks. In this chapter we focus on model

selection criteria.

All model selection criteria that are used in practice either implicitly or explicitly choose

a trade-off between goodness of fit and complexity of the models involved [53]. Indeed, model

selection makes a bias-variance trade-off in order to select a model with the appropriate

complexity [25, 57]. Models that are too simple has too much bias, they therefore fit the

data poorly and not are able to describe the essential features of the data. They will underfit

the data. On the contrary, models that are too complex (with too much parameters) fit the

training data very well but have too much variance. They will overfit the data. Intuitively,

we need the right balance. This bias-variance trade-off is automatically regularized by the

model selection criterion.

1.5 Model Selection Criteria

There are many competing approaches on how to choose the model selection criterion reflect-

ing different paradigms for inductive inference:

3This example is taken from the tutorial [53].
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1. The frequentist approach.

2. The Bayesian approach.

3. The information-theoretic approach.

4. The predictive approach.

As pointed out in [4], the choice of a model selection criterion reflects not only a paradigm

for inductive inference, but also our prior beliefs and intuitions about the domain of induction

according to the learning goals. However, it is often difficult to express in the mathematical

formalism of a model selection criterion our beliefs and intuitions. It is therefore of interest

to empirically compare how different model selection criteria perform the model selection

task in a particular domain. Toward this end, one of the main goals of this thesis was to

compare several model selection criteria in the task of learning Bayesian network classifiers

from data using class-models of increasing complexity. In the next sections we briefly review

the commonly used model selection criteria, which we used in our experiments:

1. Maximum likelihood criterion (MLC).

2. Bayesian score.

3. Bayesian information criterion (BIC).

4. Akaike’s information criterion (AIC).

5. Minimum description length (MDL) score .

6. Cross-validation (k-Fold-CV) score.

7. Prequential (Preq) score.

MLC is derived from the frequentist maximum likelihood principle. Both AIC and MDL

score are derived from information-theoretic arguments. AIC is based on two basic concepts of

information theory such as the entropy and the Kullback-Leibler (K-L) divergence. Minimizing

AIC is approximately equivalent to minimizing the expected K-L divergence between the true

distribution and the approximating distribution. MDL principle attempts to describe the data

using a minimum encoding approach. When given a choice between models that model the
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data “similarly well ”, MDL will choose the one with the least complexity. Both Bayes and BIC

scores are derived from the Bayesian framework. The Bayesian score is the log of the (relative)

posterior probability. But assuming uniform priors over models we obtain the log marginal

likelihood, one of the most used scores in learning Bayesian networks. BIC is a large-sample

approximation to the log marginal likelihood derived from the Laplace approximation. Hence

BIC asymptotically corresponds to choosing the model with the largest posterior probability.

MLC, MDL, BIC and AIC are based on the log-likelihood while the Bayesian score is based

on the log marginal likelihood. Although derived from different frameworks, AIC, BIC and

MDL are all penalized log-likelihood scores. Moreover, BIC has an alternative formulation in

terms of information-theoretic concepts: under some conditions maximize BIC is equivalent

to minimize MDL. All the log-likelihood based scores are easy to use and does not require

evaluation of prior distributions. The Bayesian score, instead, use prior knowledge to set

priors over model’s structures and parameters.

Likelihood based scores such as MLC prefer more complex models. They can overfit the

data, specially if we have few data to learn. Penalized likelihood scores, such as AIC, BIC

and MDL can be viewed as a mathematically precise form of Occam’s Razor [9] that states

that “given two equally predictive theories, choose the simpler ”. According to this principle,

we should seek simpler models over complex ones. These scores are most frequently applied

to model selection problems dealing with overfitting. In practice, penalized likelihood scores

allow finding a more optimal trade-off between the complexity of models and the goodness-

of-fit to the data than MLC. However as the number of examples N grows very large, the

emphasis of the MDL/BIC score is on the log-likelihood term. Therefore, asymptotically MDL

will pick the same model as MLC does.

An alternative approach to model selection is to choose a model for future prediction.

In this case the model selecion task is to choose a model so that the resulting predictive

distribution yields the most accurate predictions for future data. This approach requires

the definition of a loss function in order to assess the quality of a model in terms of its

predictive accuracy. One natural way to measure the predictive performance is provided by

cross-validation [132]. The cross-validation method evaluates the predictive performance of

data models by repeatedly splitting the data into k subsets of equal size. Each subset is used

in turn as a validation set, while the union of the remaining k-1 sets are used as training
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set. The cross-validation score k-Fold-CV is the resulting averaged expected loss. Other

alternative approach is based on the Dawid’s prequential approach [35] where the model

selection criterion is computed predictively and sequentially through a sequential updating of

the predictive distribution. The prequential score is the resulting cumulative loss.

Interested readers can follow some of the following references for an in-depth study of

the derivation of different model selection criteria. The book [92] provides an overview of

the general problem of model selection, covering AIC and cross-validation scores. The book

[116] gives a detailed development of the MDL score. Schwarz in [125] gives the derivation

of BIC. Bozdogan in [12] gives the derivation of AIC and a discussion of its use. In [53]

Grunwald provides a very nice tutorial of MDL. A survey of cross-validation approaches is

given in [110]. In [17] the authors provide an interesting discussion about the philosophies and

general principles that should guide model-based inferences on the science and compare AIC

with BIC. Finally, Ghahramani in [51] provides an overview of the model selection problem

for the particular problem of unsupervised learning with emphasis on Bayesian criteria and

approaches to approximate the posterior distributions of a model.

1.5.1 Maximum Likelihood Criterion (MLC)

When models are learned in a frequentist approach, they are compared on the basis of the

likelihood they attain. The maximum likelihood criterion (MLC) is simple the maximized

log-likelihood of a model M given the training data D. From Definition 9 of the ML estimate

we know that the hypothesis the maximizes the likelihood is that hypothesis that we obtain

when parameters are set to the ML estimate Θ̂ML.

Definition 12. The Maximum likelihood (ML) hypothesis of a probabilistic model M

is the hypothesis Mh ∈M that maximizes the log-likelihood of M given data D, that is,

MML ≡ arg max
Mh∈M

l(Mh : D) (1.10)

Definition 13. The Maximum Likelihood Criterion (MLC) of a model M given data

D is the log-likelihood of its ML hypothesis, that is:

ScoreMLC(M,D) ≡ l(MML : D) (1.11)
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where:

l(MML : D) = l(Θ̂ML : D,M) = P (D |M, Θ̂ML) (1.12)

Maximizing the likelihood will usually overfit the data and can lead to the selection of

models more complex than the optimal or true one. Overfiting results because the likelihood

is based on a single ML hypothesis in the hypothesis space for each possible model. As the

model becomes more complex this space increases, and hence, the mode of the likelihood

function cannot decrease, instead it tends to increase [3]. Therefore, ML approaches always

chooses a maximally complex model. For avoiding overfitting we can use penalized likelihood

scores, which bias the MLC to prefer simpler models.

Penalized log-likelihood scores

Definition 14. A penalized log-likelihood score for a model M given data D is given

by the following general formula [86]:

ScoreMLC(M,D)− f(N) ‖M ‖ (1.13)

where f(N) is a non-negative penalty function, N is the number of data examples and ‖M ‖
is the dimension of the model defined as the number of its free parameters.

This formula for penalized log-likelihood scores explicitly shows the trade-off between the

first term - the fitness to data, and the second term - the penalty complexity. In the next

sections we show that although BIC, AIC and MDL are derived under different inductive

frameworks, in practice, they all can be derived from this general formula. For instance,

when f(N) = 1 we obtain the AIC score and when f(N) = 1
2 log N we obtain the BIC/MDL

scores. Therefore, increasingly for larger number of observations, the model with the most

BIC/lest MDL will tend to be simpler than the model with the most AIC.

1.5.2 Bayesian Criteria

In the Bayesian approach to model selection we express our uncertainty on the models by

regardingM as a random discrete variable whose states correspond to the candidate proba-

bilistic models {M1,M2, . . . ,Mm}. Following the Bayesian methododology from Section 1.2.3,
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for each candidate model M ∈ M we need to place a prior distribution P (M) that reflects

our relative beliefs about that model. After observing the data D, we can use Bayes’ theorem

for the prior-to-posterior computation. The denominator P (D | M) can be dropped (a nor-

malization constant independent of the parameters). This yields to the classical formulation

of Bayes’ theorem for model selection:

P (M | D) ∝ P (M)P (D |M) (1.14)

where P (D | M) is the marginal likelihood of the model M given data D defined by the

following integral over the parameter space:

P (D |M) =
∫

P (D |M,ΘM )P (ΘM |M) dΘM (1.15)

According to the marginalisation principle, the correct way to compare different models

in the Bayesian framework would be to use the full Bayesian approach. This approach, also

known as model averaging, uses all the candidate models for prediction by weighting their

results by their respective posterior probabilities. However, averaging over all the models is

a computationally demanding approach. The simplest and therefore most common approach

is pick the model with highest posterior probability, that is, the MAP model. A criterion

that is often used for numerical convenience is the log of the relative posterior probability.

We call this criterion the Bayesian score.

Definition 15. The Bayesian score is the log of the relative posterior probability of a

model M given the training data D, that is,

ScoreBayesian(M,D) ≡ log P (M) + log P (D |M) (1.16)

Thus, in practice the MAP approach to model selection could be simple addressed as

follows. For each candidate model M ∈ M: i) to assess an appropriate prior distribution

P (M); ii) to carefully compute the marginal likelihood P (D | M). When the number of

possible models is large, the assessment of the priors will be intractable. One straightforward

solution is to ignore the log prior component assuming that all the candidate models are

equally probably apriori. As a result, the Bayesian score is simple reduced to the log marginal

likelihood.



1.5. Model Selection Criteria 19

The effect of the model prior is equivalent to penalizing overly complex models. However,

this is not strictly necessary, since the marginal likelihood term has a similar effect [101]. As

argued in [51], the marginal likelihood has a very interesting interpretation: this is the prob-

ability of generating data D from parameters that are randomly sampled from the parameter

prior P (ΘM | M). In contrast with the MLC, which tends to increase as the model com-

plexity increases and can overfit the data, the marginal likelihood can decrease as the model

becomes more complex. In a more complex dataset, sampling random parameter values can

generate a wider range of possible datasets, but since the marginal likelihood is a probability

over data sets it must integrate to one. Therefore, very complex models can account for many

datasets, but distributing the density over all the data sets inevitably results in more modest

marginal likelihood. Otherwise simpler models can reach high marginal likelihood, but only

for a limited set of datasets. This property of the decreasing in the marginal likelihood as

models become more complex is related to the Occam’s Razor [9]. Consequently, the Bayesian

score tends to select models less complex than MLC does, thus performing a more optimal

trade-off between complexity and fitness to data.

1.5.3 Bayesian Information Criterion (BIC)

One of the main difficulties in the implementation of the Bayesian approach is the compu-

tation of the marginal likelihood. This integration problem is difficult because the integral

1.15 is typically of high dimension and very expensive to compute. We can alternatively

approximate the marginal likelihood using approximating methods such as stochastic simula-

tion, Laplace approximations and Monte Carlo Methods. An overview of these approximating

methods for the marginal likelihood can be found, for example, in [51].

The Bayesian Information Criterion (Schwarz, 1978) [125] is a quick and easy way to

compute a large sample approximation to the marginal likelihood. BIC is derived from the

Laplace approximation to the log marginal likelihood as follows4:

log P (D |M) ≈ log P (Θ̂M |M) + log P (D | Θ̂M ,M) +
d

2
log 2π − d

2
log |A| (1.17)

where d is the number of free parameters in the model, A is the d× d negative of the Hessian

4Here we only depict the main ideas underlying the derivation of the BIC score, which are mainly based on

the derivation given in [51]. The full derivation of BIC was given by Schwarz in [125].
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matrix which measures the curvature of the log posterior at the MAP estimate (also known

as the observed information matrix) and Θ̂M is some parameter estimate.

BIC can be derived from the Laplace approximation by dropping all terms that not depend

on N (the number of data examples): the first and third term in 1.17. Then we can substitute

the term d
2 log |A| by d

2 logN by assuming that in the limit of large N the Hessian A converges

to N times a full-rank matrix. As a result, we obtain the BIC approximation where the

likelihood is penalized by a term (the BIC penalty) that depends linearly on the number of

the parameters in the model:

log P (D |M) ≈ log P (D |M, Θ̂M )− d

2
log N (1.18)

Thus, BIC approaches the Occam’s Razor by penalizing overcomplex models. Moreover,

since the BIC approximation does not involve the prior we can use it either with the ML or

MAP estimates. Assuming that we choose the ML estimate Θ̂ML of M , that is, its MML

hypothesis, and that ‖ M ‖ is the model’s dimension (the number of its free parameters d)

we can derive the BIC criterion from the BIC approximation as follows:

Definition 16. The Bayesian Information Criterion (BIC) of a model M given the

training data D is defined as follows

ScoreBIC(M,D) ≡ l(MML : D)− 1
2
‖M ‖ log N (1.19)

The BIC model selection procedure is to choose the model for which the BIC criterion

is maximized. The BIC criterion is very attractive because it is extremely easy to compute.

However, this simplicity comes at a cost in accuracy. The basic assumption of BIC (the

Hessian converges to N times a full-rank matrix) only holds for models in which all the

parameters are identifiable and well-determined. And since this is often not true, it can

conduce to more biased models.

Finally note that BIC score can be derived from the penalized log-likelihood formula 1.13

when f(N) = 1
2 log N , thus:

ScoreBIC(M,D) = ScoreMLC(M,D)− 1
2

log N ‖M ‖ (1.20)
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1.5.4 Akaike’s Information Criterion (AIC)

The Akaike’s Information Criterion (AIC) [2] is a simple criterion based on two basic concepts

of the information theory: the entropy and the K-L divergence. The entropy measures the

amount of information of a random variable. K-L divergence is a measure that compares two

distributions. Other concepts of information theory which are very useful for model selection,

particularly for learning Bayesian networks are the mutual information and the conditional

mutual information. These concepts are based on the concept of the conditional entropy,

a measure related to the entropy. In the next subsection we briefly overview these basic

concepts of information theory5. Then we present the main issues related to the derivation

of the AIC which are mainly based on the work [17]. The original derivation of the AIC was

given by Bozdogan in [12].

Information Theory: Basic Concepts

Information theory deals with the efficient and accurate storage, transmission, and represen-

tation of information. Suppose that we want to transmit symbols x randomly drawn from a

probability distribution P (X) over a digital channel (e.g. a symbol x may be a message and

the digital channel may be the Internet). The information of each symbol x is quantified as

the number of bits that we need to encode it. Naturally, we should encode our data so that

symbols which occur more frequently use fewer bits to encode them. Shannon’s source coding

theorem tells us that the optimal number of bits to encode a symbol x with probability P (x)

is the negative logarithm of this probability −logP (x). Therefore, a probabilistic model can

also be used to achieve efficient storage, transmission and data compression.

Definition 17. Let X be a discrete random variable taking values x in a finite subset ΩX .

Let P be a probability distribution over X. The entropy of the random variable X is defined

as follows:

H(X) ≡ −
∑

x∈ΩX

P (x) log P (x) (1.21)

In terms of encoding the entropy H(X) can be interpreted as the the expected number

of bits needed to store the values of X.
5For an in-depth study of the elements of information theory we refer interested readers to [30].
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Definition 18. Let X,Y be two discrete random variable taking values in the finite subsets

ΩX and ΩY , respectively. The conditional entropy of X given Y is defined as follows:

H(X | Y ) ≡ −
∑

y∈ΩY

P (y)
∑

x∈ΩX

P (x | y) log P (x | y)

H(X | Y ) measures the entropy of X knowing the values of Y . The higher the conditional

entropy the more we can predict the state of a variable, knowing the state of the other variable.

In terms of encoding, H(X | Y ) measures the optimal number of bits needed to encode the

value of X when the value of Y is given. Intuitively, H(X | Y ) ≤ H(X). The difference

between these two values is the mutual information between X and Y , which measures

the information that Y provide about X. The conditional mutual information measures

the information that Y provide about X when the value of other variable is known. More

formally:

Definition 19. Let X, Y be two discrete random variable taking values in the finite subsets

ΩX and ΩY , respectively. The mutual information between X and Y is defined as follows:

I(X,Y ) ≡ H(X | Y )−H(X) (1.22)

Definition 20. Let X, Y and Z be three discrete random variable taking values in the finite

subsets ΩX , ΩY and ΩZ , respectively. The conditional mutual information between X

and Y given Z is defined as follows:

I(X,Y | Z) ≡ H(X | Z) + H(Y | Z)−H(X,Y | Z) (1.23)

The mutual information is used in model selection to measure the degree of dependence

between two random variables. This tell us not only if two variables are dependent but also

how close their relationship is. For instance, if I(X,Y ) = 0 then X and Y are completely

independent. Moreover, the mutual information I(X,Y ) increases with the increase of the

degree of dependence between X and Y . The conditional mutual information measures the

degree of dependence between two random variables knowing the state of the other variable.

Thus if I(X,Y | Z) = 0 then X and Y are completely independent given Z.
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Kullback-Leibler (K-L) divergence

In terms of encoding the entropy H(X) can be interpreted as the expected coding cost of the

distribution P when −logP (x) numbers of bits to encode each symbol x are used. Therefore,

the entropy of a random variable X with probability distribution P can be expressed as the

expectation value of the negative logarithm of the probability P , that is:

H(X) = −EP [log P (x)] (1.24)

Suppose now, that the true distribution P of the data is unknown, but we want to learn

an approximating distribution Q from data. The optimal code with respect to Q would use

−logQ(x) bits for each symbol x. Therefore, the expected number of bits to encode X is

given by EP [log Q(x)] where expectations are taken with respect to the true distribution.

We call this expected value the cross entropy and denote it by H(P,Q).

Definition 21. Kullback-Leibler (K-L) divergence (also known as the relative en-

tropy)6 between two distributions P and Q is defined as the difference between the cross

entropy H(P,Q) and the entropy H(X)

KL(P ‖ Q) ≡ H(P,Q)−H(X) =
∑

x∈ΩX

P (x) log
P (x)
Q(x)

(1.25)

In terms of encoding, K-L divergence is the quantity that measures the information loss

when the model Q is used to approximate P (the truth). It can be shown that H(P,Q) ≥
H(X) always, with equality if and only if the two distributions are identical. It follows that

KL(P ‖ Q) ≥ 0, with KL(P ‖ Q) = 0 iif P = Q. Thus, KL(P ‖ Q) = 0 means that there

is no information loss when the model Q reflects the truth P perfectly. However, in some

real applications, it is more probable that some information will be invariable be lost when a

model is used to approximate full reality, thus KL(P ‖ Q) > 0. This justifies thinking of K-L

divergence as a pseudo distance between two distributions. Here the word “pseudo” is used

because K-L divergence is not symmetric, that is, KL(P ‖ Q) �= KL(Q ‖ P ). Moreover, it

does not obey the triangle inequality.
6In the literature the terms relative entropy and cross entropy are often used synonymously, to refer to

KL(P ‖ Q) and H(P, Q). As argued in [131] the probable reason is that for minimization either can be used.
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Derivation of the Akaike’s Information Criterion

Consider the model selection task and assume that no hypothesis in the set of candidate

models is the true distribution and hence, the goal is the selection of the best approximating

hypothesis. Let Mh be a point hypothesis inM and Mtrue be the unknown true distribution

Ptrue. The best point hypothesis based on the K-L divergence is the one which losses less

information with respect to other candidate hypotheses, that is, the hypothesis MKL that

minimizes the K-L divergence KL(Mtrue ‖ Mh) over the set M of candidate models. More

formally,

MKL ≡ arg min
Mh∈M

KL(Mtrue ‖Mh) = arg min
Mh∈M

H(Mtrue,M
h)−H(Mtrue) (1.26)

The K-L divergence cannot be used directly as a criterion in model selection because this

requires the knowledge of the true distribution Mtrue. Since the second term H(Mtrue) in

Equation 1.26 depends only on the unknown true distribution, we can treat it as a constant

across models. Thus, we only need to estimate the cross entropy H(Mtrue,M
h). Let us

further define the relative expected K-L divergence, denoted by KLrel, as the negative of

the cross-entropy, that is, KLrel(Mh) ≡ −H(Mtrue,M
h). Given an observed dataset D, we

can use KLrel as a model selection criterion only if we are able to estimate the expectation

EPtrue[log P (D|M,ΘM )] for each model M . Akaike in [2] found one such estimate based

on the maximized log-likelihood function. This estimate is the expected empirical maximized

log-likelihood. Since an unbiased estimator of the expected maximized log-likelihood is simply

itself we obtain

EPtrue[log P (D|M,ΘM )] = log P (D|M, Θ̂ML) (1.27)

From equation 1.12 comes that KLrel(M,D) = l(MML : D). This estimate turns out

not to be a suitable criterion because it has two source of errors: i) the bias error resulting

for the use of the ML estimator; ii) the variance error that depends strong on the model’s

dimension ‖M ‖. In order to correct for this two sources of errors, Akaike found the following

asymptotic bias correction for the estimate of the relative KL divergence:

KLrel(M,D) = l(MML : D)− ‖M ‖ (1.28)

Next, Akaike multiplied this result by -2, and this became Akaike’s information criterion

for model selection.
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Definition 22. The Akaike’s Information Criterion (AIC) of a model M given the

training data D is defined as:

ScoreAIC(M,D) ≡ −2 l(MML : D) + 2 ‖M ‖ (1.29)

Therefore, minimizing AIC is approximately equivalent to minimizing the expected K-L

divergence between the true distribution and the approximating distribution. Finally, note

that AIC can be also derived from the penalized log-likelihood formula of Equation 1.13 when

f(N) = 1. By dividing the AIC derived by Akaike from Equation 1.29 by -2, we obtain

ScoreAIC(M,D) = ScoreMLC(M,D)− ‖M ‖ (1.30)

1.5.5 Minimum Description Length (MDL)

BIC criterion has an alternative formulation in terms of information-theoretic concepts: the

Minimun Descriprion Length (MDL) principle introduced by Rissanen in [116]. MDL principle

attempts to describe the data using a minimum encoding approach: the more we can compress

the data, the more regularity we can detect in the data, the more we can learn about the data.

Thus, the optimal model is the one that compresses the data most.

The material presented in this section is mainly based on the Grunwald’s tutorial on

the MDL principle [53]. Let us begin with a formal definition of the code-length for a code.

Suppose we have a countable set S = {s1, s2, . . . sm} of symbols.

Definition 23. The code-length CL(s) for a symbol s ∈ S using a code C is defined as

the number of bits needed to encode s using the code C.

Let M = {M1,M2, . . . ,Mm} be a set of candidate probabilistic models, each of them

containing a set of point hypotheses Mh. Given a training dataset D of N i.i.d. examples

of X sampled from the unknown joint distribution P (X), the best hypothesis based on the

MDL principle is the one which minimizes the total code-length needed to describe the model

and the data using that model. More formally:

MMDL ≡ arg min
Mh∈M

CL(Mh) + CL(D |Mh) (1.31)
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where the first term CL(Mh) is the code-length of the hypothesis Mh, that is, the number of

bits needed to encode Mh and the second term CL(D | Mh) is the code-length of the data

D using Mh, that is, the number of bits needed to encode the data when encoded with the

help of that hypothesis. The best model to explain D is the smallest model containing the

selected Mh.

The basic principle behind MDL modeling is to find a code that minimizes the code-length

over all datasets D which can be “well modelled” by some probabilistic model. Therefore,

we need to associate a code with each hypothesis Mh = P (D | Mh,ΘM ), or more precisely,

a code-length function over datasets. Since candidate hypotheses are themselves probability

distributions over the possible datasets, each in turn defines an optimal code with code-length

given by − log P (D|Mh,ΘM ). Hence, the code-length for the second term in Equation 1.31

corresponds to the negative of the log-likelihood of the hypothesis Mh given data D

CL(D |Mh) = − l(Mh : D) (1.32)

Similarly, we need to find a code to compute the code-length CL(Mh) in the first term of

Equation 1.31. To this end we need to associate a code for each point hypothesis Mh ∈M. In

[117] Rissanen proposed to associate a fixed code with each model M instead of encoding each

point hypothesis Mh. This fixed code is designed such that whenever there is a hypothesis

Mh ∈M that fits the data well, in the sense that CL(D |Mh) is small, then the code-length

of this fixed coded will also be small. The hypothesis within the model M for which the

code-length CL(D | Mh) is minimal is the ML hypothesis MML. This code is possible to

construct and is called the stochastic complexity code.

Definition 24. The stochastic complexity code of a dataset D given a model M is the

code CSC that minimizes the total code-length, that is,

CSC ≡ arg min
c∈C(D)

− l(MML : D) + KN (1.33)

Choosing a code such that the constant KN is as small as possible yields the optimal code.

The minimal KN is called the parametric complexity of M , a measure related to the number

of degrees of freedom for parameters and also to the geometric structure of the model. We

further define the stochastic complexity of a dataset as follows:
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Definition 25. The stochastic complexity of a dataset D given a model M , denoted by

SC(D : M), is the shortest code-length obtained when the encode is done with the help of M ,

that is, this is the code-length resulting when D is encoded using the stochastic complexity

code CSC .

Further by setting KN = 1
2 log N ‖ M ‖ where 1

2 log N bits are used to represent each

parameter in M , we arrive to the definition of the MDL score as the stochastic complexity

SC(D : M).

Definition 26. The Minumum Description Length(MDL) score of a model M given the

training data D is defined as:

ScoreMDL(M,D) ≡ − l(MML : D) +
1
2

log N ‖M ‖ (1.34)

Model selection by MDL principle is equivalent to inference by Bayesian approaches. The

maximization of the log of the relative posterior probability implicit in Bayesian methods

is equivalent to minimize the total description length of model and data. As depicted in

Equation 1.16, the log of the relative posterior probability is the sum of two components: the

log prior and the log marginal likelihood. If we interpret both these terms as code-lengths,

the negative logarithm of the relative posterior probability can be interpreted as the total

description length of model and data.

Finally, from a practical point of view we can also derive MDL from the penalized log-

likelihood formula in Equation 1.13. By setting f(N) = 1
2 logN and then multiplying by -1

we obtain

ScoreMDL(M,D) = − ScoreMLC(M,D) +
1
2

log N ‖M ‖ (1.35)

1.5.6 Predictive Model Selection Criteria

An alternative approach to model selection is to choose a model for predictive purposes. Given

a set M = {M1,M2, . . . ,Mm} of candidate probabilistic models, and a training dataset D,

the model selection task is to choose a model M ∈M so that the predictive joint distribution

P {X1,X2, . . . ,Xn} yields the most accurate predictions. This approach requires the defini-

tion of a loss function in order to assess the quality of each model in terms of its predictive
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performance [78]. A loss function is a function that maps each element of a sample space

onto a real number representing the loss or regret associated with the event. A predictive

model selection criterion, therefore, is dependent on the loss function used.

One of the loss functions commonly used in model selection is the logarithmic loss func-

tion on the joint distribution known as log-loss. To compute the log-loss we assume that

the examples in the training dataset D are observed sequentially, that is, one after the

other. When the tth actual observation is received, the learner suffers a loss equal to

−log P (x(t) | x(1),x(2), . . . ,x(t−1)) which is based on the previous cases. Assuming i.i.d.

cases this individual loss becomes simply −log P (x(t)). By cumulating over N cases we

obtain the log-loss.

Definition 27. The log-loss of a hypothesis Mh given a dataset D =
{
x(1),x(2), . . . ,x(N)

}
of N i.i.d. cases is the total loss, that is,

logLoss(Mh,D) ≡ − log P (D |Mh) = −
N∑

t=1

log P (x(t) |Mh) (1.36)

The model selection task for predictive purposes is to choose the model M ∈M containing

the point hypothesis Mh that minimizes the log-loss. This measure is just the negative log-

likelihood −l(Mh : D), which means that now we are treating the score as a penalty, rather

than a measure of goodness [33]. Thus for each model M we must estimate the parameters ΘM

from data so that the log-loss of the resulting hypothesis Mh is minimal. We are interested

in obtain a good estimate of the predictive performance. To this end we could use the ML

estimate Θ̂ML as we did previously. However, if we take into account the effect of sampling

error, coupled with the bias induced by the fact that the ML estimate is itself chosen so as

to optimize the performance, this will lead to an over-optimistic estimate of the performance

[33]. On the other hand, if we use the entire available data D to estimate the parameters

and estimate the log-loss, the resulting hypothesis Mh will overfit the training data. This

problem is more pronounced with models that have a large number of parameters. A much

better idea is to split the given data in a way that we can ensure that in each individual loss

in Equation 1.36 the case x(t) that is being predicted does not in any way contribute to the

estimate Θ̂(t)
M used in that term.

A popular approach for estimating the predictive performance of a model is hold-out

testing. In this scheme, the available data is split into a training set and a hold-out testing
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set. For each candidate model M ∈ M, the training set is used to learn a hypothesis Mh,

that is, to estimate the parameters for that model M . Then, the test part is used to estimate

the performance of the resulting hypothesis Mh. The model M ∈M with the lowest hold-out

loss is chosen. If we further are interested in obtaining the “best hypothesis”, then all the

available data is used to estimate the parameters of the best model. However, the simple

model selection criterion based on hold-out validation is not advisable when the data set is not

large enough. As empirically shown [4], if we use a hold-out score for small datasets there is a

bias toward simplicity in the chosen models. The estimates of the hold-out loss are obtained

using a hypothesis with parameters estimated from a smaller sample than those sample that

will be used to estimate the parameters of the final hypothesis. Moreover, the variance also

increases because we use a small sample to estimate the error. A popular approach avoiding

this problem is cross-validation.

Cross-validation [132] is a well established data re-sampling method that can be used

to reduce the bias of the performance estimates. In the k-fold cross validation scheme, the

training data is partitioned into k subsets (folds) of equal size. Each subset is used in turn as a

test set, while the union of the remaining k-1 parts are used as training set. For each candidate

model M ∈M and each fold k the resulting training set is used to learn a hypothesis (i.e. to

estimate the parameters) and then the corresponding test set is used to compute the loss for

that hypothesis. The k-fold-CV score is the final estimate of the expected loss given by the

averaged value over the k loss values. An extreme case is the leave-one-out cross-validation

when k = N and each test set contains a single example.

An alternative approach to estimate the predictive performance is the Dawid’s prequential

approach [35] where candidate models are compared by measuring their cumulative loss. This

approach is equally applicable when the cases are not modeled as i.i.d. [33]. The rationale

is to compute the performance estimate predictively and sequentially, so why it is called

“prequential”. For each candidate model M ∈ M the Preq score is computed through a

sequential updating of the predictive distribution. This approach corresponds to an on-line

learning paradigm. We assume that the examples in the training dataset D are observed

sequentially. At each time point t the actual example x(t) is evaluated using the hypothesis

Mh(t−1)
with the parameter estimate Θ̂(t−1)

M induced from the first t− 1 examples. Then, the

actual example x(t) is used to update the actual hypothesis Mh(t)
. As a result, the Preq score
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is the resulting cumulative loss.

Both cross validation and prequential approaches for model selection are easy to implement

and are computationally feasible for datasets with moderate size. However, both methods

can be computationally very expensive when applied for large datasets. Hence methods to

reduce the computational cost are desirable. On the other hand, cross-validation depends

on the way the data is partitioned into the k folds [78]. We can always improve an estimate

obtained by cross-validation, for instance, by repeating the algorithm over several partitioning

and then by averaging the obtained results. The prequential approach, instead, is sensitive to

the ordering the data is processed with. Various methods for avoiding the effect of examples’

ordering in model selection have been addressed, for instance, in [79].

Under suitable smoothness conditions, cross-validation based on the log-likelihood will

be asymptotically equivalent to AIC, and the prequential log-likelihood to BIC [33]. On the

other hand, maximizing the log marginal likelihood leads to choosing the model minimizing the

prequential log-loss. Thus, the Bayesian score defined as the log marginal likelihood is a special

case of the prequential approach for model selection [78]. Moreover, the prequential approach

can be also regarded as a predictive coding system [116]. Finally, the frequentist, information-

theoretic and Bayesian approaches to model selection are closed linked to a specific loss (the

log-loss related to the log-likelihood). Cross-validation and prequential approaches have the

advantage of being easily modified for different loss functions [78].

1.6 Concluding Remarks

In this chapter we have presented some basic concepts and approaches to statistical inference

that are involved in the problem of learning probabilistic models from data. The main pur-

pose was to give a theoretical background in order to contrast the fundamental philosophies

underlying the derivation of different estimators and model selection criteria. A good under-

standing of the philosophies adopted under the different approaches to model selection in the

general problem of learning probabilistic models from data is essential for a good understand-

ing and objective evaluation of the existing approaches to the particular problem of learning

BNCs. In the next chapter we will introduce the Bayesian networks and will formulate the

task of learning their structures as a model selection problem.



Chapter 2

Learning Bayesian Networks

2.1 Introduction

Early work on inductive inference in Artificial Intelligence was centered in symbolic manipula-

tion and logical representations until Pearl in 1988 [108] directed the attention to probabilistic

graphical models, and in particular, to Bayesian networks. Probabilistic graphical models pro-

vide a compact representation of joint probability distributions. They are graphs in which

nodes represent random variables, and the (lack of) arcs represent conditional independence

assumptions. Hence, probabilistic graphical models combine graph theory and probability the-

ory. The graph part provides a data structure by which the human experts can easily model

and interpret the inter-relationships among the variables. This graph structure provides the

notion of modularity by combining simple parts of a complex system. Instead, the probability

theory ensures that the system as a whole is consistent.

As pointed out in the Preface of the Jordan’s book [65]:

“Graphical Models in general and Bayesian networks in particular provide a nat-

ural tool for dealing with two problems that occur throughout applied mathematics

and engineering: uncertainty and complexity and in particular they play an

increasingly important role in the design and analysis of machine learning algo-

rithms.”

In this chapter we introduce the framework of Bayesian networks and the problem of

31
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learning Bayesian networks from data. Next, we focus on score-based approaches and pose

the structure learning problem as a search problem. We then briefly present the derivation of

the different estimators and model selection criteria for the particular framework of Bayesian

networks that we have just reviewed in Chapter 1. Finally, we introduce heuristic search

methods and the hill-climbing algorithm for learning the Bayesian network structure upon

which we relied to implement our adaptive algorithms for learning k-DBCs.

For further reading in learning Bayesian networks there is a great amount of literature.

A classical tutorial [58] introduces the Bayesian methods for learning the parameters and the

structure of Bayesian networks. The recent book [103] gives a fine, mathematically precise

overview of the subject, and provides an in-depth understanding of both the underlying foun-

dations and the learning algorithms presented. The chapters 9, 10 and 11 in the book [33] also

review various issues related to parameter and structure learning of Bayesian networks. The

paper [123] surveys the classical algorithms for learning the structure of Bayesian networks.

The book [65] presents a collection of papers discussing recent advances.

2.2 Definition of Bayesian Networks

Bayesian networks graphically represent the joint probability distribution of a set of random

variables in a problem domain (e.g. cancer diagnosis). A Bayesian network is composed of

a qualitative part (its structure) and a quantitative part (its parameters). Random variables

are represented as nodes in the graphical structure, and the dependencies between these

variables are represented by directed arcs. A directed arc can also be used to represent causal

dependencies (e.g. the dependence between a disease and a symptom) as illustrated in the

Bayesian network for lug cancer diagnosis in Figure 2.11. The uncertainty in the domain

is represented by conditional probabilities that express our beliefs about the strengths of

the direct dependencies between variables. For instance, Table 2.1 gives the conditional

probabilities of each possible value of the variable Dyspnea, given each possible combination

of values of its parent nodes Has bronchitis? and Tuberculosis or Cancer?.

As pointed out in [101], despite the name, Bayesian networks do not necessarily imply

1This Bayesian network first appeared in [88] and was taken from the Hugin software [104] available on-line

at http://www.hugin.com.



2.2. Definition of Bayesian Networks 33

Figure 2.1: The Asia Bayesian network for cancer diagnosis

Table 2.1: The CPT for the variable Dyspnea in the Bayesian network for cancer diagnosis
Parent 1 Parent 2 P(Dyspnea?| Parents)

Has bronchitis? Tuberculosis or Cancer? yes no

yes yes 0.9 0.1

yes no 0.8 0.2

no yes 0.7 0.3

no yes 0.1 0.9

a commitment to Bayesian statistics. Indeed, it is common to use frequentist approaches

to estimate their parameters. Rather, they are so called because they use Bayes’ theorem

for probabilistic inference. Inference in Bayesian networks means computing any desired

posterior conditional probability of some variables given any combination of evidence (obser-

vations) on other variables2. For example, given the evidence that the patient is a smoker

and he has visited Asia, we can compute the posterior probability that the patient has lung

cancer.

Let us now more formally define a Bayesian Network. Let X = {X1,X2, ...,Xn} be a set

of random variables for a domain under study.

Definition 28. A Bayesian Network over X is a tuple BN = (S,ΘS) where the first

component, the network structure S = (X,A) is a directed acyclic graph (DAG) whose nodes

2For an in-depth study of inference in Bayesian networks the reader is referred to Pearl’s book [108].
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represent the random variables and whose arcs represent direct dependencies between vari-

ables; and the second component ΘS = {Θ1,Θ2, . . . ,Θn} is the set of conditional probability

functions where each Θi = P (Xi|Pai) ∈ ΘS represents a conditional probability function over

the values of Xi given the values of its parents Pai. Moreover, the DAG S satisfies the Markov

condition: each node is independent of all its non-descendants given its parents in S. This

allows the joint probability distribution over X to be represented in the factored form:

P (X1,X2, ...,Xn) =
n∏

i=1

P (Xi | Pai) (2.1)

The factorization 2.1 of the joint probability distribution is fundamental because it allows

us to specify the joint distribution more compactly, thus reducing the number of parameters

needed to specify the conditional probability functions. In the most general case, the variables

can be continuous or discrete, and the conditional probability functions can be represented

in a variety of ways. In this thesis we are restricting to the case when X = {X1,X2, ...,Xn}
represents a set of discrete random variables where each variable Xi may take on values

from its finite domain ΩXi . Assuming discrete variables, each P (Xi|Pai) ∈ ΘS represents

a conditional probability table (CPT). Each CPT associated to the variable Xi is composed

of qi rows, one for each possible parent configuration paj ∈ ΩPai . The entries in each row

associated to the configuration paj represents the probabilities P (Xi = xk|Pai = paj) for

each possible value xk ∈ ΩXi .

2.3 The Problem of Learning Bayesian Networks

While the compact and comprehensible representation considerable facilitates knowledge ac-

quisition, eliciting Bayesian networks from experts can be a very expensive and time consum-

ing task mainly due to the need of specify a great number of probabilities. When no expert

knowledge is available, techniques for automatically building Bayesian networks from data

would be desirable.

The problem of learning Bayesian networks from data can be formally stated as follows.

Given a training dataset D =
{
x(1),x(2), . . . ,x(N)

}
of i.i.d. examples of X and some prior

information ξ (background knowledge), find the Bayesian network BN = (S,ΘS) that best

matches D. We can distinguish a variety of learning tasks, depending on whether the structure
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is known or unknown, the data is complete or incomplete, and there are hidden variables or

not. The case of known structure and complete data is the easiest. In this case, we only need

to learn the CPT’s entries. Each case can be placed into the CPT entries corresponding to

the values of the parent variables at each node. Moreover, sequential updating of parameters

is fairly straighforward: we only need to update the sufficient statistics3. In the context of

this work we consider the case when the structure is unknown, there are no hidden variables

and the data is complete. Under all these assumptions the learning problem comprises two

tasks: i) learn the network structure S; ii) learn the set of parameters ΘS . Approaches to

learn the network structure can be further classified into two types:

• constraint-based approaches (dependency analysis & search) where some kind of

conditional independence (CI) test, such as χ2 test or mutual information test are used

to locally measure the dependency relationships between the variables. Then, a search

algorithm is used to find a model that is consistent with the observed dependencies and

independencies [22, 23, 24, 28, 123].

• score-based approaches (scoring & search) where some model selection criterion

(scoring function) is used to measure the fitness of each possible structure to the ob-

served data. Then, a search algorithm is used to find one (or more) model that optimizes

the score in the space of feasible hypotheses [15, 16, 27, 29, 45, 59, 82, 119].

These two approaches have their advantages and disadvantages. Constraint-based ap-

proaches are usually asymptotically correct when the probability distribution of data satis-

fies certain assumptions, but they have several disadvantages. First, the time complexity is

very high since CI tests with large condition-sets are computational expensive. Second, they

relay on an arbitrary significance level to test for independence. Score-based approaches,

on the contrary, are computationally less expensive (they have less time complexity in the

worst case, i.e., when the underlying DAG is densely connected), but they may not be able to

find the optimal solution due to their heuristic nature [24]. We further focus on score-based

approaches to learn Bayesian Network structures.

3Standard techniques to accomplish sequential updating of parameters using a Bayesian approach can be

found in [33, 104, 130].
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2.4 Learning Bayesian Networks as a Search Problem

Score-based approaches to learn Bayesian networks typically consist of identifying one or

more DAG structures that fit a set of observed data well according to some scoring criterion.

Once the structure is identified the parameter are estimated from data. The task of selecting

the structure (a probabilistic model) is a model selection problem.

Suppose we have a set S = {S1, S2, . . . , Sm} of Bayesian network structures. The model

selection problem in the Bayesian network framework can be formally posed as follows. Given

a training dataset D =
{
x(1),x(2), . . . ,x(N)

}
of N i.i.d. examples of X sampled from the

unknown joint distribution P (X) and some prior information ξ (background knowledge), find

the structure S ∈ S containing the Bayesian network BN = (S,ΘS) that best matches D
according to a given scoring function Score(S,D). As stated in Section 1.4, model selection

can be exposed as a discrete optimization problem where the scoring function is optimized in

the space of possible network structures.

Discrete optimization problems [1] are defined by a finite set of solutions, the solution

space Ω =
{
ω1, ω2, . . . , ω|Ω|

}
, together with an objective function f : Ω → �. The objective

function is a quantitative measure of the quality of each solution that assigns a real value to

each element in the solution space, that is, f(ω) ∈ �,∀ω ∈ Ω . The goal when addressing

a discrete optimization problem is to find solutions that minimize/maximize the objective

function. A solution, ω∗ ∈ Ω, that minimizes/maximizes the objective function is a globally

optimal solution. A procedure to solve discrete optimization problems is essentially a search

algorithm that explores the space of possible solutions while optimizing the objective function.

Chickering et al. in [26] proved that the optimization problem of finding an optimal

Bayesian network structure is NP-hard. The number of possible DAGs grows super-exponentially

with the number of variables, a fact that can be deduced using the recursive Robinson’s for-

mula presented in [118]. One way to handle NP-hard discrete optimization problems is to

develop heuristic search algorithms with the goal of identifying good or near-optimal solu-

tions. Therefore, score-based approaches to learn the structure of a Bayesian Network can

be exposed as a search problem where each state in the search space identifies a possible DAG.

The search method utilizes the value returned by the score to help guide the search. In the

next sections we briefly present the main results related to the three major factors that affect
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the performance of score-based approaches: the parameter estimator to learn the parameters;

and the scoring function and the search method to learn the structure.

2.5 Parameter Estimators

Learning the parameters of a Bayesian Network with known structure, discrete variables

and complete data is fairly straightforward. The structure reduces the dimensionality of the

parameter space to the point where it is feasible to estimate parameters from data. The

main issue is that we can solve separately each estimation problem for each local multinomial

model associated to each variable and each possible parent configuration. We further consider

the same notational convention presented in [58].

Let consider a domain X of discrete random variables {X1,X2, . . . ,Xn} where each vari-

able Xi may take on values from its finite domain ΩXi =
{
x1

i , x
2
i , . . . , x

ri
i

}
where ri represents

the number of possible values of Xi. Define qi to be the number of possible parent config-

urations of Xi, Xi = k the event that Xi = xk
i and Pai = j the event that Pai = paj

i .

Let Sh denote the hypothesis that the joint distribution of X can be factored according

to the structure S, that is, we define Sh to be true if there exists ΘS ∈ ΩΘS
such that

ΘS = {Θ1,Θ2, . . . ,Θn} where

P (X | Sh,ΘS) =
n∏

i=1

P (Xi | Pai, S
h,Θi) (2.2)

Given the hypothesis Sh, the Bayesian Network BN = (S,ΘS) defines the factorization

2.2 of the joint probability distribution over X as a product of local distribution functions

P (Xi | Pai, S
h,Θi) parameterized by the set of parameters Θi. Each Θi ∈ ΘS represents

the parameters of the CPT associated to the variable Xi which is composed of qi rows, one

row for each possible parent configuration Pai = j. Let further define the set of parameters

Θi as Θi = {Θi1,Θi2, . . . ,Θiqi}, where each Θij represents the parameters of the CPT’s row

associated to the parent configuration Pai = j.

Assumption 1. Multinomial local models: Each local distribution P (Xi | Pai, S
h,Θi)

associated to the variable Xi belongs to the multinomial family and can be further decompose

as a product of local multinomial models Mij = P (Xi | Pai = j, Sh,Θij), one for each

possible parent configuration Pai = j. Each Θij = {θij1, θij2, . . . , θijri} represents the set of
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parameters of Mij where each θijk is the probability P (Xi = k | Pai = j) for each possible

value xk
i in ΩXi .

Assumption 2. Complete Data: The training dataset D =
{
x(1),x(2), . . . ,x(N)

}
of N

i.i.d. examples of X sampled from the unknown joint distribution P (X) is complete, that is,

there is no missing values.

Given the hypothesis Sh and under Assumption 2 we can obtain the sufficient statistics

of a multinomial Bayesian network if we just count the number of times each variable value

and each possible parent configuration is observed in D. The set of sufficient statistics

of a multinomial Bayesian network is therefore the set of frequency counters T(D | S) ≡
{Nijk | i = 1 . . . n, j = 1 . . . qi, k = 1 . . . ri}, where each Nijk is the number of cases in D such

that Xi = k and Pai = j.

2.5.1 ML Estimate

As stated in section 1.3.1 maximum likelihood estimation is to maximize the likelihood func-

tion of the overall parameter ΘS given data D. Assuming example independence, the like-

lihood can be written as a product of N terms. Then using the factorization of the joint

distribution given in Equation 2.2 we obtain

L(ΘS : D, Sh) =
N∏

l=1

n∏
i=1

P (x(l) | Θi, Si)

=
n∏

i=1

N∏
l=1

P (x(l) | Θi, Si)

=
n∏

i=1

L(Θi : D, Si) (2.3)

where Si represents the local structure defined by the node Xi and its parents Pai. Under

Assumption 1 of multinomial local models we get further decomposition of the local likelihood:

L(Θi : D, Si) =
N∏

l=1

qi∏
j=1

P (x(l) | Θij ,Mij)

=
qi∏

j=1

N∏
l=1

P (x(l) | Θij ,Mij)

=
qi∏

j=1

L(Θij : D,Mij) (2.4)
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Thus, for each variable Xi and each possible parent configuration paj
i we get an indepen-

dent estimation problem for each local multinomial model Mij . From the properties of the

multinomial distribution we further obtain:

L(Θij : D, Si) =
ri∏

k=1

θ
Nijk

ijk (2.5)

Frequency counting is the method used to determine the ML estimator for a multinomial

distribution given complete data [41]. Hence the ML estimate of each multinomial parameter

θijk ∈ Θij is obtained from the observed relative frequencies. More precisely,

Θ̂ijk =
Nijk

Nij
(2.6)

where Nij =
∑ri

k=1 Nijk, i = 1 . . . n, j = 1 . . . qi, k = 1 . . . ri.

Substituting Equation 2.5 into Equations 2.4 and 2.3 we obtain the likelihood of the

Bayesian Network BN = (S,ΘS). We have that

L(BN : D) ≡ P (D | ΘS , Sh) =
n∏

i=1

qi∏
j=1

ri∏
k=1

θ
Nijk

ijk (2.7)

2.5.2 Bayesian Estimates

In the Bayesian approach to parameter estimation we express our uncertainty on the param-

eters by regarding ΘS as a random vector over the parameter space ΩΘS
and by specifying a

prior distribution P (ΘS | Sh). After observing the data D, the problem of learning the param-

eters for the given structure S is that of computing the posterior distribution P (ΘS | D, Sh).

As proved, for instance in [29, 58, 59], under some nice assumptions the posterior distribution

P (ΘS | D, Sh) can be efficiently computed in a closed-form solution.

Assumption 3. Global Parameter Independence: The global parameters Θi are mu-

tually independent.

Assumption 4. Local Parameter Independence: The local parameters Θij are mutually

independent.

Under Assumptions 3 and 4 of parameter independence we have

P (ΘS | Sh) =
n∏

i=1

qi∏
j=1

P (Θij | Sh) (2.8)
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Under Assumption 2 of complete data and assumptions of parameter independence, the

parameters remain independent given D. Hence the posterior of ΘS is

P (ΘS | D, Sh) =
n∏

i=1

qi∏
j=1

P (Θij | D, Sh) (2.9)

This decomposition is crucial because we can update each parameter Θij of each local

multinomial model independently. Therefore, in the Bayesian approach to parameter estima-

tion we also get an independent estimation problem for each local multinomial model Mij .

By treating each Θij as a random vector, we further assume that Θij has a prior Dirichlet

distribution, which is conjugate to the multinomial distribution.

Definition 29. The Dirichlet distribution of each parameter vector Θij with parameters

{αij1, . . . , αijri} denoted by Dir(Θij | αij1, . . . , αijri) is defined by

P (Θij) ≡ Γ(αij)∏ri
k=1 Γ(αijk)

ri∏
k=1

θ
αijk−1
ijk

where αijk ∈ Z, αijk > 0, αij =
∑ri

k=1 αijk and Γ(.) is the gamma-function, which satisfies

Γ(x + 1) = xΓ(x),Γ(1) = 1 (related to the factorial by Γ(n + 1) = n!).

The conjugate Dirichlet prior perfectly captures the results of past data and allows to

express our prior beliefs in terms of some “imaginary” data. Usually the parameters αijk of

the conjugate Dirichlet are called hyper-parameters in order to differentiate them from the

parameters θijk of the multinomial distribution. Thus, the hyper-parameters αijk can be

though of as “imaginary” counts from our past experience.

Assumption 5. Dirichlet Priors: Each vector Θij ∈ ΘS has Dirichlet prior P (Θij | Sh)

with hyper-parameters αijk > 0, that is, P (Θij | Sh) = Dir (Θij | αij1, . . . , αijri).

Since Dirichlet distribution is the conjugate prior to the multinomial distribution, the

posterior distribution remains in the Dirichlet family and it can be efficiently computed in a

closed-form:

P (Θij | D, Sh) = Dir(Θij | αij1 + Nij1, . . . , αijri + Nijri) (2.10)

where Nijk, as defined, is the number of cases in D such that Xi = k and Pai = j.

From the obtained posterior distribution in Equation 2.10 and the properties of the Dirich-

let distribution we can derive both the Bayesian and the MAP estimate of each multinomial
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parameters θijk for every value of i, j and k in a closed-form solution. The full derivation of the

Bayesian estimates under all the above assumptions, is given, for instance, in [29, 58, 59, 103].

Here we only depict the main results. As defined in Section 1.3.2 the Bayesian estimate can

be obtained by averaging (integrating) the probabilities over the parameter space weighting

their results by the respective posterior probabilities. This yields to the computation of the

posterior expectation as follows:

θ̂ijk = EP (Θij |D,Sh)(θijk) =
∫

θijkP (Θij | D, Sh)dΘij (2.11)

Then we can use the definition of the Dirichlet distribution to solve these expectations.

As a result, we obtain the Bayesian estimate of each multinomial parameter θijk ∈ Θij for

i = 1 . . . n, j = 1 . . . qi, k = 1 . . . ri:

θ̂ijk =
αijk + Nijk

αij + Nij
(2.12)

where Nij =
∑ri

k=1 Nijk and αij =
∑ri

k=1 αijk.

Other alternative is to use the MAP estimate of Θij , that is, the value that maximizes

the posterior distribution

Θ̂ij = arg max
Θij

P (Θij | D, Sh) (2.13)

By solving this optimization problem, we can obtain the MAP estimate4 of each multi-

nomial parameter θijk ∈ Θij for i = 1 . . . n, j = 1 . . . qi, k = 1 . . . ri as follows:

θ̂ijk =
αijk + Nijk − 1
αij + Nij − ri

(2.14)

where Nij =
∑ri

k=1 Nijk and αij =
∑ri

k=1 αijk .

As stated in Section 1.3.2, the MAP estimate is the Bayesian counterpart to the ML esti-

mate and they become equivalent if we assume uniform priors. Note that when in Equation

2.14 all the hyper-parameters αijk are set to 1 we get the ML estimate defined in equation

2.6. Moreover, as argued in [74] if the data was actually generated from the given network

structure, then both ML and Bayesian estimates converge asymptotically to the correct pa-

rameter setting. If not, then they converge to the distribution with the given structure which

is “closest” to the distribution from which the data was generated. A crucial advantage of
4The derivation of the MAP estimate of a binomial parameter, is given, for instance, in [114]. Generalizing

these results we can obtain the MAP estimates for the multinomial distribution.
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both estimation methods is that both can be implemented on-line by accumulating sufficient

statistics.

Although the ML estimator has been the most commonly used estimator for Bayesian

networks, Bayesian estimates tend to be more robust and, furthermore, generally, less sensi-

tive to the presence of zeroes in frequency counts [31]. Note that in many domains and for

real datasets some frequency counts can remain zero even though the underlying parameters

are not. Hence, it is desirable to bias the estimates away from zero. A commonly applied

technique is to smooth the estimates a little thus avoiding 0 values. Usually, frequency coun-

ters are initialized to some small value c. When c = 1 the ML estimates are equivalent to

the MAP estimates with the add-one prior, which in turns is equivalent to the Bayesian es-

timates with uniform priors [128]. More details about these issues with parameter estimates

for Bayesian networks are given in [4, 31, 128].

2.6 Scoring Functions

Given a training dataset D and a set S = {S1, S2, . . . , Sm} of possible Bayesian network

structures, the model selection problem consists of selecting the structure S ∈ S containing

the Bayesian network BN = (S,ΘS) that “best fits” D according to a given scoring function

Score(S,D). We further derive the formulae for the scores that we used in our experiments.

From a practical point of view, not philosophical, we can classify them into four categories:

1. Log-likelihood-based scores: MLC.

2. Penalized log-likelihood scores: MDL/BIC5, AIC.

3. Bayesian scores: BD, BDeu.

4. Predictive scores: k-Fold-CV, Preq.

5Note that MDL leads to the same criterion as BIC differing only by a minus sign, so here we only derive

the BIC score, although in our experiments we will use the MDL score.
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2.6.1 The Maximum Likelihood Criterion MLC

As defined in section 1.5.1, the MLC is the maximized log-likelihood of a Bayesian network

given the training data. From the likelihood of a Bayesian Network given in Equation 2.7 we

can obtain the log-likelihood as follows:

Proposition 2.6.1. The log-likelihood of a Bayesian Network BN = (S,ΘS) is given by

l(BN : D) ≡ l(ΘS : D, S) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijk log θijk (2.15)

Substituting the parameters θijk to the ML estimates θ̂ijk given in Equation 2.6 into

Equation 2.15 we obtain the MLC for Bayesian networks:

ScoreMLC(S,D) ≡ l(Θ̂ML : D, S) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij
(2.16)

2.6.2 Penalized Likelihood Scores: BIC/MDL and AIC

We can derive AIC and BIC using the general formula 1.13 of penalized log-likelihood scores

defined in Section 1.5.1. The formulas for BIC and AIC are given by:

ScoreAIC(S,D) ≡ ScoreMLC(S,D)− ‖ S ‖ (2.17)

ScoreBIC(S,D) ≡ ScoreMLC(S,D)− 1
2

logN ‖ S ‖ (2.18)

where ‖ S ‖ is the dimension of the network structure defined as the number of its

parameters:

‖ S ‖≡
n∑

i=1

qi(ri − 1) (2.19)

2.6.3 Bayesian Scores: BD and BDeu

To derive the Bayesian score for Bayesian networks we follow the same steps for the derivation

of the Bayesian score described in Section 1.5.2. We consider a finite set S of possible

structure hypotheses. Each Sh ∈ S denotes the hypothesis that the joint distribution of X
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can be factored according to the structure S. We express our uncertainty on the structure

by defining a random discrete variable S whose states correspond to the possible hypotheses

Sh. The next step is to place a prior distribution P (Sh) for each candidate hypothesis.

After observing the data D, the prior distribution is combined with the marginal likelihood

P (D | Sh) by means of the Bayes’ theorem in order to obtain the posterior probability of each

structure hypothesis Sh. As a result, the Bayesian score is based on the log of the relative

posterior probability of the structure Sh given the dataset D. The Bayesian score for Bayesian

networks is usually called Bayesian Dirichlet, BD for short:

ScoreBD(Sh,D) ≡ log P (Sh) + log P (D | Sh) (2.20)

To obtain the Bayesian score we need to asses the prior distribution P (Sh) for each

candidate structure and to compute the marginal likelihood P (D | Sh). Cooper et al. in [29]

and Heckerman et al. in [59] proved that under some nice assumptions the marginal likelihood

P (D | Sh) can be derived in a closed-form solution and it decomposes into a product of terms,

one for each local multinomial model. The basic results are summarized in Theorem 2.6.2.

Before enunciating this theorem, let us introduce a last assumption:

Assumption 6. Parameter Modularity: If a node Xi has the same parents in two different

network structures S1 and S2 then the local multinomial distributions associated with this

node are identical, i.e.,

M1
ij ≡ P (Xi | Pai = j, S1,Θ1

ij) = M2
ij ≡ P (Xi | Pai = j, S2,Θ2

ij)

Theorem 2.6.2. Let X = {X1,X2, ...,Xn} be a set of n discrete random variables, where

each variable Xi has ri possible values. Let D =
{
x(1),x(2), . . . ,x(N)

}
be a dataset of N

i.i.d. examples of X. Under assumption 1 of multinomial local distributions; assumption 2

of complete data, assumptions 3 and 4 of parameter independence; assumption 5 of Dirichlet

prior for each local parameter Θij and assumption 6 of parameter modularity it follows that

the marginal likelihood of a Bayesian Network given data, P (D | Sh), can be derived in a

closed-form and it decomposes into a product of terms as follows:

P (D | Sh) =
n∏

i=1

qi∏
j=1

Γ(αijk)
Γ(αij + Nij)

ri∏
k=1

Γ(αijk + Nijk)
Γ(αijk)

(2.21)
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where αij =
∑ri

k=1 αijk, Nij =
∑ri

k=1 Nijk and Γ(.) is the gamma-function.

It is evident from Equations 2.20 and 2.21 that in order to compute the BD score of a

network structure S we need to asses:

1. The structure prior P (Sh).

2. The parameter priors P (ΘS | Sh), that is, all the hyper-parameters αijk for every value

of i, j, and k.

When the number of possible structure is large, the assessment of the prior for each

structure is intractable. The simplest and therefore most common solution is to ignore the

prior component in 2.20 assuming all the candidate structures to be equally probably a

priori. This leads to the log marginal likelihood, one of the most commonly used scores to

learn Bayesian networks. On the other hand, when the structure is complex, in the sense that

the number of parameters is large, the assessment of all the hyper-parameters αijk is also

intractable. For avoiding prior assessments some special cases of the BD score were derived

by using non-informative priors for the parameters.

For different prior assessments we can derive different cases of the BD score. One special

case is the K2 score derived by Cooper and Herskovits in [29]. K2 uses the log marginal

likelihood with the simple non-informative assignment αijk = 1. Other special case is the

BDeu score. BDeu uses the assignment αijk = 1
(riqi)

suggested by Buntine in [15]. The name

BDeu for the Buntine’s assignment was later established by Heckerman et al. in [59] as a

special case of the BDe score, which corresponds to BD with the additional assumption of

likelihood equivalence. This assumption says that for any dataset D, the likelihood of two

structure hypotheses corresponding to any two equivalent network structures is the same.

As proved in [59] the Buntine’s assignment satisfies the property of likelihood equivalence.

Moreover, BDeu also satisfies the property of uniform joint distribution, which means that

every instance of the joint space is equally probable given Sh. Therefore in the BDeu score,

“e” means likelihood equivalence and “u” uniform joint distribution.

The two most commonly used scores to learn Bayesian networks are the Bayesian score

(usually the marginal likelihood) [15, 16, 27, 29, 59] and the MDL score [43, 44, 81, 133, 134].

These scoring functions are asymptotically equivalent as the sample size increases. Moreover,
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they are both asymptotically correct, that is, with probability equal to one the learned

distribution converges to the underlying distribution as sample size increases [10, 58].

2.6.4 Predictive Scores: k-Fold-CV and Prequential

Given a set S = {S1, S2, . . . , Sm} of candidate Bayesian network structures the model se-

lection task is to choose a structure S ∈ S so that the predictive joint distribution yields

the most accurate predictions. Predictive model selection criteria, such as cross-validation

or prequential scores, can be used to learn a Bayesian Network for predictive purposes. As

stated in Section 1.5.6 both approaches require a loss function for measuring the predictive

accuracy. The log-loss given in Equation 1.36 is the loss function most commonly used in

learning Bayesian networks. However, when a Bayesian Network is used in classification

tasks, the zero-one loss is usually employed.

Algorithm 1 The algorithm for computing the k-fold cross-validation score for Bayesian networks
Require: A Bayesian network structure S, a dataset D of i.i.d. examples of X, a loss function lossF(BN,D), the

number of folds k

Ensure: The k-Fold-CV score for the structure S given the data D
1: Split the dataset D in k folds

2: ΘS ⇐ initialize-CPTs(S)

3: BN ⇐ (S, ΘS)

4: for each fold in D do

5: Dtraining ⇐ D\ fold {first: training}
6: learnParameters(ΘS ,Dtraining)

7: Dtest ⇐ fold {second: testing}
8: loss[fold] ⇐ lossF(BN, Dtest)

9: end for

10: return Average(loss[fold]) {the k-Fold-CV score for S given data D}

The cross-validation score for a candidate structure S ∈ S is computed by splitting the

given dataset D into k subsets. Each subset is used in turn as a validation set, while the

union of the remaining k-1 sets are used as training set for parameter estimation. The k-

Fold-CV score is then the average over the k loss values. Algorithm 1 is the algorithm for the

computation of the k-Fold-CV score for Bayesian networks. The extreme case of the algorithm

is the leave-one-out cross-validation when k = N and each subset containing a single example.

We call this score LOO-CV.
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The prequential score for a candidate structure S ∈ S is based on the Dawid’s prequential

approach [35]: for each example the current model is used to do prediction and a individual

loss is returned. Then this example is used to update the parameters. The prequential

score is the resulting cumulative loss. Algorithm 2 is the base algorithm for computing the

prequential score for Bayesian networks.

Algorithm 2 The algorithm for computing the prequential score for Bayesian networks
Require: A Bayesian network structure S, a dataset D of i.i.d. examples of X, a loss function lossF(BN,D))

Ensure: The prequential score Preq for the structure S given the data D
1: ΘS ⇐ initialize-CPTs(S)

2: BN ⇐ (S, ΘS)

3: for each example x in D do

4: cumLoss+ =lossF(BN, x) {first: predict}

5: update(ΘS , x) {second: update the parameters with new example}
6: end for

7: return cumLoss {the prequential score for S given data D}

Whereas the results with cross-validation depend on the way the data is partitioned into

the k folds, the main problem with the prequential score is the fact that the criterion is

sensitive to the ordering the data is processed with. In [79] various methods for avoiding

the effect of examples’ ordering in model selection have been addressed. The results suggest

that averaging over random ordering may be a more sensible strategy for solving the ordering

problem than trying to find the ordering the optimizes the prequential score. Both k-Fold-CV

and Preq scores are easy to implement, however they are computationally more expensive

than those scores computed by means of a closed formula such as MLC, MDL/BIC, AIC, BD

and BDeu. Preq score, particularly, requires learning the parameters from increasingly large

parts of the data and, as usual, learning the final parameters from all the data.

2.7 Heuristic Search Algorithms

A search algorithm, broadly speaking, is an algorithm that takes a problem as input and

returns a solution to the problem, usually after evaluating a number of possible solutions

[144]. The set of all possible solutions to the problem is called the solution space. The

search space consists of a set of states that represent the set of possible solutions and a set

of operators used by the search algorithm to transform one state to another. Brute-force or
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blind search algorithms use an exhaustive search through the search space to reach a goal

state. Blind search is uninformed search because it does not use domain knowledge to move

from the current state to the goal [120].

In principle, blind search algorithms can be applied to any problem. However, many

real-world problems have very strong constrains in computing time and memory space, and

hence, a brute-force approach becomes impractical. We can improve the search process if

we use some problem-specific knowledge to reduce search costs. Unlike brute-force methods,

heuristic6 search incorporates domain knowledge to reduce the amount of time spent search-

ing. Heuristic search algorithms are designed with the goal of traversing the solution space

in searching for optimal/near optimal solutions. The rationale is that of exploring the state

in the search space that is most likely to be nearest to the goal state at each search step.

Usually the problem-specific knowledge to make this exploration is provided by the objective

function which measures the quality of each solution.

In sum, to implement a heuristic search algorithm we need to define the following elements:

i) the search space composed by the solution space and the set of operators; ii) the initial

solution in the solution space; iii) the search strategy; iv) the objective function; v) the goal

state. Usually the goal state is given by means of a stopping criterion (e.g. stop when the

new solution cannot improve the current solution).

The search strategy defines how to organize the search in the search space. Search strate-

gies can be categorized into two types [7]: deterministics and non-deterministics. Among

deterministic strategies there are hill-climbing often called greedy search, repeated hill climb-

ing, tabu search, branch-and-bound, etc. All these algorithms are deterministic in the sense

that all the runs always obtain the same solution. They, as a rule, tend to get stuck in local

maximums. In order to make an effort for escaping from local maximum, non-deterministic

heuristics use randomness so that different solutions can be obtained from different runs. Ex-

amples of non-deterministic search algorithms are generalized hill-climbing (GHC) algorithms

[137] such as simulated annealing, threshold accepting, Monte Carlo search, and so on.

6The word heuristic is derived from the Greek verb heuriskein, meaning “to find” or “to search”. In the

area of search algorithms, it refers to a function that provides an estimate of the solution [120].
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2.7.1 Heuristic Search in Learning Bayesian Networks

As stated, the score-based approach to learn a Bayesian network structure can be posed as

a discrete optimization problem where some scoring function is maximized in the space of

possible structures. To solve this problem using a heuristic search algorithm we first need to

decide what goes into the composition of the search space, that is, the set of its states and

its operators. In the simplest formulation of the search space, the states can be defined to

be individual DAGs and the operators to be local modifications to those DAGs. Usually these

operators are defined as follows: for any pair of nodes X and Y , if X and Y are non-adjacent

we can add an arc in any direction. Otherwise the arc connecting them can be either deleted or

reversed. Moreover, all operators are subject to the constraint that a cycle cannot be formed.

We call these operators addArc, deleteArc and reverseArc, respectively. Chickering in [27]

called the search space defined in this way the B-space. Figure 2.2 shows an example of the

three operators of the B-space.
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Figure 2.2: Operators addArc, deleteArc and reverseArc in the B-space

We can choose the initial solution in the B-space to be a DAG with no edges and iteratively

add arcs that most increase the score subject to never introducing a cycle. On the contrary,

we can start with a complete DAG, and then iteratively delete the arcs that most increase the

score. We can also select an initial solution somewhere in the middle of the search space.

A more sophisticated representation of the search space was proposed by Chickering in

[27]. Instead of using individual DAGs he defined the states to be equivalence classes of

Bayesian network structures. Two Bayesian-network structures are equivalent if the set of

distributions that they represent are identical. The scores mostly used in learning Bayesian

networks do not distinguish among equivalent networks. It makes sense therefore to search
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among equivalence classes of network structures as opposed to the simplest approach of

searching among individual DAGs.

Heuristic search methods can be more efficient if the scoring function is decomposable.

Definition 30. A score for a BN = (S,ΘS) is decomposable if it can be written as a sum

of local contributions, each of which is a function only of one node and its parents

Score(S,D) =
n∑

i=1

Scorelocal(Xi | Pa(Xi), NXi|Pa(Xi)) (2.22)

where for each node Xi, Scorelocal is a local function that only depends on the family of

Xi (the node itself and its parents) and NXi|Pai denotes the subset of sufficient statistics

corresponding to the family of Xi. [27].

Following the distinction made by Bouckaert in [11], we can further distinguish two types

of approaches depending of whether the score is decomposable or not: local score-based ap-

proaches and global score-based approaches. Local score-based approaches explore the de-

composability property of scores and decompose the global optimization problem into local

optimization problems. This decomposition allows the implementation of local search meth-

ods. This means that the change in score that results from the application of an operator

can be computed locally. Only those terms in the sum in Equation 2.22 that correspond

to nodes whose parents have changed need to be re-computed, and hence, we only need to

re-examine the sufficient statistics of the families in consideration. It is evident that MLC,

AIC, BIC/MDL, BD and BDeu scores are all decomposable, since they are based on the log

likelihood (Equation. 2.15) or log marginal likelihood (Equation 2.15) and both decompose

into a sum of terms, one for each node. Global score-based approaches, on the contrary, use

scores which cannot be decomposed into local scores for individual nodes. So, the whole net-

work needs to be considered in order to determine the score. Search-based algorithms using

predictive scores such as k-Fold-CV or Preq are global score-based approaches. Several local

and global score-based algorithms to learn Bayesian network classifiers using different search

algorithms, scoring functions and parameter estimators are implemented in Weka [145, 11].
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2.7.2 The Hill-climbing Algorithm for Learning Bayesian Networks

Due to its obvious simplicity for computational implementation, hill-climbing7 is one of the

most used search algorithms in learning Bayesian networks [15, 16, 27, 29, 45, 59, 82, 119]. The

search starts from an initial solution. Then the solution is constructed iteratively by making

local changes in the current solution by means of the defined operators. The algorithm always

moves to a neighbor solution in the direction of increasing quality. At each search step the

local changes that gives a maximum improvement of the objective function are selected. The

algorithm ends when there is no more improvement of the score or when there is no possible

to build a new solution.

To implement a hill-climbing search algorithm for Bayesian networks we must define the

following elements:

• the search space: we consider the B-space=(S,O) where S is the space of possible

DAGs, and O ≡ {addArc, deleteArc, reverseArc} is the set of local operators.

• the initial solution: a Bayesian network structure S0 ∈ S.

• the objective function: one of the scoring functions Score(S,D) defined in Section

2.6 that measures the quality of a given structure S.

• the stopping criterion: the algorithm stops when there is no more improvement of

the score or when there is no possible to apply a new operator.

Algorithm 3 is the hill-climbing algorithm to learn the structure of Bayesian networks.

The algorithm takes as input the search space B-space=(S,O), an initial structure S, a given

dataset D of i.i.d. examples of a set X = {X1,X2, ...,Xn} of random variables for a domain

under study and a scoring function Score(S,D). At each search step, it applies the operator

that results in the maximal gain in the score. This process will continue until the stopping

criterion is reached. As a result, a Bayesian network structure of high quality is returned.

Cooper and Herskovits [29] were the first in implementing a hill-climbing algorithm (they

called K2) for learning an unrestricted structure of a Bayesian Network using the K2 score.

7The alternative of hill-climbing is the gradient descent, if we view the evaluation function as a cost rather

than a quality.
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Given a variable ordering, the algorithm begins with an empty network and then it itera-

tively adds arcs that result in the maximal improvements in the K2 score until there is no

more improvement for that score or until it is no possible to add a new arc. A number of

improvements of their approach have since been proposed that also rely in a hill-climbing

procedure. For instance, Buntine in [15] proposed a hill-climbing algorithm that does not

require variable ordering. Later, Singh and Voltara in [129] proposed an extension to the

K2 algorithm which they called CB. The CB algorithm uses conditional independence tests

to generate a “good” variable ordering from the data. Then, it uses the generated variable

ordering, but unlike the k2, the CB algorithm begins with a complete DAG and then uses arc

deletions in the process. Heckerman et al. in [59] provide a discussion and evaluation of the

hill-climbing approach for learning the structure of Bayesian networks. A recent in-depth

study of the hill-climbing algorithm for learning the structure of Bayesian networks along

with a novel approach to adapt it for incremental learning is presented in [119].

Algorithm 3 The hill-climbing search algorithm for learning the structure of Bayesian networks
Require: A B-space=(S,O), where S is the space of possible DAGs, and O = {addArc, deleteArc, reverseArc} is the

set of possible operators, an initial structure S ∈ S, a dataset D of i.i.d. examples of a set X = {X1, X2, ...,Xn} of

random variables for a domain under study, a scoring function Score(S,D)

Ensure: A Bayesian network structure S ∈ S with high value of the score

1: continue ⇐ True

2: while continue do

3: Compute Score(S,D)

4: Find best operator op such that op = arg max
op∈O

Score(op(S),D)

5: if op exists ∧ Score(op(S),D) > Score(S,D) then

6: S ⇐ op(S) {Apply the operator to the current structure}
7: else

8: continue ⇐ False

9: end while

10: return S {a structure with a high score}

The hill-climbing algorithm is cheaper in terms of memory and computing time when

compared to other more sophisticated search algorithms. We can reduce its computational

cost if we restrict the search space by limiting the number of parents for each variable or by

providing a variable ordering. We can also limit the number of visited neighbor’s structures

at each search step by limiting the use of their basic operators. But as pointed out in [120],

this simple search algorithm has three main drawbacks: i) local maxima: once on a local
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maximum, hill-climbing will halt, even though there is a better solution; ii) plateau: hill-

climbing will do a random walk in an area of the state space where the evaluation function is

nearly flat; iii) ridges: a ridge can have steeply sloping sides, so that the search reaches the

top with ease, but the top may slope only very gently toward a peak. Thus, the search may

oscillate from side to side making little or no progress.

2.8 Concluding Remarks

In this chapter we have introduced the Bayesian networks along with the score-based approach

to learn a Bayesian network structure from data. We have posed the learning problem as a

search problem and showed the existing connection between this learning problem and the

more general problem of model selection exposed in Chapter 1. By using all the formulae

presented in the model selection problem, we could derive all the parameter estimators and

scores for Bayesian networks. In the following chapter we discuss the most relevant issues

related to the learning problem in the particular case when Bayesian networks are induced

for classification. We can, in principle, learn Bayesian network classifiers from data using

the same algorithms used for learning Bayesian networks. Thus, understanding all the is-

sues related to this more general problem is crucial for a good understanding and further

implementation of the learning algorithms for the more specific class of Bayesian network

classifiers.





Chapter 3

Bayesian Network Classifiers

3.1 Introduction

Classification plays an important role in the field of machine learning [97, 98], pattern recog-

nition [138] and data mining [55, 57]. A classifier is a function that assigns a class label to

objects described by a set of attributes. Supervised learning is the task of building classifiers

from data. The word “supervised” refers to the fact that the objects described in the data

have known class memberships which were determined by a supervisor or teacher. The study

of supervised learning is of growing interest and importance since many real-world problems

can be modeled as classification problems. In a typical scenario [57], we have a categorical

outcome measurement, that is, a class label (e.g. heart attack/no heart attack) that we wish

to predict based on a set of attributes (e.g. diet and clinical measurements). We have a train-

ing dataset from which we observe the class label and the attribute values (measurements)

for a set of objects (e.g. people). Using this dataset we build a predictive model (a classifier),

which will enable us to predict the class label for new unseen objects. A good classifier is

one that accurately predicts such a class label.

The Näıve Bayes classifier [39, 83] is one of the most used classifiers in real-world applica-

tions. Näıve Bayes significantly simplifies learning by assuming that attributes are indepen-

dent given class. As this strong independence assumption is “unrealistic”, Näıve Bayes has

a high bias. However, in spite of it all, its performance is surprisingly good in practice when

compared to other more sophisticated classifiers, a fact that was widely demonstrated and

55
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argued in many works [38, 42, 56, 83, 86, 98, 115]. One of the reasons why we might expect

Näıve Bayes to perform well is because it requires fewer parameters to be estimated than

alternative classifiers. Hence, Näıve Bayes has a low variance. As argued in [38], a classifier

as Näıve Bayes, with high bias and low variance, will tend to produce lower zero-one loss

than one with low bias and high variance, a behaviour that is specially visible with smaller

datasets. However, there has been plenty of effort for improving the predictive performance of

Näıve Bayes by reducing the bias resulting from the assumptions of attribute independence.

In the next sections we introduce the problem of supervised learning along with the Näıve

Bayes classifier and summarize several reasons why we might expect this surprisingly good

performance of Näıve Bayes in practice. We further provide an overview of previous works

aimed at improving the performance of Näıve Bayes and place a greater emphasis on those ap-

proaches that have attempted to relax the independence assumption by adding dependencies

among the attributes. The works [43, 44] done by Friedman et al. are particularly relevant

in this context as the first attempt in establishing a sound connection between the Bayesian

classifiers and the theory of Bayesian networks. Since Bayesian networks provide a sound

theoretical framework to represent and manipulate dependencies, from that moment until

now BNCs have been the natural extension of the Näıve Bayes for improving its predictive

performance. We provide a description of the main classes of Bayesian network classifiers

found in the literature. Finally, we conclude with a discussion concerning how the choice

of the scoring function and the class-model can affect the performance of Bayesian network

classifiers learned from data.

3.2 Supervised learning

Let X = {X1,X2, . . . ,Xn} be a vector of observed random variables, called attributes, where

each attribute Xi takes values from its domain ΩXi . Each instantiation x of X is called

an example. The space of all possible examples, ΩX = ΩX1 × . . . × ΩXn ⊂ �n, is called

the input space. Let C be an unobserved random variable with values in a finite set ΩC =

{c1, c2, . . . , cm}. C is called the class variable and the values of C are classes or class labels.

The space of all possible classes, ΩC , is called the output space.

Definition 31. A function f : ΩX → ΩC that maps from the input space ΩX to the output
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space ΩC is called the target function.

In general, f(x) is a random function. In the absence of noise, f(x) is deterministic,

which means that f(x) always assigns the same class to a given example. In the particular

case of Boolean outputs, that is, when each example x ∈ ΩX is mapped onto exactly one of

two possible classes (e.g. ΩC = {0, 1}), the target function is called the target concept.

Let further consider f : ΩX → ΩC the target function to be learned.

Definition 32. A labeled example is a tuple < x, c > where x ∈ ΩX is the example itself

and c = f(x) ∈ ΩC is the class assigned by the target function f .

The problem of supervised learning can be stated as it follows:

Given a training dataset D =
{
< x(1), c(1) >,< x(2), c(2) >, . . . , < x(N), c(N) >

}
of i.i.d. labeled examples of < X, C > to induce a classifier, a hypothesis hC :

ΩX → ΩC , that approximates f as closely as possible.

The induced classifier hC can then be used to predict the class label of future examples.

A classifier is, therefore, defined by a deterministic function, the hypothesis hC : ΩX → ΩC

that assigns a class label to any given example.

There are a range of supervised learning algorithms now available. In general, existing

classifiers have been developed under four main approaches, namely: i) symbolic learning; ii)

instance-based learning; iii) neural networks; and iv)probabilistic classifiers. A comprehensive

review of all these supervised learning algorithms and classifiers as well as a comparative study

of their performance on large real-world problems is given in [97]. This comparative study

was supported by the well-known StatLog project [67]. The results showed that determining

which of the algorithms performs best in practice depend critically on the dataset used. While

it is well known that no algorithm can outperform all others in all the cases [71], in practice

some supervised learning algorithms can be more successful than others.

Probabilistic classifiers are among the most popular classifiers used in the machine learning

community. These classifiers are generally generated by an explicit underlying probabilistic

model, which provides a probability of being in each class rather than a simple classifica-

tion. Examples of probabilistic classifiers are bayesian classifiers, Näıve Bayes, linear and
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quadratic discriminant, logistic regression and Bayesian network classifiers. In the proba-

bilistic framework the goal of the learning task is to produce the classification predictive

distribution P (C | X). We further focus on bayesian classification, particularly, on the Näıve

Bayes classifier and the Bayesian network classifiers, BNCs from now on.

3.2.1 Evaluating the Performance

In supervised learning is very important that induced classifiers are accurate. Hence, the most

natural measure of the performance in classification problems is the predictive accuracy, or

alternatively, the error rate. The classification for each test example can be either correct,

if the classification agrees with the actual value, or incorrect, if it does not. The accuracy is

represented by the proportion of correct classifications. The error rate, quite the opposite, is

represented by the proportion of misclassified examples.

To assess the accuracy of a classifier hC we need to define a loss function. Given a target

function f(x) a loss function for supervised learning is some function which, for any example

x, takes a prediction hC(x) and the true class f(x), and determines how much loss is incurred

due to predicting hC(x) when input is x and true output is f(x). One of the loss functions

commonly used in supervised learning is the zero-one loss. This function simple assigns a

loss of one if the classification is incorrect, or zero otherwise.

Definition 33. The zero-one loss function of a classifier hC with respect to a target

function f(x) and a example x, denoted by δ(x, f(x), hC(x)), is defined as follows:

δ(x, f(x), hC(x)) =

⎧⎪⎨
⎪⎩

1 when f(x) �= hC(x)

0 otherwise

(3.1)

Having the notion of the zero-one loss function δ(x, f(x), hC(x)) we can refine the goal of

supervised learning. The goal is, therefore, to induce a classifier that minimizes the zero-one

loss. We can now more formally define the error rate as follows:

Definition 34. The error rate of a classifier hC with respect to a target f(x) and a dataset

D with N i.i.d. labeled examples is the proportion of misclassified examples by hC . That is,

Err(D,hC) ≡ error(D, f, hC) =
1
N

∑
x∈D

δ(x, f(x), hC(x)) (3.2)
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Alternatively, we can use another measure for assessing probabilistic classifiers based on

the conditional predictive distribution P (C | X). This measure is the conditional log-loss

defined as the log-score of the conditional distribution P (C | X). We consider that for each

example x ∈ D the learner suffers an individual loss equal to −log P (c(t) | x(t), hC) where

c(t) = f(x(t)) is the true output. We can interpret each individual loss as the logarithmic

penalty that the classifier hC would obtain for its probability prediction of the true class value

for the example x.

Definition 35. The conditional log-loss of a classifier hC with respect to a target function

f(x) and a dataset D with N i.i.d. labeled examples is the sum of all the individual loss.

That is,

ClogLoss(Mh,D) ≡ −
∑
x∈D

log P (c(t) | x(t), hC) (3.3)

The conditional log-loss is just the negative of the conditional log-likelihood of a classifier

hC given data D. Thus minimizing the conditional log-loss is equivalent to maximizing the

conditional log-likelihood. Obviously, the conditional log-loss is the alternative to the log-loss

defined in Section 1.5.6, but for supervised learning.

In this thesis we use the zero-one loss function for evaluating the performance of the

induced classifiers. The error rate based on the zero-one loss tends to be an over-optimistic

estimate of the performance if this is estimated from the same data used to build the classifier

[97]. Learning algorithms, instead, should be evaluated and compared on the basis on how

well they can generalize to examples that not are among those used to build the classifiers. As

described in Section 1.5.6 hold-out testing and cross-validation are two of the most frequently

used methods for estimating the predictive performance. Hold-out testing is more suitable for

large sample sizes (more than 1000 examples) while cross-validation is more appropriate for

intermediate sample sizes (about 1000 examples). Cross-validation is used mainly to reduce

the bias of the error estimates. However, for very small datasets, a more appropriate method

is bootstrapping [40]. Cross-validation and bootstrapping are both “resampling” methods.

However, whereas cross-validation repeatedly analyzes subsets of the data, bootstrapping,

in its simplest form, repeatedly analyzes subsamples of the data randomly sampled with

replacement from the full dataset.
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3.2.2 The Prequential Framework

It is also common to evaluate learning algorithms on training sets of different sizes and then

generate learning curves that chart the predictive performance with increasing set size. One

common technique is to learn classifiers from training sets of increasing sizes while maintain

the same test set for evaluation. Instead, we are interested in evaluating induced classifiers in

the Dawid’s prequential framework where the predictive performance is computed predictively

and sequentially through a sequential updating of the classifier.

Without loss of generality we further assume that at each learning step data arrives in

batches B and that these batches are of equal size, each containing m examples. The goal

of the prequential scenario is to sequentially predict the labels of each incoming batch of

examples. Thus, at the tth time point the incoming batch B(t) is first evaluated using the

hypothesis h
(t−1)
C induced from the first t − 1 batches. Then all the examples from B(t)

along with its correct classes are used to update the current hypothesis. The learner aims to

minimize the zero-one loss, that is, minimize the number of the incorrected classified examples

over the total of examples classified so far. Algorithm 8 is the base algorithm for learning

and evaluating supervised learning algorithms in the prequential framework.

Algorithm 4 The algorithm for learning and evaluating supervised learning algorithms in the

prequential framework
Require: A classifier class-model M, a dataset D of i.i.d. labelled examples < x, c > divided in batches B of m

examples

Ensure: A classifier hC ∈ M updated at each time point, the error rate errRate

1: Initialize hC with one of the hypothesis from M

2: for each batch B in D do

3: for each example x in B do

4: hC(x)⇐ predict(x, hC) {first: predictions}
5: f(x)⇐ getActualClass(x)

6: cumIncorrected+ = δ(x, f(x), hC(x)) {the zero-one loss is used}
7: totalEvaluated+ = m

8: errRate = cumIncorrected/totalEvaluated

9: update(hC , B) {second: update the classifier with the examples from B}
10: end for

11: return hC and errRate
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3.2.3 Bias-Variance Decomposition of the Error Rate

The bias-variance decomposition of the error can help in understanding the relative behavior

of learning algorithms. The origins of the bias-variance decomposition is related to the

quadratic loss function in the context of regression [50]. Given a fixed target function and

a dataset size, the conventional formulation of the decomposition breaks the expected error

into the sum of three non-negative quantities [73]:

• Intrinsic target noise: this quantity is a lower bound on the expected error of any

learning algorithm, that is, the expected error of the Bayes-optimal classifier1.

• Squared bias: this quantity measures how well the average prediction of the learning

algorithm over all possible datasets of the given size matches the target function.

• Variance: this quantity measures how much the prediction of the learning algorithm

“bounces around” for different datasets of the given size.

Thus, consider a distribution over all the possible datasets of a fixed size for a specified

domain. Bias measures the central tendency for the predictions of the classifiers induced by

the same learning algorithm from the different datasets. Variance measures the degree to

which the predictions differ from this central tendency from dataset to dataset.

The Bias-Variance Decomposition for the Zero-One Loss

Several bias-variance decomposition of the zero-one loss has been proposed (e.g. [42, 73]).

We further describe the decomposition for the zero-one loss proposed by Kohavi and Wolpert

in [73], one of the most widely employed of those available.

Let the target function f : ΩX → ΩC = {c1, c2, . . . , cm} be a conditional probability

distribution P (Cf = cf | X), where Cf ∈ ΩC . Let the classifier hC generated by the learning

algorithm be a similar distribution P (Ch = ch | X), where Ch ∈ ΩC . In order to derive

the error decomposition Kohavi and Wolpert consider a definition of the zero-one loss that

does not depend on the input variable X. In their definition the zero-one loss, denoted by

l(cf , ch), assigns a penalty to a pair of values cf , ch ∈ ΩC and is defined as 1−δ(cf , ch), where
1The Bayes-optimal classification for a given example is obtained by using the full-bayesian approach, that

is by averaging the predictions of all the hypotheses, weighting by their posterior probabilities [98].
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δ(cf , ch) = 1 if cf = ch and 0 otherwise. Their derivation is based on the expected zero-one

loss E(l), which is is usually referred as the expected misclassification rate. E(l) is derived as

follows:

E(l) =
∑

cf , ch

l(cf , ch)P (cf , ch)

=
∑

cf , ch

[1− δ(cf , ch)]P (cf , ch)

= 1−
∑

c∈ ΩC

P (cf = ch = c)

The bias-variance decomposition of the expected misclassification rate E(l) is equiv-

alent to the decomposition of the zero-one loss and is given by:

E(l) =
∑

x∈ΩX

P (x)(σ2
x + bias2

x + variancex) (3.4)

where

bias2
x ≡ 1

2

∑
c∈ΩC

[P (Cf = c | x)− P (Ch = c | x)]2 (3.5)

variancex ≡ 1
2

⎛
⎝1−

∑
c∈ΩC

P (Ch = c | x)2

⎞
⎠ (3.6)

σ2
x ≡ 1

2

⎛
⎝1−

∑
c∈ΩC

P (Cf = c | x)2

⎞
⎠ (3.7)

Informally speaking, P (Cf = c | x) is the probability that the fixed target f takes on

the value c at point x. P (Ch = c | x), on the other hand, can be interpreted as the average

(over datasets generated by f) the class c is guessed by hC at point x. Therefore, the bias2

term measures the squared difference between the target’s averaged output and the classifier’s

average output. Hence this term measures the persistent error of the learning algorithm. The

variance term, instead, measures the variability of P (Ch | x), that is, the error produced by

the fluctuation when generating a single classiffier. As algorithm becomes more sensitive to

changes in the datasets, the variance increases. Therefore, given a distribution over datasets,

the variance only measures the sensitivity of the learning algorithms to changes in the data

and it is independent of the underlying target function. The noise σ2 measures the variance

of the target. Thus, the definitions of variance and noise are identical only differing in the

random variable, Ch or Cf , accordingly.
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A Methodology for Computing the Bias-Variance Components

Kohavi and Wolpert proposed the following methodology for estimating the bias2 and the

variance terms in the decomposition of the zero-one loss given in Equations 3.5 and 3.6:

1. Randomly split the dataset D into two parts, Dtrain and Dtest. Dtrain is used to sample

the training sets, while Dtest is used to evaluate the terms in the decomposition.

2. Get training sets of size N , chose Dtrain to be of size 2N . This guarantees does not

get many duplicates training sets, even for small values of N . From Dtrain generate k

training sets by using uniform random sampling without replacement.

3. Run the learning algorithm on each of the training set. Then, estimate the terms bias2

and variance using the generated classiffier for evaluating each example x of the test

set Dtest. Estimate all the needed probabilities using frequency counters.

3.3 Näıve Bayes Classifier

A common approach to supervised learning is to associate each class cj with a discrimi-

nant function fj(x) and then assign the example to the class whose discriminant function

is maximum. Bayesian classifiers use the class posterior probabilities P (C = cj | X = x)

as discriminant functions. For short, let P (cj | x) denote the probability that the example

X = x belong to the class cj . As proved in [39], if we have P (cj | x) for each class cj ∈ ΩC ,

the zero-one loss is minimized if, and only if, the example x is assigned to the class c∗ for

which P (c∗ | x) is maximum. That is,

c∗ = hC(x) = arg max
j=1...m

P (cj | x) (3.8)

We can then apply the Bayes’ theorem to derive the posterior probability of each class cj

given an example x

P (cj | x) =
P (x | cj)P (cj)

P (x)

P (x) can be ignored since it is the same for all the classes (as usually, a normalization

constant). This yields Bayes discriminant functions:

fj(x) = P (x | cj)P (cj) (3.9)
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Therefore, Bayes classifier finds the MAP hypothesis given the example x. That is,

hMAP (x) = arg max
j=1...m

P (x | cj)P (cj) (3.10)

To compute hMAP for a given example x we need to estimate the prior probability P (cj)

and the conditional probability distribution P (x | cj) for each class cj ∈ ΩC . Direct esti-

mation of P (x | cj) is hard when the input space is high-dimensional, unless we introduce

some assumptions on the model that allow to decompose this probability into a product of

conditional probabilities, one for each attribute. For instance, under the very näıve assump-

tion that the attributes are independent given the class, P (x | cj) can be decomposed into a

product of n terms, one for each attribute. Hence we have:

P (x | cj) =
n∏

i=1

P (Xi = xi | cj) (3.11)

Applying 3.11 into 3.10 we obtain the Näıve Bayes classifier where the class c∗ attached to

the example x is given by the expression:

c∗ = hNB(x) = arg max
j=1...m

n∏
i=1

P (Xi = xi | cj)P (cj) (3.12)

3.3.1 Learning Näıve Bayes from Data

Our aim is to predict from a training dataset D of N labeled examples the class of an unseen

example x = {x1, x2, ..., xn} where xi is the value of the ith attribute. To this end, we seek

estimates P̂ (cj | x) of each class conditional probability P (cj | x) for all cj ∈ ΩC . From

Equation 3.12 we have that the class attached to the example x is the class c∗ ∈ ΩC such

that c∗ = arg max
j

P̂ (cj | x) where

P̂ (cj | x) =
n∏

i=1

P̂ (Xi = xi | cj)P̂ (cj) (3.13)

Assuming the training dataset D is a representative sample of the joint distribution from

which it is drawn, we can use D to compute the estimates for each term in Equation 3.13.

We further consider a domain X of discrete attributes {X1,X2, . . . ,Xn} where each attribute

Xi may take on values from its finite domain ΩXi =
{
x1

i , x
2
i , . . . , x

ri
i

}
where ri represents the

number of possible values of Xi. For simplicity, define Xi = k the event that Xi = xk
i . At

training time Näıve Bayes needs only obtain the sufficient statistics in order to compute the
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estimates P̂ (cj) for each class cj ∈ ΩC and the estimates P̂ (Xi = k | cj) for each attribute

value xk
i ∈ ΩXi and each class cj . Thus, the set of sufficient statistics T(D | NB) of Näıve

Bayes is given by:

1. A table Tc containing m counters Nj , one counter for each class cj ∈ ΩC .

2. For each attribute Xi:

• A m × ri contingency table CTi containing the counters Nijk. Each Nijk is the

number of cases in D such that Xi = k and C = cj.

Assuming complete data2, the computation of all the required estimates requires a simple

scan through the data, an operation of time complexity O(Nn), where N is the number of

training examples. At classification time, to classify a single example has time complexity

O(mn) using the tables formed at training time with space complexity O(mnravg) where ravg

is the average number of values per attribute [141].

We can further adopt a frequentist or a bayesian approach to estimate the parameters

of the Näıve Bayes. Usually, the frequentist ML estimator with the Laplace correction for

avoiding zero counters as proposed in [38] is used. Nevertheless, as argued in [4, 31, 128]

Bayesian estimates tend to avoid overfitting, to be more robust and in general, less sensitive

to the presence of zeroes in frequency counts.

3.3.2 Analysis of the Näıve Bayes Performance

It has been widely observed in many applications that Näıve Bayes: i) is simple; ii) learns

quickly: it only requires a single pass through the data; iii) predicts quickly: it needs low

computations to make predictions; iv) is easily interpretable: its results as probabilities are

easy to understand and apply; v) is naturally incremental: it needs only to accumulate

sufficient statistics. Nevertheless, the fact that the independence assumption is clearly almost

always violated in practice has led often to underestimate the classification power of Näıve

Bayes in favor of more sophisticated classifiers (neural networks, decision trees, etc.) on

the grounds that the latter can provide more accurate classifications. However, empirical

2Missing values can be handled either by simply ignoring them or by introducing “missing” as an extra

attribute value.
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comparisons have shown that Näıve Bayes performs surprisingly well so often when compared

with other more complex classifiers.

For instance, Hand and Yu in [56] provided an overview of the empirical studies comparing

Näıve Bayes with other more sophisticated classifiers and summarized some reasons why

Näıve Bayes performs so well. One well-known reason is that Näıve Bayes requires fewer

parameters to be estimated, and hence, lower variance for all the parameter estimates. This

reduction in variance can compensate the effect of the high bias resulting from the strong

independence assumption. As proved by Friedman in [42] “certain types of (very high) bias

can be canceled by low variance to produce accurate classification”, as it happens with Näıve

Bayes. By providing a bias-variance decomposition of the classification error, Friedman

also argued that focusing on improved probability estimation when the goal is to produce

accurate classification may be mistaken. Good probability estimates are not necessary for

good classification as long as an optimal classifier is rather obtained when both, the target

and learned distributions agree on the most-probable class. Estimates of the class conditional

probability P (cj | x) from Equation 3.13 clearly has two source of bias:

1. The bias resulting from the modeling error, that is, from the assumptions of attribute

independence.

2. The bias resulting from the estimation error, that is, from the use of the parameter

estimates.

Since the independence assumption is unrealistic, the bias resulting from the modeling error

can be quite large, especially in high dimensional settings involving many attributes. In-

troduced estimates for parameters can introduce further bias and also variance. This high

degree of bias associated with Näıve Bayes makes it generally inappropriate to approximate

the target predictive distribution P (C | X). However, Näıve Bayes performs surprisingly well

because of the relatively low variance of its estimates of P (cj | x). Although these estimates

present a high bias, this may not matter in classification tasks, because all that need to be

preserved is the rank order: P̂ (cj | x) > P̂ (ck | x) whenever P (cj | x) > P (ck | x) [56].

All these argumentations related to the good performance of Nav̈e Bayes were supported

by the experimental and theoretical results obtained by Domingos and Pazzani in [38] and

also by Rish et al. in [115]. Domingos and Pazzani compared the performance of several
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classifiers on several UCI’s benchmark problems [102]. They found that Näıve Bayes often

outperforms other classifiers, even when there is substantial attribute dependence. More-

over, they proved Näıve Bayes optimality for some problems with high degree of attribute

dependence (disjunctive and conjunctive concepts). For measuring the degree of attribute

dependence they use the conditional mutual information (see Definition 20). In addition,

they conducted an empirical study comparing two extensions to Näıve Bayes [75, 106] that

relax the independence assumption by joining two attributes into a new compound attribute

but using two different joining criteria: i) the conditional mutual information; and ii) the

LOO-CV score under zero-one loss. They reached two crucial conclusions:

1. There is a low correlation between the degree of attribute dependence and the perfor-

mance of the Näıve Bayes.

2. Cross-validation accuracy is a better predictor of the effect of an attribute join than

the conditional mutual information.

For the first conclusion it could follow that searching for attribute dependencies is not nec-

essarily the best approach for improving the performance of Näıve Bayes. For the second,

that it would be more appropriate for attribute joining the use of a score optimized for clas-

sification. In the next sections we will provide a more in-depth analysis about these two

issues.

3.4 Improving Näıve Bayes. Related Work

There has been plenty of work attempted to improve the predictive performance of the

Näıve Bayes mainly following three approaches: i) attribute subset selection; ii) improving the

probability estimates; and iii) relaxing the independence assumptions. Some authors [75, 83]

have argued that Näıve Bayes is very robust to noise and irrelevant attributes. However,

approaches based on attribute (feature) subset selection may help in improving the Näıve

Bayes performance, specially when the attribute space is highly dimensional. Feature subset

selection (FSS) involves identifying the relevant attributes in a dataset and giving only that

subset to the learning algorithms. By reducing the number of attributes we reduce the number

of parameters to be estimated, and hence, the variance of the test error.
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There are two main approaches to FSS: i) the wrapper approach; and ii) the filter ap-

proach. Similarly to model selection, the wrapper approach to FSS (scoring & search) can

be exposed as a discrete optimization problem where a selection criterion is optimized in the

space of possible subset of attributes. The selection criterion is usually a predictive score

based on the estimates of the predictive accuracy. Thus, the FSS task is to find a subset of

attributes so that the resulting predictive distribution yields the most accurate classifications

for future data. Filter approaches to FSS, instead, are constraint-based approaches. They

search for a good subset of attributes using only the intrinsic characteristics of the data. The

most common way is to rank the attributes in terms of the value of some scoring function

(e.g. probabilistic or distance metrics, information-theoretic measures, etc.) and then choose

the attributes with the highest scores. A comparison of wrapper and filter approaches to the

FSS problem for learning BNCs in the domain of biomedical informatics is given in [8, 63].

A wrapper approach to FSS for improving the performance of Näıve Bayes was proposed in

[84]. This combination of FSS with Näıve Bayes is known as ”selective Näıve Bayes”. For

further reading in the FSS problem the reader is referred to the relevant work [72], where a

complete overview of the general problem of FSS in supervised learning focusing on wrapper

approaches is provided.

In the next subsections we provide a compact overview of the work aimed at improving

Näıve Bayes more related to this thesis, giving a special emphasis to the Iterative Bayes, which

improves the parameter estimates; and several classes of BNCs, which relax the independence

assumptions.

3.4.1 Improving the Probability Estimates

Several researches have examined ways of achieving better performance than Näıve Bayes

by improving its probability estimates P̂ (Xi = xi | cj) and/or P̂ (cj), thus reducing their

bias and/or variance. Interested readers can follow the reference [86] for an overview of

these approaches. For instance, Webb and Pazzani in [139] proposed a method that adjusts

only the estimates P̂ (cj) of the prior probability for each class cj . The adjustment for each

class cj is done by means of a numeric weight, which is inferred using a hill-climbing search

procedure. During classification, the class’s probability P (cj) is multiplied by the resulting

weight to obtain the adjusted value. Webb and Pazzani showed that the use of this adjusted
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value as the estimate P̂ (cj) allows to significantly improve the accuracy of the Näıve Bayes.

The Iterative Bayes proposed by Gama in [46], instead, improves the predictive distribu-

tion P (C | x) associated with each example x by adjusting the estimates P̂ (Xi = xi | cj) of

the conditional probabilities. The algorithm begins with the CPTs built by the Näıve Bayes

followed by an optimization process which consists of an iterative updating of the sufficient

statistics. In each iteration and for each example the corresponding conditional probabilities

are updated so as to increase the probability on the correct class. The iterative procedure

finishes when a stopping criterion is reached. Experimental evaluation of Iterative Bayes have

shown consistent reductions of the error rate. Using the bias-variance decomposition of the

error described in Section 3.2.3, Gama empirically demonstrated that the reduction of the

error is mainly due to a reduction on the bias component. Hence, Iterative Bayes can reduce

the bias of the Näıve Bayes resulting from the estimation error.

A further computational advantage of Iterative Bayes is that it lends itself directly to in-

cremental learning. In [47] we introduced Adaptive Bayes, an incremental version of Iterative

Bayes, that can also work in an on-line learning framework. The rationale is that after seeing

a new example, we first increment the corresponding counters as usually do with Näıve Bayes.

Then we can run Iterative Bayes using only this example so as to increase the probability

on its actual class. Experimental results showed that the use of Adaptive Bayes in both, an

incremental and on-line learning framework, has significant advantages in comparison against

the non-adaptive Näıve Bayes. In a further work [19] we evaluated Adaptive Bayes in the

context of a user modeling task. The results from conducted experiments using simulated

data showed that Adaptive Bayes seems to be a good and simple alternative to the Näıve

Bayes in user modeling tasks where concept drift can take place.

Iterative Bayes is an adaptive algorithm that we have widely used in our investigation.

Hence, in Section 3.6 we will provide more details about its updating procedure and present

the Iterative Bayes algorithm for the more general class of BNCs.

3.4.2 Relaxing the Attribute Independence Assumption

Many attempts have been made to extend Näıve Bayes trying to maintain its simplicity and

efficiency while relaxing the attribute independence assumption. One of the pioneer exten-
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sions to the Näıve Bayes is the semi-Näıve Bayes classifier, first implemented by Kononenko

in [75] and later by Pazzani in [106]. The semi-Näıve Bayes classifier joins two or more at-

tributes in a new compound attribute - a cartesian product of a subset of attributes. While

Kononenko used conditional independence tests as the joining criterion, Pazzani achieved

better results by using the LOO-CV score.

The works [43, 44] of Friedman et al. are particularly relevant as a first attempt in

establishing a sound connection between the Bayesian classifiers and the theory of Bayesian

networks. They proposed to augment the Näıve Bayes structure with arcs among attributes

thus relaxing the strong independence assumption. Adding the best set of augmenting arcs

is computationally expensive because we need to search among DAGs containing the Näıve

Bayes structure. To overcome computational limitations they proposed to learn a more

restricted structure called Tree Augmented Naive Bayes (TAN). TAN extends Näıve Bayes

by allowing the attributes to form a tree, that is, each attribute has only one attribute as

a parent. Friedman et al. used conditional mutual information as the criterion for parent

selection and a variation of Chow and Liu’s algorithm [28] for learning tree-like structures

from complete data. TAN outperformed Näıve Bayes while it is also computational simple

because searches over structures are not involved. In addition, Friedman et al. proposed to

generalize TAN by using Bayesian multinets [49] as classifiers. They partitioned the training

dataset by classes and for each class learned a Bayesian network using a generalization of

Chow and Liu’s algorithm that learns multinets consisting of tree structures. Results from

conducted experiments showed that TAN multinets perform as well as TANs do.

In a later work [66], Keogh and Pazzani proposed two improvements for finding the set

of augmented parents of a TAN structure: i) a hill climbing search procedure using only

arc additions and the LOO-CV score; ii) the Super Parent method (SP-TAN) - a more

efficient search heuristic aimed at reducing the computational cost involved with the use of

the LOO-CV score. During the search process, they also considered the deletion of irrelevant

attributes. Moreover, unlike TAN, SP-TAN does not necessarily add every arc in the tree

of the TAN structure. On the contrary, SP-TAN stops adding arcs when there are no more

improvements on the score. As a result, SP-TAN builds a more simple and effective classifier

than the original TAN. Results from similar Friedman’s experiments showed that SP-TAN

outperforms TAN and Näıve Bayes. However this improvement is obtained at a considerable
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computational cost due to the use of the LOO-CV score.

In [43, 44] Friedman et al. also implemented the hill-climbing search algorithm with the

MDL score for learning other kinds of classifiers: i) unrestricted augmented Näıve Bayesian

networks; and ii) unrestricted Bayesian network classifiers. The former are known as Bayesian

networks Augmented Näıve Bayes (BANs) and the latter as General Bayesian Networks

(GBNs) [22]. BANs extend Näıve Bayes by allowing the attributes to form an arbitrary graph,

rather than just a tree. GBNs, on the contrary, treat the class node as an ordinary node,

which means that the class node does not need to be the parent of all the attribute nodes.

Friedman et al. showed that the MDL score does not necessarily optimize the performance

of the induced Bayesian networks when they are used for classification. Since the MDL score

heavily biases for simpler networks, the hill-climber procedure is not able to find enough

dependencies among the attributes. Specially for smaller datasets and when there are many

classes, the Näıve Bayes structure itself requires many parameters, and the addition of an

augmenting arc involves adding at least as many parameters as the number of classes. Because

the number of parameters increases, the penalty complexity term in the MDL score grows

largely so that the addition of any single arc does not improve the score. In Section 3.7.1 we

will provide an analysis about these issues related to the choice of an appropriate score for

learning BNCs.

Sahami in [121] introduced the k-Dependence Bayesian Classifiers (k-DBCs) - an unified

framework for all the bayesian classifiers containing the structure of Näıve Bayes (e.g. Näıve

Bayes itself, TAN, BAN, etc.). A k-DBC allows each attribute to have a maximum of k

attribute nodes as parents. The learning algorithm proposed by Sahami generalizes the al-

gorithm for learning TANs [43] and, like it, also uses the mutual information as a measure

of the degree of dependence. Sahami compared his original algorithm with another variant

that introduces a threshold for the conditional mutual information. This threshold avoids

the inclusion of parents whose dependencies are not significant. From the results of experi-

ments comparing the performance of several k-DBCs for different k values (k = 0, 1, 2, 3) on

several datasets, Sahami concluded that modeling attribute dependencies can improve the

classification results.

A comparison between filter and wrapper approaches to attribute selection (FSS) using

k-DBCs is given in [8, 86]. The filter approach is a variation of Sahami’s algorithm. This
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uses the mutual information as the selection criterion, but with the restriction that not all

the attributes can be added to the Näıve Bayes structure. The wrapper approach implements

a hill-climbing search algorithm with a cross-validation score. These algorithms for learning

k-DBCs using FSS were recently evaluated in the domain of medical bioinformatics in order

to distinguish between two subgroups of cirrhotic patients [8].

In a more recent paper [141], Webb et al. have proposed a new approach for improving the

accuracy of Näıve Bayes. Their approach averages all classifiers from the class of 1-DBCs,

so they called it AODE (short form of ”aggregating one-dependence estimators”). AODE

attempts in retaining the simplicity of Näıve Bayes while relaxing the attribute independence

assumption but without incurring at a great computational cost, as for instance, SP-TAN

does. Results from conducted experiments suggest that AODE is more accurate than Näıve

Bayes. This presents substantially lower bias at the cost of a very small increase of the

variance. Results also show that AODE outperforms TAN and is very competitive with

SP-TAN. Although the classification time increases a little, AODE has lower variance but

higher bias while considerably reducing the learning time compared to SP-TAN. To reduce

the time for classifying a given example, Webb et al. propose not to include in the averaged

predictions those models for which the probability estimates are inaccurate (unbiased) taking

into account the number of cases in the training datasets from which these estimates were

computed.

Comparative Studies of BNCs

An overview of several classes of BNCs as well as a comparative study of their performance

was given by Cheng and Greiner in [22, 23]. They particularly focused on the study of

BANs, GBNs and unrestricted Bayesian multinets using constraint-based approaches and

compared their performances against Näıve Bayes and TAN. Cheng and Greiner used the

CBL1 algorithm (a precursor of the TPDA algorithm [24]) to learn the structure of Bayesian

networks. The search procedure builds a Bayesian network through three phases: i) drafting,

which builds an initial tree-like structure using Chow-Liu’s algorithm; ii) thickening, which

adds arcs to the draft; iii) thinning, which verifies the necessity of each arc. The original

algorithm requires a threshold for determining how much mutual information between two

nodes is considered as significant. To overcome the use of a threshold, a wrapper algorithm
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that searches for the optimal threshold was implemented. The CBL1 algorithm is based on

the conditional mutual information. Experimental results showed that this algorithm for

learning unrestricted BNCs does not suffer from the limitations pointed out by Friedman et

al. in [43, 44] using the hill-climber search with the MDL score. The induced classifiers were

competitive with the best reported results.

A study of the performance of BNCs induced with different scores was presented by Mad-

den in [93]. Madden compared the performance of Näıve Bayes, TANs and GBNs classifiers

induced with different approaches. He learned TANs using the original algorithm from [43]

but with the K2 score and the GBNs using a modified version of the K2 learning algorithm

[29]. His results were compared against the results reported by Friedman et al. in [43] and

by Cheng and Greiner in [23]. As observed, the results were significantly different although

it was proved that the MDL score is asymptotically equivalent to the K2 score (a Bayesian

score) [10, 58] and that the structure search based on maximizing a score is equivalent to the

structure search based on conditional independence tests [31]. Madden performed a more

in-depth analysis of the implementation of each learning algorithm with the aim of finding

the sources of disparities. He found that the differences in the performance are caused by

the differences in the parameter estimators and heuristic search algorithms used rather than

by differences in the scoring functions. Madden also claimed that the results obtained with

TANs were very similar to each other, which provided experimental support to the theoretical

results presented in [31], since for TANs search is not required.

3.5 Bayesian Networks as Classifiers

As stated, in classification problems the domain variables are partitioned into two separate

sets: the attribute set X = {X1,X2, . . . ,Xn} ∈ ΩX and the set consisting of a single class

variable C ∈ ΩC = {c1, c2, . . . , cm}. The aim is to correctly predict the value c of the class

variable C given an example x = {x1, x2, . . . , xn}. If the performance measure is the predictive

accuracy, the optimal prediction for x is the class c∗ that maximizes the posterior probability

distribution P (C | x) [39].

A Bayesian network can be used for classification in a quite straightforward way. One

of the variables is selected as the class variable, and the remaining variables as attribute
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variables. Next, inference methods can be used to calculate the marginal distribution of the

class variable given the value of the attributes. Thus, a Bayesian network can be used as a

classifier that gives the posterior distribution P (C | x) of the class node C ∈ ΩC given an

example x = {x1, x2, . . . , xn}. We can compute the posterior probability P (cj | x, S) for each

class cj ∈ ΩC by marginalizing the joint probability distribution P (cj ,x | S) as follows:

P (cj | x, S) =
P (cj ,x | S)
P (x | S)

∝ P (cj ,x | S) (3.14)

and then by returning the class c∗ that maximizes the joint probability distribution:

c∗ = hBNC(x) = arg max
j=1...m

P (cj ,x | S) (3.15)

3.5.1 Classes of Bayesian Network Classifiers

In this section we formally define four classes of BNCs introduced previously in Section 3.4.23.

These classes are: Näıve Bayes, TAN, BAN and GBN. Näıve Bayes represents the most

restrictive class of BNCs because it strictly allows no dependencies between attributes given

the class value. On the other extreme, GBNs represent the less restrictive class of BNCs

because no restrictions are imposed to the dependencies among the variables. Moreover,

whereas a common feature of Näıve Bayes, TAN and BAN is that the class node is treated

as a special node, GBNs treat the class node as an ordinary node, that is, the class node is

not necessarily a parent of all the attributes.

Definition 36. A Näıve Bayes (NB) classifier can be viewed as a Bayesian network with

a simple structure that has the class node as the parent node of all other attribute nodes.

Figure 3.1 shows an example of the Näıve Bayes structure.

Figure 3.1: A Näıve Bayesian network classifier structure

3TANs have been widely studied in [8, 22, 23, 43, 44, 66, 86, 93, 141], BANs in [22, 23, 43, 44] and GBNs

in [22, 23, 32, 43, 44, 52, 86, 93].
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Definition 37. A Tree Augmented Näıve Bayes (TAN) classifier is a Bayesian network

which contains the structure of the Näıve Bayes and allows each attribute to have only one

attribute node as parent. Figure 3.2 shows an example of a TAN classifier structure.

Figure 3.2: A TAN classifier structure

Definition 38. A Bayesian network Augmented Näıve Bayes (BAN) classifier is a Bayesian

network which contains the structure of the Näıve Bayes and allows the attribute to form an

arbitrary DAG. Figure 3.3 shows an example of the structure of a BAN classifier.

Figure 3.3: A BAN classifier structure

Definition 39. A General Bayesian Network (GBN) classifier is an unrestricted Bayesian

network that is used for classification tasks. Figure 3.4 shows an example of a GBN structure.

Figure 3.4: A GBN classifier structure
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In a Bayesian network any variable is influenced only by its Markov Blanket composed

by its parent variables, its children variables and the parent variables of its children variables

[108]. Therefore, we should use only the nodes that belong to the Markov blanket of the class

node for computing the predictive distribution of a GBN classifier.

3.5.2 k-Dependence Bayesian Classifiers

k-Dependence Bayesian Classifiers [121] represent an unified framework for all those classes

of BNCs that contain the structure of the Näıve Bayes, such as Näıve Bayes itself, TAN,

BAN, etc. More formally,

Definition 40. A k-DBC is a Bayesian network which contains the structure of the Näıve

Bayes and allows each attribute to have a maximum of k attribute nodes as parents.

NB is a 0-DBC TAN is a 1-DBC This BAN is a 2-DBC

The degree of attribute dependences ( )  increases

Figure 3.5: Examples of k-Dependence Bayesian Classifiers

As illustrated in Figure 3.5 we can vary the value of k, starting from k = 0 until k = n−1

and obtain classifiers that smoothly move along the spectrum of attribute dependencies.

Obviously, Näıve Bayes is a 0-DBC that lies at the most restrictive end because it strictly

allows no dependencies between attributes given the class value. TANs are 1-DBCs because

they allow only one dependence among the attributes. The BAN shown in Figure 3.5 is

a 2-DBC because it has a maximum of two dependencies among the attributes. At the

most general extreme lies the full augmented Näıve Bayes classifier, a (n− 1)-DBC, with no

independence among the attributes.



3.5. Bayesian Networks as Classifiers 77

Sahami’s Learning Algorithm

Sahami in [121] presented a learning algorithm for inducing k-DBCs from data, which remains

much of the computational efficiency of the Näıve Bayes algorithm since searches are not

involved. The algorithm can be viewed as a generalization of the algorithm for learning TAN

structures proposed by Friedman et al. in [43, 44].

The rationale is as follows. Starting with a k-DBC’s structure S with a single class node

C, the algorithm iteratively add m = min(|S|, k) parents to each new attribute added to S

with largest dependence with the class C. The m parents for each new attribute are selected

among those with higher degree of dependence given the class. As measure of the degree

of attribute dependence Sahami used the mutual information. The process finishes when all

the attributes have been added to the structure S. Algorithm 5 depicts the pseudo-code of

Sahami’s algorithm for learning k-DBCs.

Algorithm 5 Sahami’s algorithm for learning k-DBCS
Require: A dataset D of N labeled examples of < X, C >, the k value for the maximum allowable degree of attribute

dependence

Ensure: A k-DBC

1: V ⇐ C {the set of nodes for the k-DBC}
2: A⇐ ∅ {the set of arcs for the k-DBC}
3: Temp⇐ ∅ {the used attribute list}

4: for all attributes Xi and pair of attributes (Xi,Xj) such that Xi �= Xj do

5: Compute I(Xi, C) from data D
6: Compute I(Xi, Xj | C) from data D
7: repeat

8: Select Xmax such that Xmax = arg max
Xi �∈Temp

I(Xi, C)

9: Add the node Xmax to V

10: Add the arc (C, Xmax) to A

11: Add m = min(|Temp|, k) arcs to A from m distinct attributes Xj ∈ Temp with the highest value of I(Xi, Xj | C)

12: Add the attribute Xmax to Temp

13: until Temp includes all the attributes Xi ∈ X

14: Compose S such that S = (V, A) {the k-DBC structure}
15: Estimate the parameters ΘS given S from data D
16: return k-DBC= (S, ΘS)
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3.6 Iterative Bayes for Bayesian Network Classifiers

Consider a set X ∈ ΩX of discrete attribute variables {X1,X2, . . . ,Xn} where each attribute

Xi may take on values from its finite domain ΩXi =
{
x1

i , x
2
i , . . . , x

ri
i

}
and ri is the number of

its possible values. Let C ∈ ΩC = {c1, c2, . . . , cm} be the class variable. Suppose we observe

a dataset D of i.i.d. labelled examples < x, c = f(x) > of < X, C >, where f(x) is the target

function to be learned. The aim is to learn a Näıve Bayes classifier hC from the dataset D.

The Iterative Bayes proposed by Gama in [46] iteratively updates the contingency tables of

the Näıve Bayes in order to improve the estimates of the conditional probabilities associated

with each training example. For each example of D the aim is to iteratively update the

corresponding sufficient statistics so as to increase the probability of the correct class. Suppose

that during a iteration we process an example x(l) = (x(l)
1 , x

(l)
2 , . . . , x

(l)
n ) which belongs to the

class cobs ≡ f(x(l)) and that it is classified by the current classifier hC as belongs to the class

cpred, that is, cpred ≡ hC(x(l)). The rationale of the updating procedure is as follows:

1. An increment, delta, proportional to the difference 1 − P (cpred | x) is computed. If

the example is incorrectly classified, that is, cpred �= cobs, then delta is multiplied by

-1 in order to be a negative quantity.

2. For each contingency table CTi associated to the attribute Xi only the counters in the

column where Xi = x
(l)
i are updated as follows:

(a) the increment delta is added to the entry where C = cpred.

(b) the increment delta is proportionally subtracted to the remaining entries.

(c) for avoiding zero or negative counters the counters never goes below 1.

Figure 3.6 illustrates how Iterative Bayes updates the probability estimates of the Näıve

Bayes in the balance domain4. Consider the example of the class "Right" depicted in this

figure. Before running Iterative Bayes, the classification for this example is correct, but the

confidence on this prediction is low (about 59%). Once obtained the predictive probability we

run Iterative Bayes. First, we compute delta (a positive increment because the classification

4The balance domain is a benchmark problem from the UCI’s repository [102]. We provide a complete

description of this domain in Section 4.2.3.
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is correct). Next the increment delta is used to update the contingency tables. For instance,

for the contingency table corresponding to the attribute left W we only need to update the

entries in the column where left W=1, that is, the entries of the first column labeled I1.

The increment delta is added to the entry where the class variable takes the value Right

and proportionally subtracted to the remaining entries. After iteratively cycling for all the

examples we obtain a higher confidence level (about 79%) for the probability P (Right|x).

As a result, Iterative Bayes guarantees that after an example x(l) is seen, the probability

P (c(l)|x(l)) is increased. Hence the Iterative Bayes attempts in minimizing the conditional

log-loss defined in Equation 3.3 instead of the zero-one loss function.
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59% confidence level (low)0.277796
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P(Left|x)P(Left|x)
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P(Right|x)P(Right|x)P(Balanc.|xP(Balanc.|x))
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P(Right|x)P(Right|x)P(Balanc.|xP(Balanc.|x))
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-

-

+

AttributeAttribute: : LeftLeft_W_W
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Observed=Right  
Predicted=Right

79% confidence level

Figure 3.6: An example of the updating procedure of the Iterative Bayes

Iterative Bayes can be easily extended to be used with BNCs. We only need to use the

same updating procedure for each table of sufficient statistics associated to each attribute

Xi separately. Thus, we further consider a BNC, that is, a classifier hC = (S,ΘS) over

< X, C >. Let CTi denote the subset of counters Nijk from the set of sufficient statistics

T(D | S) associated to the attribute Xi. As before, let qi denote the number of possible

parent’s configurations for Xi. Each CTi can be viewed as a contingency table composed of

qi rows and ri columns, one row for each possible parent configuration Pai = j and one

column for each possible attribute value xk
i . Algorithm 6 presents the pseudo-code of the

Iterative Bayes for improving the parameter estimates of BNCs. Once the increment delta
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is computed, it is added to the corresponding entries of each contingency table CTi where the

class variable C takes on value cpred in the parent configurations paj
i from Pai.

Algorithm 6 The Iterative Bayes algorithm for Bayesian Network Classifiers
Require: A current BNC, that is, a classifier hC = (S,ΘS) over < X, C >, a dataset D of i.i.d. labeled examples

< x, c = f(x) > of < X, C >, where f(x) is the target function to be learned, a set of contingency tables CTi, one

table for each attribute variable Xi.

Ensure: An increase of the confidence level of the correct class c(l) for each example x(l) of D
1: repeat

2: for each example x(l) = (x
(l)
1 , x

(l)
2 , . . . , x

(l)
n ) ∈ D do

3: cobs ⇐ f(x) {observe the correct class}
4: cpred ⇐ hC(x) {predict the class using the current set of parameters ΘS}
5: delta⇐ 1− P (cpred | x) {compute the increment}
6: if cpred �= cobs then

7: delta⇐ delta ×−1

8: for each contingency table CTi associated to the attribute Xi do

9: k ⇐ GetColumnNumber(CTi) where Xi = x
(l)
i

10: for each parent configuration paj
i ∈ Pai do

11: if (C = cpred) ∈ paj
i then

12: Nijk+ = delta {the entry in the jthrow is increased if (C = cpred) is in paj
i}

13: else

14: Nijk− = delta/|ΩC |
15: if Nijk < 1 then

16: Nijk ⇐ 1

17: until a maximum of a user-defined number of iterations is reached

18: return hC = (S, ΘS) with the updated set of parameters

3.7 Learning Bayesian Network Classifiers

The learning problem for BNCs is typically solved by first choosing a suitable class of BNCs

(e.g. Näıve Bayes, TAN, BAN, etc.) almost certainly based on our knowledge and intuitions

about the given problem. This class of BNCs defines a class-model in our terminology. If

the chosen class-model is a restricted BNC (e.g. TAN, BAN, k-DBCs for a given k value),

then the space of the feasible Bayesian network structures S is defined according to the

imposed restrictions. Given a training dataset D of i.i.d. labeled examples of < X, C > the

learning problem consists of selecting the BNC, that is, the hypothesis hC = (S,ΘS), such

that S ∈ S, that yields the most accurate classifications for future data. In principle, we can

solve this learning problem using the same algorithms that we use when Bayesian networks
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are induced for general purposes. We can induce a Bayesian network that encodes a joint

probability distribution and uses it for classification as shown in Equation 3.15. However,

when a Bayesian network is induced for classification, the main goal is to build an accurate

classifier. As pointed out by Kontkanen in [78]:

“Bayesian networks producing the most accurate predictive distribution in the

joint probability estimation sense does not necessarily perform well in classifi-

cation tasks, unless the joint probability distribution represents the true domain

probability distribution exactly”.

We further focus on score-based approaches to learn BNCs. This learning problem - a

model selection problem - can be approached as a discrete optimization problem where a score

that measures the quality of each candidate structure is optimized in the space S of feasible

structures. The quality of a BNC is defined in terms of its predictive accuracy. There are two

aspects that are crucial in order to induce an accurate BNC from data using a score-based

approach:

1. The choice of an appropriate scoring function.

2. The choice of an appropriate class-model (in the sense of its complexity) according to

the amount of training data available.

In the next subsections we provide a discussion about how these two aspects can affect

the performance of BNCs induced from data.

3.7.1 Choosing a Scoring Function

The choice of an appropriate score according to the learning goal is crucial for score-based

approaches to model selection. In the previous chapters we have stated that there are many

alternative approaches for constructing theoretically valid scoring functions. However, when

Bayesian networks are used for classification, we are interested that the resulting predictive

distribution yields accurate classifications. The learning goal, therefore, is to choose a model

which is expected to give the most accurate classifications for future data. A model selection

criterion of goodness of fit based on the joint predictive distribution will not necessarily be



82 3. Bayesian Network Classifiers

optimal for classification purposes. Under this perspective, we can distinguish two types of

model selection criteria [77]: i) unsupervised scores; and ii) supervised scores.

Examples of unsupervised scores are all the scores optimized for the log-likelihood or

related function (e.g. MLC, BIC, AIC, MDL) or the log-marginal likelihood (e.g. BD, K2,

BDeu, etc.). All these scores are optimized for the log-loss on the joint distribution defined

in Equation 1.36. Unsupervised scores are not specialized for classification tasks, which can

result in suboptimal choices during the search process, and hence, one of the reasons why

some BNCs induced with one of these scores cannot always improve the performance of the

Näıve Bayes.

In supervised model selection, on the contrary, the goal is to choose the model which yields

the most accurate classifications with respect to a given loss function. Hence supervised scores

are specialized for classification tasks. One frequentist approach is, for instance, the use of

scores based on the conditional log-likelihood. However, the main drawback of using the

conditional log likelihood is that unlike the likelihood (see Equation 2.15), the conditional

likelihood of a Bayesian network does not decompose over its structure [43]. This means that

we cannot decompose the parameter estimation problem into local estimation problems as we

previously did in Section 2.5. Thus, the computational cost of finding the parameters that

maximizes the conditional likelihood is prohibitive. One practical solution to overcome this

problem was proposed by Grossman and Domingos in a recent paper [52]. They proposed to

choose the structure that maximizes the conditional likelihood while using the ML estimates

as parameter estimators, that is, the set of parameters that maximizes the log-likelihood. As

shown the ML estimates of a Bayesian network under some nice assumptions can be efficiently

computed in a closed-form solution. Moreover, it was proved [43] that ML estimates are

asymptotically equivalent to the maximum conditional likelihood estimates.

If we opt for a Bayesian approach to model selection we can instead use the conditional

marginal likelihood as a supervised score. Like conditional likelihood the computation of the

conditional marginal likelihood is generally not computationally feasible, even in the cases

when the marginal likelihood can be computed in a closed-form solution. In [77] Konkatnen

obtained an approximation of the conditional marginal likelihood by replacing it by a single

conditional likelihood and using the MAP estimates for the parameters. Alternatively, we can

use predictive scores such as cross-validation and prequential scores as described in Section
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2.6.4. Predictive scores can be optimized for classification tasks since they measure the

predictive performance of the models and, in addition, they can be easily modified for different

loss functions. The most commonly used loss functions with cross-validation and prequential

scores for learning BNCs are the zero-one loss and the conditional log loss.

In recent years the issue of unsupervised versus supervised learning of BNCs has received

a lot of attention [32, 38, 43, 52, 78]. Unsupervised score-based learning approaches may

result in more poor BNCs than those ones induced with supervised scores. Although asymp-

totically unsupervised criteria theoretically can find optimal BNCs, in practice they may not

be the best guide in the search process. Several researchers have empirically shown exam-

ples for which BNCs induced with unsupervised scores perform badly. In [43] Friedman et

al., for instance, investigated the use of the MDL score for learning BANs and unrestricted

BNCs. They empirically showed that MDL does not optimize the classification accuracy of

the induced BNCs. They suggested the use of supervised scores based on the conditional

likelihood. However, they recognized that the computation of the conditional likelihood of

Bayesian networks is computationally intractable. Hence, they suggested the exploration

of good approximations of the conditional likelihood, as it was done later, for instance, by

Grossman and Domingos [52]. In a similar setting, Cowell [32] performed a simulation study

using the set of all DAGs with 4 or 5 nodes. Cowell also concluded that finding good classi-

fiers using a score-based learning approach with the BD score (the log marginal likelihood)

might produce bad classifiers. Kontkanen et al. in [78] performed experiments using sev-

eral datasets from the UCI’s repository [102] aimed at comparing the unsupervised score BD

against supervised ones (k-Fold-CV, Preq and the conditional marginal likelihood). The results

showed that supervised criteria clearly outperform unsupervised ones. The best results were

obtained with the prequential approach, but similarly the k-Fold-CV score also showed a good

performance. The success for cross-validation was explained through the existing connection

between the cross-validation score and the supervised marginal likelihood.

Whereas there is a considerable previous work on comparing unsupervised versus super-

vised learning of BNCs, we are more interested in investigating other aspects of different

model selection criteria that can affect the performance of BNCs. Namely, how different

scores are capable of handling the bias-variance trade-off in learning BNCs according to the

chosen class-model and the available data. As stated in Section 1.4 all model selection cri-
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teria that are used in practice perform a trade-off between goodness of fit and complexity of

the models involved [53]. Indeed, model selection makes a bias-variance trade-off in order to

select a model with the appropriate complexity [25, 57], which is automatically regularized

by the model selection criterion.

Van Allen and Greiner in [3, 4] and later Chung-Chieh in [128] conducted empirical

comparisons of various scores in order to identify how each one handles bias-variance in

learning Bayesian network structures for small datasets. From their empirical studies the

authors concluded that it is difficult to identify which model selection criterion is better

than another because they were quite sensitive to the amount of data provided. They also

suggested “caution” in applying penalized likelihood criteria such as MDL and AIC (specially

MDL), as they may lead to underfitting the data. MDL and AIC can be dominated by their

complexity penalty portion, thus displayed a bias for simplicity. Specially for the MDL score,

this situation becomes more critical for smaller datasets and complex domains with many

classes and attribute values. In this case, the addition of a new arc involves the addition of

many parameters [43], and hence, the penalty complexity term has a greater influence in the

computation of the score.

On the other hand, the MLC while very simple is not appropriate for learning Bayesian

network structures. MLC tends to favor complete DAGs, that is, structures in which every

variable is connected to every other variable. The same happens with the BDeu score. As

pointed out in [44] such complete networks are not useful, since they do not provide any

useful representation of the independences in the learned distributions. A complete network

can overfit the data, specially for smaller datasets, since it has a great number of parameters,

and hence, an extremely high variance. In general, small datasets for very complex domains

result in a more challenged bias-variance trade-off. In this case it would be more appropriate

the use of scores that not biased to much, neither, for simpler nor for complex networks, as

for instance, the BD score does. As argued in Section 1.5.2 the marginal likelihood decreases

as models become more complex. Thus, the BD score tends to select models less complex

than MLC does, thus performing a more optimal trade-off between complexity and fitness to

data.

Therefore, to obtain a good performance of BNCs induced from data it is also crucial

choosing a scoring function according to how this one is able to handle the bias-variance
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trade-off for selecting a model with the appropriate complexity for the available data in each

particular domain.

3.7.2 Choosing the Class-Model

Other aspect that can also influence the performance of learning algorithms for BNCs is the

selection of the class-model. There is a direct trade-off between the complexity of a classifier

and its predictive performance. Finding the appropriate balance between complexity and

performance is a matter of handling the bias-variance trade-off. Increasing model complexity

decreases bias but increases the variance in the parameter values. In practice, complex

classifiers cannot perform well when tested on unseen data, they can overfit the training

data. Otherwise, simpler classifiers cannot capture the true structure in the data, they can

underfit the data. Both, overfitting and underfitting lead to a deterioration of the performance.

Underfitting increases the bias component of the test error while overfitting increases the

variance component. As shown in Figure 3.7, there is an optimal model complexity that

gives the best performance on unseen data.
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Figure 3.7: Behavior of the test error and the training error varying the model complexity

A simple classifier as Näıve Bayes, with high bias and low variance, will tend to produce

lower zero-one loss that more complex classifiers with low bias and high variance. Since

variance decreases with increasing sample size, this behaviour should be specially visible

with smaller sample sizes. Thus, given a limited sample it would be more appropriate to use
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the simplest Näıve Bayes classifier that no fits the data so good but with a more optimal bias-

variance trade-off. On the other hand, Näıve Bayes can also perform well for large datasets,

because its relatively large bias may not has influence on its performance [38]. However,

Kohavi in [71] showed that for some larger datasets the accuracy of Näıve Bayes does not

scale up as well as, for example, using decision trees. The high bias produced from the

independence assumption yields that achievable accuracy may asymptote early and will not

improve much as data size increases. For discrete data, because only few parameters need

to be estimated, the estimates tend to stabilize quickly and more data does not change the

underlying model much. This fact is specially supported by the results of an empirical study

performed by Brain and Webb [13] in order to investigate how the data set size may affect

the bias-variance decomposition of the test error. Their results using Näıve Bayes showed

that as training data increases variance will decrease and this will become a less significant

part of the error. On the contrary, the bias component becomes a large portion of error. For

this reason, they suggested that variance management may not be very relevant as training

set size increases. Instead, we must place more focus on bias management.

Different classes of BNCs presented in Section 3.5.1 attempt to reduce the bias of the

Näıve Bayes by relaxing the attribute independence assumption. One of the main differences

among them is the way each of them restrict the number of parents for each node. We can

arrange them in order of their increasing complexity as follows: TAN, BAN, and so on. We

should adjust the complexity of BNCs to suit the amount of training data. A simple way to

control the model’s complexity is therefore by selecting an appropriate class-model according

to the available training data. This regularization of the complexity must lead to the selection

of simpler class-models when we have few data and of more complex ones as training data

increases, thus avoiding the problems caused by either too much bias (underfitting) or too

much variance (overfitting).

3.8 Concluding Remarks

The main goal of this chapter was to introduce the Näıve Bayes classifier as well as different

classes of BNCs through a revision of previous work. We have shown that Bayesian networks

is a widely established framework as classification tool aimed at improving the performance
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of the Näıve Bayes classifier by relaxing its ”unrealistic” attribute independence assumption.

Moreover, we have presented Iterative Bayes, a parameter refinement procedure that we

have successfully implemented in our experimental studies. At the end of this chapter we

discussed the implications of choosing a particular score and a particular class-model for the

performance of BNCs induced by score-based learning algorithms. We argue that to obtain

the desirable performance of induced BNCs it is crucial not only the choice of an appropriate

model selection criterion but also the choice of an appropriate class-model according to the

available data. Moreover, the selection of the appropriate score depends not only on the

learning goal (that is, whether it is specialized for the classification task or not) but also on

how this score makes the bias-variance trade-off for selecting a model with the appropriate

complexity for the available training data. Most of the time, however, we have no clear idea of

how to use our domain knowledge and intuitions for selecting an appropriate model selection

criterion and class-model. This selection is still more challenging in a prequential learning

framework since the amount of training data varies over time. In the next chapter we provide

the results along with an in-depth analysis of a experimental study using the class of k-DBCs

that aimed at exploring these issues.





Chapter 4

A Study of k-Dependence Bayesian

Classifiers

4.1 Introduction

The class of k-Dependence Bayesian Classifiers (k-DBCs) introduced by Sahami in [121]

provides an unified framework for characterizing all the classes of BNCs that contain the

structure of Näıve Bayes such as, NB itself, TAN, BAN, etc. This class is very suitable for

scaling up the complexity of BNCs according to the current amount of training data. By

varying the maximum allowable degree of attribute dependence k we can obtain classifiers

that smoothly move along all the spectrum of attribute dependencies, thus providing a flexible

control over the model’s complexity. The simplest way to regulate the complexity of k-DBCs

is, therefore, by choosing an appropriate k-value according to the data available.

We carried out an experimental study using the class of k-DBCs to investigate how:

1. the choice of the score,

2. the choice of the class-model (i.e. the k-value); and

3. the size of the training data

can affect the performance of k-DBCs induced with the same underlying learning algorithm

in a prequential learning framework.

89
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Our study is different from existing related studies in three main aspects:

1. Whereas previous studies evaluated several scores in learning BNCs [32, 38, 43, 78, 93]

in a batch learning scenario, that is, when all the training examples are given at the

same time to the learning algorithm, our goal was to investigate how the choice of the

score affects the performance of BNCs in a prequential learning framework.

2. Whereas previous studies focused on the comparison of unsupervised versus supervised

scores [32, 38, 43, 52, 78] our goal was to evaluate other aspects related with the

choosing of the score, namely how different scores are capable of handling the bias-

variance, complexity-performance trade-offs according to the chosen class-model and

the amount of training data provided.

3. Whereas previous work [3, 4, 128] compared several scores in order to identify how each

one handles the bias-variance trade-off for small samples and in the general context

of learning Bayesian Networks, we have investigated the bias-variance trade-off for

large datasets and for the particular case when Bayesian Networks are induced for

classification.

Finally, we would like to stress that this study was basically motivated by the fact that our

main interest is in the development of adaptive algorithms for learning BNCs in a prequential

learning scenario, where the amount of training data varies over time. Therefore, one of our

main goals with these experiments was to test whether it makes sense to gradually increase

the k value in order to adjust the complexity of the class-model, and thus, the complexity of

the induced k-DBCs to the current amount of training data.

4.2 Experimental Setting

We evaluated the performance of several k-DBCs for different scores in a prequential learning

framework using three large datasets from the UCI repository [102].

4.2.1 Underlying Learning Algorithms

We used two underlying learning algorithms to induce k-DBCs:
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• for k = 0: the algorithm for learning the parameters of the NB (see Section 3.3.1).

• for k > 0: a hill-climbing learning algorithm further described.

The Hill-Climbing Algorithm for Learning k-DBCs

Instead of using the learning algorithm proposed by Sahami in [121] based on the computation

of the conditional mutual information, we relied on a hill-climbing learning algorithm as

proposed, for instance, in [8, 86]. We chose a hill-climber mainly due to its obvious simplicity

for computational implementation.

Algorithm 7 The hill-climbing algorithm for learning k-DBCs
Require: A dataset D of N labeled examples of < X, C >, the k value for the maximum allowable degree of attribute

dependence, a scoring function Score(S,D), the space S of possible DAGs restricted by k

Ensure: A k-DBC with high value of Score(S,D)

1: Initialize S to the NB structure

2: continue ⇐ True

3: while continue do

4: Compute Score(S,D)

5: Find arc (X′, X′′) = argmax Score(S
⋃

(Xi, Xj),D), where |pa(Xi) \ C| < k ∧ |pa(Xj) \ C| < k

6: if arc (X′, X′′) exists ∧ Score(S
⋃

(X′, X′′),D) > Score(S,D) then

7: Add the arc (X′, X′′) to S

8: else

9: continue ⇐ False

10: end while

11: Estimate the parameters ΘS given S from data D
12: return k-DBC=(S,ΘS)

Algorithm 7 is the hill-climbing algorithm for learning k-DBCs. We provide the learning

algorithm with a dataset of labelled examples, the k value for the maximum allowable degree

of attribute dependence and a scoring function. The rationale is as follows. The algorithm

starts with the NB’s structure. Then it iteratively adds arcs between two attributes that

result in the maximal improvements in the score until there is no more improvement for that

score or until it is no possible to add a new arc. Once a network structure is chosen, the

parameters are estimated using the selected estimator. As a result, the algorithm outputs a

k-DBC with a high score. All the learning algorithms were implemented in Java using Weka’s

classes for BNCs [11, 145].
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Scores

In our experiments we compared the following scores derived in Section 2.6:

• five unsupervised scores: MLC, MDL, AIC, BD and BDeu

• two supervised scores: k-Fold-CV (a.k.a k-Fold or CV) and Preq

Since we used different scores for the same learning algorithm, this helped us in ensuring

that any differences in performance are due to the differences in the scores, and not to

differences in the underlying learning algorithm.

Parameter Estimators

We used the ML estimates for parameters. For avoiding zero counters we smoothed the

estimates a little and initialized all the frequency counters to 0.5, which is equivalent to use

the Bayesian estimates with the non-informative assignment αijk = 0.5. As shown in [4], the

use of Bayesian estimators with Bayesian networks allows avoiding overfitting.

4.2.2 The Prequential Scenario for Learning and Evaluating k-DBCs

In the current study with k-DBCs we implemented a such-called revolutionary approach for

updating the current k-DBC with new data. At each time point Algorithm 7 was invoked

in order to rebuild the current hypothesis from all the available training data. Therefore,

after new data is available, the current classifier is dropped and a new classifier is built from

scratch using all the examples seen so far. This approach was called näıve by Friedman

and Goldszmit in the context of the sequential updating of Bayesian networks [45]. As they

argued, since learning from scratch use all the data provided so far, the näıve or revolutionary

approach for updating the classifier is essentially optimal in terms of the quality of the models

it can induce. Thus, this helped us in ensuring a more objective study of the performance

for different class-models and scores. However, building a new classifier at each learning step

requires a great amount of memory to store all the data and a lot of computer time.

To compare and evaluate the performance of different k-DBCs for different scores using

the prequential learning framework we split each dataset into N batches of 100 examples.
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At the tth learning step we used the first t batches as training data and the examples of the

next (t+1)th batch as test data. The performance was measured as the cumulative accuracy.

Algorithm 8 is the base algorithm for learning and evaluating k-DBCs in a prequential learning

framework using the revolutionary updating approach.

Algorithm 8 The algorithm for learning and evaluating k-DBCs in a prequential learning scenario

using a revolutionary updating approach
Require: A dataset D of labeled examples of < X, C > divided in batches of m examples, the k value for the maximum

allowable degree of attribute dependence, a scoring function Score(S,D)

Ensure: A k-DBC with a high score, the cumulative accuracy cumAcc

1: trainingData ⇐ the first batch of m examples of D
2: k-DBC ⇐ learn-k-DBC(trainingData, k, Score(S,D)) {using the Algorithm 7}
3: cumCorrected ⇐ 0

4: totalEvaluated ⇐ 0

5: for each next batch B of m examples of D do

6: testData⇐ B {first: predict}
7: cumCorrected+ = Evaluate(testData, k-DBC)

8: totalEvaluated+ = m

9: cumAcc⇐ cumCorrected/totalEvaluated

10: trainingData ⇐ trainingData
⋃

B {second: update the classifier}
11: k-DBC ⇐ learn-k-DBC(trainingData, k, Score(S,D), . . . ) {rebuild from scratch using the Algorithm 7}
12: end for

13: return k-DBC, cumAcc

4.2.3 Datasets

We evaluated the performance of k-DBCs on three large datasets from the UCI repository

[102]:

1. balance: This dataset was generated to model psychological experimental results. This

is a three-class problem, with four continuous attributes. The attributes are the left-

weight, the left-distance, the right-weight, and the right-distance. Each example is clas-

sified as having the balance scale tip to the right, to the left, or to be balanced. The

correct way to find the class is the greater of left-distance × left-weight and right-distance

× right-weight. If they are equal, this is balanced.

2. nursery: This dataset was derived from ranking applications for nursery schools. It was

used during several years in Ljubljana, Slovenia, where there was excessive enrollment to
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these schools and the rejected applications frequently needed an objective explanation.

The final decision depended on three sub-problems: occupation of parents and child’s

nursery; family structure and financial standing; and social and health picture of the

family. This is a five-class problem, with eight nominal attributes.

3. adult: This dataset was extracted from the US Census Bureau database. This is a

two-class problem, with six continuous attributes and eight nominal attributes. The

prediction task is to determine whether a person makes over 50K a year. This is a hard

domain to learn.

We used the nursery dataset available on the UCI repository [102] and a discretized version

of the adult dataset available on-line in [76]. Since we needed datasets with large number of

examples to better explore the behaviour of incremental algorithms, we randomly generated

samples of 10000 examples for the balance domain using its underlying rules. Moreover, we

removed instances with missing values from all the datasets. As a result we used 12800

instances for nursery (128 learning steps) and 16000 instances for adult (160 learning steps),

respectively. Thus, we consider all the datasets to be discrete and complete. While comparing

learning algorithms in the prequential learning framework, it is important does not judge their

performances on a single sequence of data. For avoiding the effect of example ordering we

generated 10 samples for each dataset. At each learning step, the performance was measured

as the average of the cumulative accuracy over the 10 samples. The main characteristics of the

three chosen datasets are summarized in Table 4.1. This table also shows the classification

accuracy of batch learning algorithms for different classes of BNCs. Superscripts denote

references from which these results were taken.

Table 4.1: Datasets used in the empirical study with k-DBCs

# # # Learning Reported Results

Dataset Attrib. Classes Inst. Steps NB TAN BAN GBN

balance 4 3 10000 100 91.43[46] n/a n/a n/a

nursery 8 5 12800 128 90.48[93] 94.16[93] 93.08[22] 92.63[93]

adult 14 2 16000 160 84.18[22] 86.01[22] 85.82[22] 86.11[22]
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4.3 Results and Analysis

For each evaluated dataset the experiments lead us to the cross-analysis of tree factors: the

k-DBC class-model (that is, the k value), the score and the training dataset size. We can

pick a score and then compare the performance of different k-DBCs varying the k value at

different time points. This kind of analysis for each score allows us to evaluate how increasing

the k value above 0 would affect the performance of k-DBCs with increasing training data.

Thus, we can analyze how the selection of a class-model with a particular complexity would

affect the performance of k-DBCs for different amounts of training data. Alternatively, we

can pick a particular class-model (a k value) and then compare the performance of several

k-DBCs which belong to a same class-model but induced with different scores at different

time points. This kind of analysis for each class-model allows us to evaluate how the selection

of a particular score would affect the performance of k-DBCs for different amounts of data.

4.3.1 Comparing the Performance of k-DBCs per Score

Tables 4.2, 4.3 and 4.4 show the gains in the accuracy of induced k-DBCs with respect

to the accuracy of the NB at 10 selected time points grouped by score for the balance,

nursery and adult domains, respectively. We evaluated whether the accuracy differences were

significant at the 5% level using a one-tailed paired t-test. For comparison purposes the first

line (k = 0) shows the averaged accuracy (in %) of the NB. The remaining lines (k > 0)

show the gains in accuracy over the NB. A gain of, say, “+1.0” means that the corresponding

k-DBC significantly improves NB in 1.0%. A “no” means that the corresponding k-DBC

obtains neither no significant gains nor improvements over NB.

Using these comparative tables allows us to identify for each particular score if increasing

the k value above 0 leads to significant improvements over NB. In each learning step and

for each score the best results giving maximum improvements are reported with bold text.

From the results we can make the following observations. First, improvement is not noticed

for smaller training dataset (of ≤ 1000 examples) since for all the domains and scores there

is practically no k-DBC that significantly outperforms NB. These results may corroborate

the hypothesis that NB performs better than more complex k-DBCs for smaller datasets.

Second, gradual gains in accuracy for k > 0 are noticed as training data increases. This
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Table 4.2: Significative gains of the predictive accuracy of k-DBCs with respect to the

Näıve Bayes per score for the balance dataset
Learning Step (t), # training examples: t × 100

Score k 5 10 30 40 50 60 70 80 90 100

0 85.70 87.80 90.17 90.44 90.63 90.95 91.05 91.17 91.22 91.30

MLC 1 no no no no no no no no no +0.31

2 no no no no no +0.55 +0.98 +1.28 +1.54 +1.77

3 no no +3.15 +4.52 +5.33 +5.69 +6.07 +6.30 +6.53 +6.66

MDL 1 no no no no +0.19 +0.30 +0.44 +0.55 +0.66 +0.72

2 no no no no +0.19 +0.30 +0.44 +0.55 +0.66 +0.72

3 no no no no +0.19 +0.30 +0.44 +0.55 +0.66 +0.72

AIC 1 no no no no no no no +0.28 +0.42 +0.50

2 no no no +0.55 +0.98 +1.26 +1.58 +1.81 +2.01 +2.20

3 no no no +0.55 +1.04 +2.08 +2.98 +3.60 +4.13 +4.48

BD 1 no no no no no no no +0.36 +0.51 +0.58

2 no no no +0.71 +1.10 +1.34 +1.63 +1.81 +2.02 +2.19

3 no no +1.99 +3.64 +4.62 +5.09 +5.56 +5.86 +6.14 +6.30

BDeu 1 no no no no no no no no no +0.29

2 no no no no no +0.66 +1.06 +1.35 +1.63 +1.86

3 no no +3.14 +4.50 +5.31 +5.67 +6.06 +6.29 +6.52 +6.65

k-Fold 1 no no no no no no no no +0.30 +0.40

2 no no no no +0.78 +1.16 +1.53 +1.78 +2.02 +2.22

3 no no +3.29 +4.61 +5.40 +5.75 +6.12 +6.35 +6.57 +6.70

Preq 1 no no no no no no no +0.27 +0.46 +0.57

2 no no no no +0.65 +1.01 +1.33 +1.60 +1.84 +2.03

3 no no +2.25 +3.82 +4.77 +5.22 +5.67 +5.95 +6.22 +6.38

may indicate that as training data increases, more complex classifiers can reduce the bias

resulting from the independence assumption, and hence, outperform NB.

However, the amount of improvement varies considerably for different k values, scores

and domains as we further summarize:

• balance domain: since this domain contains strong dependencies between attributes,

we can observe large jumps in accuracy when going from k = 0 to k = 3 for all the

scores. The only exception is the MDL score, which was not capable of improving the

performance of induced k-DBCs when k goes above 1. This suggests that the MDL

could not find the existing dependencies in this domain, thus underfitting the data.

• nursery domain: we observe gains in accuracy when going from k = 0 to k = 3 and
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Table 4.3: Significative gains of the predictive accuracy of k-DBCs with respect to the

Näıve Bayes per score for the nursery dataset
Learning Step (t), # training examples: t× 100

Score k 5 10 20 30 40 50 60 80 100 128

0 86.96 87.52 88.62 89.04 89.22 89.34 89.52 89.66 89.97 89.96

MDL 1 no no no +0.32 +0.51 +0.71 +0.77 +0.82 +0.84 +1.02

2 no no no +0.32 +0.51 +0.71 +0.77 +0.82 +0.84 +1.02

3 no no no +0.32 +0.51 +0.71 +0.77 +0.82 +0.84 +1.02

4 no no no +0.32 +0.51 +0.71 +0.77 +0.82 +0.84 +1.02

5 no no no +0.32 +0.51 +0.71 +0.77 +0.82 +0.84 +1.02

AIC 1 no +0.54 +0.89 +1.46 +1.87 +2.19 +2.38 +2.70 +2.80 +3.02

2 no +0.54 +0.89 +1.46 +1.87 +2.19 +2.38 +2.66 +2.95 +3.23

3 no +0.54 +0.89 +1.46 +1.87 +2.19 +2.38 +2.66 +2.95 +3.23

4 no +0.54 +0.89 +1.46 +1.87 +2.19 +2.38 +2.66 +2.95 +3.23

5 no +0.54 +0.89 +1.46 +1.87 +2.19 +2.38 +2.66 +2.95 +3.23

BD 1 no no +0.86 +1.21 +1.41 +1.68 +1.87 +2.08 +2.13 +2.42

2 no no +0.80 +1.24 +1.38 +1.46 +1.53 +1.78 +1.96 +2.24

3 no no +0.91 +1.31 +1.43 +1.50 +1.56 +1.67 +1.87 +2.32

4 no no +0.93 +1.32 +1.44 +1.51 +1.57 +1.81 +1.99 +2.32

5 no no +0.94 +1.33 +1.44 +1.51 +1.58 +1.67 +1.88 +2.32

BDeu 1 no no no +0.93 +1.12 +1.36 +1.51 +1.75 +1.90 +2.18

2 no no no no no +0.45 +0.97 +1.64 +2.00 +2.35

3 no no no no no no no no +0.95 +1.73

4 no no no no no no no no no +0.27

5 no no no no no no no no no no

MLC 1 no no +0.87 +1.46 +1.91 +2.10 +2.25 +2.42 +2.46 +2.67

2 no no no no no +0.87 +1.51 +2.37 +2.86 +3.43

3 no no no no no no no +0.79 +1.87 +2.95

4 no no no no no no no no no no

5 no no no no no no no no no no

CV 1 no no +2.11 +2.60 +2.88 +3.12 +3.30 +3.57 +3.67 +3.98

2 no +1.46 +2.62 +3.36 +3.77 +4.22 +4.41 +4.77 +4.94 +5.17

3 no +1.36 +2.58 +3.57 +4.09 +4.59 +4.91 +5.32 +5.62 +6.05

4 no +1.30 +2.49 +3.59 +4.05 +4.50 +4.79 +5.22 +5.50 +5.98

5 no +1.30 +2.49 +3.59 +4.04 +4.48 +4.81 +5.29 +5.59 +6.07

Preq 1 no no +1.59 +2.31 +2.72 +2.96 +3.13 +3.35 +3.46 +3.72

2 no no +1.86 +2.69 +3.26 +3.75 +4.06 +4.50 +4.74 +5.05

3 no no +2.06 +3.14 +3.64 +4.10 +4.42 +4.99 +5.28 +5.73

4 no no +2.04 +3.09 +3.60 +4.11 +4.44 +5.03 +5.35 +5.78

5 no no +2.07 +3.11 +3.61 +4.12 +4.45 +5.02 +5.33 +5.69
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Table 4.4: Significative gains of the predictive accuracy of k-DBCs with respect to the

Näıve Bayes per score for the adult dataset
Learning Step (t), # training examples: t× 100

Score k 5 10 20 40 60 80 100 120 140 160

0 81.00 81.14 81.91 81.69 81.89 82.00 81.99 82.01 82.04 82.16

MDL 1 no no +0.34 +1.36 +1.59 +1.66 +1.74 +1.86 +1.91 +1.87

2 no no +0.34 +1.36 +1.59 +1.66 +1.75 +1.88 +1.91 +1.87

3 no no +0.34 +1.36 +1.59 +1.66 +1.75 +1.88 +1.91 +1.87

4 no no +0.34 +1.36 +1.59 +1.66 +1.75 +1.88 +1.91 +1.87

AIC 1 no +1.06 +0.60 +1.71 +1.77 +1.78 +1.84 +1.96 +1.98 +1.96

2 no +1.04 +0.55 +1.51 +1.65 +1.73 +1.82 +1.99 +2.07 +2.10

3 no +1.04 +0.55 +1.51 +1.65 +1.73 +1.82 +1.99 +2.07 +2.10

4 no +1.04 +0.55 +1.51 +1.65 +1.73 +1.82 +1.99 +2.07 +2.10

BD 1 +1.56 +1.54 +0.83 +1.68 +1.65 +1.67 +1.72 +1.84 +1.87 +1.84

2 no +1.18 +0.72 +1.62 +1.77 +1.84 +1.94 +2.11 +2.13 +2.11

3 no +1.20 +0.73 +1.63 +1.78 +1.85 +1.94 +2.12 +2.13 +2.11

4 no +1.20 +0.73 +1.63 +1.78 +1.85 +1.94 +2.12 +2.13 +2.11

BDeu 1 no no no no +0.36 +0.51 +0.70 +0.95 +1.05 +1.16

2 no no no no no no +0.59 +0.83 +0.94 +1.03

3 no no no +0.67 +0.69 +0.72 +1.05 +1.24 +1.28 +1.38

4 no no no +0.67 +0.69 +0.72 +1.05 +1.24 +1.28 +1.38

MLC 1 no no +0.15 +1.34 +1.46 +1.54 +1.65 +1.80 +1.86 +1.82

2 no no no no no +0.59 +0.8 +1.08 +1.17 +1.26

3 no no no no no no no +0.48 +0.63 +0.75

4 no no no no no no no no no no

CV 1 no +0.72 +0.48 +0.81 +0.98 +0.98 +1.00 +1.15 +1.18 +1.19

2 no no no +0.83 +1.10 +1.14 +1.22 +1.38 +1.43 +1.41

3 no +0.7 no +1.25 +1.38 +1.37 +1.41 +1.55 +1.59 +1.60

4 +0.96 no no +1.23 +1.37 +1.31 +1.48 +1.71 +1.74 +1.75

Preq 1 no no +0.92 +1.41 +1.35 +1.28 +1.31 +1.35 +1.37 +1.37

2 +1.12 +1.44 +1.06 +1.67 +1.66 +1.54 +1.54 +1.67 +1.69 +1.68

3 no +1.52 +1.00 +1.71 +1.77 +1.67 +1.68 +1.79 +1.81 +1.78

4 no +1.16 +0.88 +1.71 +1.88 +1.78 +1.79 +1.96 +1.96 +1.94

at t ≥ 10. The amount of improvement is greater for the supervised scores CV and

Preq. MDL, AIC and BD, in general, were not able to obtain extra improvements for

k > 1 (there are only two exceptions at the last two learning steps for AIC when small

improvements for k = 2 are observed). The bad results obtained with BDeu and MLC

evidence some overfitting, especially for more complex k-DBCs.
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• adult domain: both AIC and BD show significant gains in the accuracy when going

from k = 0 to k = 2. Note that both scores show the best improvements when compared

with other scores. We also observe significant gains using the supervised scores CV and

Preq, which increase when k goes from 1 to 4. However, in this domain supervised scores

cannot outperform the unsupervised AIC and BD. On the other hand, MLC and BDeu

do not show significant improvements with the increasing of the k value. Specially at

earlier learning steps and for greater k values the results eventually evidence overfitting.

However, note that as the learning process advances (at t ≥ 20) BDeu starts showing

significant gains in the accuracy when a 3-DBC is used. For MLC and MDL we observe

no extra improvements when k goes above 1.

This comparative study in some way is related to the study of k-DBCs performed by

Sahami in his original work [121]. As shown by Sahami this class of k-DBCs is very useful

for experimental purposes. By knowing how the classification performance changes with the

value of k we can get a notion of the degree of attribute dependence in each particular domain.

In his experiments Sahami observed that for some domains starting from some k value there

is no more improvements in the accuracy, which may indicate that there is lower degree

of dependence in these domains. Unlike Sahami’s experiments which are based on a batch

learning approach, we have compared the performance of k-DBCs varying k for different

scores and different amount of training data in a prequential learning framework.

4.3.2 Comparing the Performance of k-DBCs per Class-Model

Tables 4.6, 4.7 and 4.8 show another view of the results about the performance of different

k-DBCs, but unlike the previous Tables 4.2, 4.3 and 4.4, we have now grouped the results

by class-model according to three different k values, k = 1, 2, 3. For each k value we have

arranged the scores in order of their bias toward simplicity: MDL, BD, AIC, Preq, CV, MLC

and BDeu. A sign “+” indicates significant gains over NB using a paired t-test at the 5%

level. For comparison purposes, at each time point we provide a rank for each score associated

to each k value. We assigned rank 1 to the score that provides more significant gains, rank

2 to the second best score, and so on. Superscripts on each entry denote theses ranks. The

last column shows the average rank of each score. To get evidence about the complexity
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of induced classifiers, Tables 4.9, 4.10 and 4.11 show the number of arcs added to the NB

structure (averaged over 10 runs) for different scores at different time points also grouped

by class-model. Superscripts in the column “Max” for balance denote the learning step at

which the maximum number of additions is accomplished. The six last columns in each table

summarize some statistics of the number of arcs added to NB and the number of parameters

of the induced k-DBCs for each k value and score. The columns “Min”,“Max” and “Avg”

depict the minimum, maximum and average number of arc additions or number of parameters,

respectively. The maximum number of allowable additions1 are reported with bold text and

summarized in Table 4.5.

Table 4.5: Maximum number of allowable additions for each domain
Dataset #Attributes 1-DBC 2-DBC 3-DBC

balance 4 3 5 6

nursery 8 7 13 18

adult 14 13 25 36

By using these comparative tables now grouped by class-model (that is, for different k

values) we can analyze how each score handles the complexity-performance trade-off in the

prequential framework for learning k-DBCs. We can make the following observations for each

domain:

• balance domain: For a 1-DBC those scores more biased toward simpler models, such

as MDL, BD and AIC do, show better performance than those scores more biased toward

complex models, which can lead eventually to overfitting. In general, when k = 1 only

few k-DBCs can outperform NB. In most cases, we start observing significant gains only

at t > 50 where there are more training data. This situation radically changes when

going from k = 1 to k = 3. At t > 10 all the scores more biased towards complexity

(BDeu, MLC, CV and Preq) show large jumps in the accuracy. In addition, results from

Table 4.10 evidence that they found maximal structures, which represent the existing

strong degree of attribute dependence in the balance domain. The best results were

obtained with a 3-DBC and the CV score.
1The maximum number of allowable additions is obtained from the formula (n − 1) + (n − 2) + + (n − k)

where n is the number of attributes.
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Table 4.6: Gains of the predictive accuracy of k-DBCs with respect to the Näıve Bayes per

class-model for the balance dataset
Learning Step Avg.

k Score 1 5 10 30 50 70 80 90 100 Rank

0 79.40 85.70 87.80 90.17 90.63 91.05 91.17 91.22 91.30

1 MDL 0.001 0.001 0.001 0.001 +0.191 +0.441 +0.551 +0.661 +0.721 1.01

BD -1.803 -0.862 -0.812 -0.342 -0.042 0.222 +0.362 +0.512 +0.582 2.02

AIC 0.001 -1.463 -1.463 -0.713 -0.243 0.123 +0.283 +0.424 +0.504 3.23

Preq -3.304 -3.364 -2.774 -0.974 -0.314 0.094 +0.274 +0.463 +0.573 3.84

CV -3.705 -4.865 -3.656 -1.376 -0.585 -0.085 0.115 +0.305 +0.405 5.25

MLC -9.807 -5.366 -3.375 -1.355 -0.626 -0.156 0.056 0.216 0.316 5.86

BDeu -9.406 -5.747 -3.697 -1.376 -0.637 -0.207 0.027 0.197 +0.297 6.97

2 MDL 0.001 0.001 0.001 0.002 +0.196 +0.447 +0.557 +0.667 +0.727 5.46

BD -1.903 -0.862 -0.822 0.081 +1.101 +1.631 +1.811 +2.021 +2.193 1.31

AIC 0.001 -1.463 -1.463 -0.063 +0.982 +1.582 +1.811 +2.013 +2.202 2.22

Preq -3.304 -3.364 -2.774 -0.534 +0.654 +1.334 +1.604 +1.844 +2.034 4.04

CV -3.705 -4.945 -3.715 -0.595 +0.783 +1.533 +1.783 +2.021 +2.221 3.03

MLC -12.007 -8.567 -5.717 -1.467 0.147 +0.986 +1.286 +1.546 +1.776 6.47

BDeu -9.806 -7.966 -5.426 -1.326 0.255 +1.065 +1.355 +1.635 +1.865 5.35

3 MDL 0.001 0.001 0.001 0.006 +0.197 +0.447 +0.557 +0.667 +0.727 6.27

BD -1.803 -3.364 -0.812 +1.995 +4.625 +5.565 +5.865 +6.145 +6.305 4.75

AIC 0.001 -1.462 -1.463 -0.067 +1.046 +2.986 +3.606 +4.136 +4.486 5.86

Preq -3.304 -3.303 -2.774 +2.254 +4.774 +5.674 +5.954 +6.224 +6.384 4.04

CV -3.705 -4.945 -3.445 +3.291 +5.401 +6.121 +6.351 +6.571 +6.701 1.41

MLC -10.406 -6.986 -3.866 +3.152 +5.332 +6.072 +6.302 +6.532 +6.662 2.42

BDeu -12.507 -8.227 -3.987 +3.143 +5.313 +6.063 +6.293 +6.523 +6.653 3.43

• nursery domain: CV and Preq performed a more optimal performance-complexity

trade-off over time. As training data increases we observe gains in accuracy moving from

k = 1 to k = 3. Both scores found models of intermediate complexity but more complex

for more training data. A similar behavior is obtained with BD and AIC. Although both

scores are more biased toward models of intermediate to simple complexity they also

show a good performance, far better as data increases. The worse results were obtained

with those scores that lie in more extreme situations: MDL (biased for simpler models)

and BDeu and MLC (biased for more complex models). Results from Table 4.10 evidence

that MDL underfits the data, as shown by the small number of arcs added to NB. On

the other hand, the k-DBCs induced with MDL show only modest gains over NB and

only at t > 40. Moreover, we do not observe changes in the performance using MDL
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Table 4.7: Gains of the predictive accuracy of k-DBCs with respect with respect to the

Näıve Bayes per class-model for the nursery dataset
Learning Step Avg.

k Score 1 5 10 20 40 60 80 100 120 Rank

0 82.80 86.96 87.52 88.62 89.22 89.52 89.66 89.87 89.98

1 MDL 0.001 0.001 0.005 0.007 +0.517 +0.777 +0.827 +0.847 +0.937 5.46

BD -0.603 -0.804 0.223 +0.865 +1.415 +1.875 +2.085 +2.135 +2.285 4.44

AIC 0.001 -0.443 +0.542 +0.893 +1.874 +2.383 +2.703 +2.803 +2.903 2.93

Preq -3.405 -1.925 0.144 +1.592 +2.722 +3.132 +3.352 +3.462 +3.602 2.82

CV -2.804 -0.122 +1.061 +2.111 +2.881 +3.301 +3.571 +3.671 +3.841 1.41

MLC -10.607 -3.167 -0.706 +0.874 +1.913 +2.254 +2.424 +2.464 +2.584 4.85

BDeu -8.206 -2.446 -1.027 0.256 +1.126 +1.516 +1.756 +1.906 +2.066 6.17

2 MDL 0.001 0.001 0.004 0.005 +0.515 +0.777 +0.827 +0.847 +0.937 4.95

BD -3.004 -1.324 -0.025 +0.804 +1.384 +1.534 +1.785 +1.966 +2.136 4.74

AIC 0.001 -0.443 +0.542 +0.893 +1.873 +2.393 +2.663 +2.953 +3.134 2.93

Preq -3.605 -1.445 0.183 +1.862 +3.262 +4.062 +4.502 +4.742 +4.932 2.82

CV -2.003 -0.402 +1.461 +2.621 +3.771 +4.411 +4.771 +4.941 +5.091 1.31

MLC -27.406 -15.886 -8.846 -3.586 -0.096 +1.515 +2.374 +2.864 +3.253 5.16

BDeu -31.807 -18.607 -9.987 -4.057 -0.457 +0.976 +1.646 +2.005 +2.235 6.37

3 MDL 0.001 0.001 0.005 0.005 +0.515 +0.775 +0.825 +0.847 +0.937 4.65

BD -1.003 -0.884 0.204 +0.913 +1.434 +1.564 +1.814 +1.984 +2.175 3.94

AIC 0.001 -0.443 +0.542 +0.894 +1.873 +2.393 +2.663 +2.953 +3.133 2.93

Preq -2.205 -1.165 0.323 +2.062 +3.642 +4.422 +4.992 +5.282 +5.552 2.82

CV -1.204 -0.122 +1.361 +2.581 +4.091 +4.911 +5.321 +5.621 +5.891 1.41

MLC -42.807 -32.607 -20.387 -11.517 -4.077 -1.287 0.147 +0.956 +1.506 6.87

BDeu -17.006 -20.286 -17.306 -10.266 -3.776 -0.876 0.796 +1.875 +2.664 5.76

when the search space is increased (that is, when k is increased from 1 to 3). The results

obtained with BDeu and MLC, on the contrary, evidence that overfitting takes place, a

situation more pronounced at earlier learning steps and for more complex class-models.

However, note that for k = 1 & t ≥ 20; k = 2 & t ≥ 80 and k = 3 & t = 120, the MLC

score shows an acceptable performance when compared with the other scores.

• adult domain: BD and AIC performed a more optimal performance-complexity trade-

off over time. Both scores show similar gains in performance for all the induced k-

DBCs. However, there are no more improvements in the accuracy when k goes above 2.

Results from Table 4.11 indicate that both BD and AIC found models of intermediate

complexity. MDL found the simplest structures while BDeu and MLC found the most
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Table 4.8: Gains of the predictive accuracy of k-DBCs with respect to the Näıve Bayes per

class-model for the adult dataset
Learning Step Avg.

k Score 1 5 10 20 40 60 100 120 160 Rank

0 83.80 81.00 81.14 81.91 81.69 81.89 81.99 82.01 82.16

1 MDL 0.002 0.285 0.485 +0.345 +1.364 +1.583 +1.742 +1.862 +1.872 3.53

BD -1.005 +1.561 +1.541 +0.832 +1.682 +1.652 +1.723 +1.843 +1.843 2.12

AIC -0.604 0.922 +1.062 +0.603 +1.711 +1.771 +1.841 +1.961 +1.961 1.51

Preq 0.401 0.444 +1.062 +0.921 +1.423 +1.354 +1.315 +1.355 +1.375 3.84

CV -1.406 0.563 +0.723 +0.484 +0.816 +0.986 +1.006 +1.156 +1.196 5.16

MLC -3.007 -1.087 0.186 +0.156 +1.345 +1.465 +1.654 +1.804 +1.824 5.05

BDeu -0.103 0.086 0.107 -0.067 0.097 +0.367 +0.707 +0.957 +1.167 6.97

2 MDL 0.001 0.285 0.485 +0.344 +1.364 +1.594 +1.753 +1.883 +1.873 3.94

BD -1.204 0.962 +1.182 +0.722 +1.622 +1.771 +1.941 +2.111 +2.111 1.41

AIC -0.602 0.923 +1.043 +0.553 +1.513 +1.653 +1.822 +1.992 +2.102 2.63

Preq -1.003 +1.121 +1.441 +1.061 +1.671 +1.662 +1.544 +1.674 +1.684 2.32

CV -2.006 0.604 0.524 0.315 +0.835 +1.105 +1.225 +1.385 +1.415 4.85

MLC -5.007 -1.086 -0.867 -1.297 0.156 0.406 +0.806 +1.086 +1.266 6.36

BDeu -1.325 -1.327 -0.726 -1.046 -0.427 -0.047 +0.597 +0.837 +1.037 6.87

3 MDL 0.001 0.285 0.485 +0.344 +1.364 +1.594 +1.753 +1.883 +1.873 4.04

BD -0.603 +1.121 +1.202 +0.732 +1.632 +1.781 +1.941 +2.121 +2.111 1.41

AIC -0.603 0.923 +1.043 +0.553 +1.513 +1.653 +1.822 +1.992 +2.102 2.63

Preq -0.402 1.002 +1.521 +1.001 +1.711 +1.772 +1.684 +1.794 +1.784 2.42

CV -2.405 0.564 +0.704 0.534 +1.255 +1.385 +1.415 +1.555 +1.605 4.75

MLC -2.606 -1.087 -1.547 -1.957 -0.547 -0.197 0.197 +0.487 +0.757 7.07

BDeu -3.207 -0.206 0.206 -0.286 +0.676 +0.696 +1.056 +1.246 +1.386 6.06

complex ones, thus severely overfiting. Note that CV and Preq also found models more

complex than those induced with BD and AIC, and even CV overfitting a little. Preq,

instead, shows an acceptable performance over time. At the first learning steps (t ≤ 40)

and for (k = 2, 3) Preq outperformed BD and AIC, but at t > 40 this situation is reverted

in favor of MDL, AIC and BD. These results evidence how some amount of additional

training data can affect the performance of a particular score.

All the results show that for all the domains and scores there is practically no k-DBC

that significantly outperforms NB for small data. Only from 1000 training examples do we

observe improvements over NB, which becomes more significant with more training data.

The balance domain contains strong interactions between the attributes. Therefore, 3-DBCs

induced with scores more biased towards complexity, such as BDeu, MLC, CV and Preq,
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Table 4.9: Number of arcs added to the NB’s structure and number of parameters for the

balance dataset
Learning Step # Arc Additions # Parameters

k Score 1 5 10 30 50 70 80 90 100 Min Max Avg Min Max Avg

1 MDL 0 0 0 0 3 3 3 3 3 0 3(49) 1.7 50 194 133.7

BD 0.4 0.1 1.3 3 3 3 3 3 3 0.1 3(18) 2.2 55 194 178.4

AIC 0.0 1.4 3 3 3 3 3 3 3 0 3(8) 2.5 50 194 187.1

Preq 0.6 2.7 3 3 3 3 3 3 3 0.6 3(6) 2.7 78.8 194 190.4

CV 1.1 3 3 3 3 3 3 3 3 1.1 3(3) 2.8 102.8 194 192.7

MLC 3 3 3 3 3 3 3 3 3 3 3(1) 3 194 194 194

BDeu 3 3 3 3 3 3 3 3 3 3 3(1) 3 194 194 194

2 MDL 0 0 0 0 3 3 3 3 3.2 0 3.2(100) 1.7 50 242 134.7

BD 0.6 0.1 1.3 5 5 5 5 5 5 0.1 5(30) 3.6 54.8 674 551.3

AIC 0 1.4 3 5 5 5 5 5 5 0 5(23) 3.8 50 674 578.2

Preq 0.6 2.7 3 5 5 5 5 5 5 0.6 5(21) 4.0 78.8 674 597.9

CV 1.1 3.1 5 5 5 5 5 5 5 1.1 5(10) 4.4 102.8 674 639.7

MLC 5 5 5 5 5 5 5 5 5 5 5(1) 5 674 674 674

BDeu 5 5 5 5 5 5 5 5 5 5 5(1) 5 674 674 674

3 MDL 0 0 0 0 3 3 3 3 3.2 0 3.2(100) 1.7 50 242 134.7

BD 0.7 0.1 1.3 6 6 6 6 6 6 0.1 6(30) 4.2 54.8 1874 1503.9

AIC 0 1.4 3 5 5.4 6 6 6 6 0 6(53) 4.3 50 1874 1173.3

Preq 0.6 2.7 3 6 6 6 6 6 6 0.6 6(21) 4.7 78.8 1874 1609

CV 1.1 3.1 5.6 6 6 6 6 6 6 1.1 6(12) 5.0 102.8 1874 1729.5

MLC 6 6 6 6 6 6 6 6 6 6 6(1) 6 1874 1874 1874

BDeu 6 6 6 6 6 6 6 6 6 6 6(1) 6 1874 1874 1874

produce more accurate k-DBCs. For the nursery domain 3-DBCs induced with Preq and CV

perform better. Since the best jumps in accuracy were obtained going from k = 0 until k = 3,

we can suspect that there are about 3-order attribute dependencies in the nursery domain.

For the adult domain 2-DBCs induced with scores more biased toward models of intermediate

to simple complexity, such as Preq, BD, AIC and MDL, produce the best classifiers. This may

indicate that there are about 2-order attribute dependencies in the adult domain.
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4.3.3 Comparing the Bias-Variance Trade-off per Score

There is a bias-variance trade-off in choosing the appropriate complexity of the model. We

further performed a case study with the nursery dataset in order to investigate how differ-

ent scores handle the bias-variance trade-off of several k-DBCs induced in the prequential

framework. We compare the performance of k-DBCs varying k from 0 to 7, the maximum

number of allowable attribute dependencies in this particular domain. We chose for this

study only four scores among those that should bring us more interesting behaviours for dis-

cussion. These scores arranged in order of their bias toward simplicity are: MDL, AIC, Preq

and BDeu. Figures 4.1 and 4.2 allow us to identify the differences in how each score handles

the bias-variance trade-off in learning k-DBCs at six time points: t = 5, t = 10, t = 15,

t = 50, t = 120 and t = 125. Plots on the left show the training and test errors as a function

of k-DBC class-model. Each point in a line represents the training or test error of the related

k-DBC for a particular score. The first points in the lines represent the errors of NB (k = 0).

Pictures on the right show the bias-variance decomposition of the test error for all the scores.

Bias-Variance Trade-off

The bias-variance decomposition of the error is a useful tool to understand the behavior

of learning algorithms. We performed the bias-variance decomposition of the test error at

different time points. To estimate the bias and variance we introduce some modifications to

the methodology proposed in [73] and described in Section 3.2.3. For each dataset we used

the ten randomly generated samples as training samples and then randomly generated a new,

11th sample, to serve as test sample. We split all the training and test samples into batches

of 100 examples. At the tth learning step we used the first t batches of each training sample

as training sets and the corresponding t batch of examples of the test sample as test set. At

each time point we used the Algorithm 7 for learning the k-DBCs using each training set.

Then we used each induced k-DBC to predict the class for each example in the test set and

to update the corresponding frequency counters from which the bias and the variance terms

are estimated.

Increasing data set size affects the bias-variance error decomposition for supervised learn-

ing algorithms. It is well known that variance decreases as training set size increases. How-
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Figure 4.1: Training-test errors and bias-variance decomposition of the test error varying

k at three time points: t = 5, t = 10 and t = 15
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Figure 4.2: Training-test errors and bias-variance decomposition of of the test error varying

k at three time points: t = 50, t = 120 and t = 125
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ever, as shown in [13] there is no clear effect of the training set size on the bias component.

By looking at Figures 4.1 and 4.2 we can analyze the differences in the bias-variance de-

composition of the test error for different scores across the range of k-DBC class-models at

different time points, that is, for different amount of training data. In addition, to get extra

evidences about the differences in the complexity of k-DBCs induced with different scores

Table 4.14 shows the averaged number of arcs added to the NB structure for each score and k

value at different time points. An entry with (”) means that the number of added arcs for the

corresponding k-DBC is the same number shown in the previous line. The column “Allow.”

shows the maximum number of allowable arc’s additions for each k-DBC class-model. Since

BDeu always finds maximal models we do not present the number of added arcs for BDeu in

this table. From Figures 4.1 and 4.2 and Table 4.14 we can make the following observations:

• MDL and AIC scores: both scores tend to underfit the data, thus biasing the model for

simpler structures. This is evident from the small number of arc’s additions performed.

As training size increases both scores increase in bias and decrease in variance. However,

since MDL has stronger bias for simplicity than AIC, the latter can reduce the bias

slightly with time. As a result, AIC outperforms MDL.

• BDeu score: this score consistently favors the dependent structure because the ad-

dition of an arc will always increase the likelihood of a model. When the complexity

grows, BDeu can lead to severe overfitting and consequently to a great deterioration of

the performance. Note that starting from some k value, the plots of the training/test

errors clearly evidence overfitting. As k approaches its maximum value 7, the training

error becomes vanishing and the test error considerably increases. Since the induced

models become more and more complex we can observe a considerable increase in vari-

ance. However, this tendency of overfitting diminishes with increasing data size because

the variance decreases, thus reducing the test error.

• Preq score: this score does a more optimal bias-variance trade-off at all the time

points thus producing the best results in the sense of complexity-performance. The

k-DBCs induced with Preq are more complex than those induced with MDL and AIC,

thus avoinding underfitting. On the other hand, they are less complex than the k-DBCs

induced with BDeu, thus avoinding overfitting. From the bias-variance decomposition
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of the test error we can observe that Preq performs a more artful bias management com-

pared to the other scores, thus producing lower bias models with no so much variance.

As a result, the supervised score Preq obtained the best performance in the nursery

domain.

Optimal class-models

In each learning step given a particular score there is an optimal class-model that gives

minimum test error. Optimal class-models perform an optimal trade-off between complexity

and performance. The optimal class-model for each score is signalized with a vertical ellipse

on the bias-variance decomposition of the test error in Figures 4.1 and 4.2. In addition, some

statistics about the optimal class-model for all the scores and the six chosen time points are

summarized in Table 4.13. The column “Optimal k” indicates the k value that corresponds to

the optimal class-model. The next two columns depict the values of two complexity indicators.

The column “# Added Arcs” shows the number of arcs added to the NB’s stucture for the

optimal class-model and the column “Dim” shows the dimension of the corresponding k-DBC

expressed by the number of its parameters. The following two columns depict the values of

two performance indicators. The column “Test Error” shows the test errors while the column

“Gains” shows the gains in the performance obtained with the optimal class-model against

NB. For comparison purposes the test errors of NB at different time points appear in Table

4.12. The last column “Rank” shows a rank for each score according to the performance on

the test set.

Table 4.12: The test error of the Näıve Bayes classifier at the six chosen time points for

the nursery dataset

# Training Examp. 500 1000 1500 5000 12000 12500

Test Error 7.20% 12.00% 10.80% 7.10% 7.70% 13.00%

Table 4.13 along with Figures 4.1 and 4.2 lead us to the following important observations:

1. For all the scores and for smaller data (≤ 1000 examples) more simpler k-DBCs for

k = 0, 1 perform better, although the models are more biased. This fact brings us

more evidence that “high bias can be compensated by low variance to produce accurate
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Table 4.13: Optimal class-model per score and per time point for the nursery dataset
Complexity Performance

t # Tr.Ex. Score Optimal # Added Dim Test Gains Rank

k Arcs (# Par.) Error to NB

5 500 MDL 0 0.0 99 7.20 % no 3

AIC 0 0.0 99 7.20 % no 3

Preq 1 4.4 237 5.60 % +1.60 % 1

Bdeu 1 7.0 399 7.00 % +0.20 % 2

10 1000 MDL 0 0.0 99 12.00 % no 4

AIC 1 1.4 143 10.60 % +1.40 % 3

Preq 1 6.4 298 7.90 % +4.10 % 1

Bdeu 1 7.0 397 9.20 % +2.80 % 2

15 1500 MDL 0 0.0 99 10.80 % no 4

AIC 1 1.6 145 8.50 % +2.30 % 3

Preq 2 9.0 538 5.90 % +4.90 % 1

Bdeu 1 7.0 399 6.60 % +4.20 % 2

50 5000 MDL 1 1.0 139 4.50 % +2.60 % 4

AIC 1 6.0 249 3.90 % +3.20 % 3

Preq 3 14.2 1213 2.30 % +4.80 % 1

Bdeu 3 18.0 2624 2.70 % +4.40 % 2

120 12000 MDL 0 0.0 99 7.70 % no 4

AIC 2 9.8 561 4.10 % +3.60 % 3

Preq 3 17.8 2138 0.60 % +7.10 % 2

Bdeu 3 18.0 2879 0.40 % +7.30 % 1

125 12500 MDL 1 2.0 149 8.00% +5.00% 4

AIC 1 7.0 309 4.90% +8.10% 3

Preq 4 19.6 3590 1.60% +11.40% 1

Bdeu 4 22.0 7967 1.60% +11.40% 2

classification”.

2. As training data increases the bias diminishes at a rate that also reduces variance and

consequently the classification error. As a result the optimal class-model (optimal k)

slowly moves across the spectrum of class-models, obviously slower for AIC and MDL

than for BDeu and Preq. Thus, as the learning process advances k-DBCs induced with

the optimal k become gradually much more complex for BDeu and Preq and much less

complex for AIC and MDL.

3. At each time point if we choose a class-model more complex than the optimal one, the

resulting k-DBC is incapable not only of improving the NB’s performance, but, what is
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Table 4.14: The number of arcs added to the NB’s structure averaged over 10 runs for the

nursery dataset
# training examples: t× 100 Added Arcs

Score k 5 10 15 50 100 120 125 Allow. Min Max Avg

MDL 1 0 0 0 1 1.4 2 2 7 0 2 0.91

2 ” ” ” ” ” ” ” 13 ” ” ”

3 ” ” ” ” ” ” ” 18 ” ” ”

4 ” ” ” ” ” ” ” 22 ” ” ”

5 ” ” ” ” ” ” ” 25 ” ” ”

6 ” ” ” ” ” ” ” 27 ” ” ”

7 ” ” ” ” ” ” ” 28 ” ” ”

AIC 1 0.8 1.4 2.6 5.8 7.0 7.0 7.0 7 0.8 7.0 4.5

2 ” ” ” 6.0 9.4 9.8 10.0 13 ” 10.0 5.7

3 ” ” ” ” ” ” ” 18 ” ” ”

4 ” ” ” ” ” ” ” 22 ” ” ”

5 ” ” ” ” ” ” ” 25 ” ” ”

6 ” ” ” ” ” ” ” 27 ” ” ”

7 ” ” ” ” ” ” ” 28 ” ” ”

PREQ 1 4.4 6.4 6.6 7.0 7.0 7.0 7.0 7 4.4 7.0 6.5

2 5.2 8.0 10.0 12.4 12.6 13.0 13.0 13 5.2 13.0 10.6

3 5.4 ” 11.6 14.2 17.4 17.8 17.8 18 5.4 17.8 13.1

4 ” ” ” ” 18.0 19.0 19.6 22 ” 19.6 13.7

5 ” ” ” ” 18.4 19.2 20.4 25 ” 20.4 13.9

6 ” ” ” ” ” ” ” 27 ” ” ”

7 ” ” ” ” ” ” ” 28 ” ” ”

worse, the performance can suffer a great deterioration due to a considerable increase

in variance, thus overfitting the data. This behaviour is specially observed when we

use scores more biased to complex models as BDeu does and when there is few training

data. For instance, we can observe the great increase in the variance for BDeu from

k > 1 at t = 5 and t = 10. On the contrary, the performance can also be affected if

we choose a class-model less complex than the optimal one. This situation is still more

critical for scores more biased to simpler models, such as MDL and AIC. For instance,

at t = 120 we can observe as the bias increases for AIC when k < 2 and a 2-DBC is the

optimal class-model. As a result underfitting takes place.

4. At the last two time points t = 120 and t = 125 for large amount of training data, the

best results were obtained with the Preq and BDeu scores. In terms of bias-variance
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decomposition even their behaviours are very similar, although Preq wins in terms of

bias management. Thus, as training data increases, BDeu can reduce the overfitting

problem and find optimal classifiers in the sense of their complexity and performance.

We would like to make a last elucidation related to the last observation. The results of

the performance depicted in the previous Tables 4.2, 4.3, 4.4, 4.6, 4.7, 4.8 were based on the

cumulative accuracy, that is, on the proportion of the number of corrected classified examples

over the number of all examples seen so far. To obtain the bias-variance decomposition, we

have evaluated the test error on a separate batch of unseen examples from the 11th generated

sample, which will not used to update the induced classifiers. So why we can observe some

discrepancies in these results. For instance, if for the nursery dataset we observe the gains

in the cumulative accuracy obtained with a 3-DBC at t = 120 (see Table 4.7), we can

note that the cumulative gain obtained with BDeu (+2.66) is significant smaller that those

obtained with Preq (+5.55). And, in general, Preq performs significantly better than BDeu

over time. However, note that while there is few training data, a 3-DBC induced with

BDeu severely overfits the data and this bad performance has a great weight on the final

cumulative performance. However, if we use a 3-DBC with 12000 training examples and

compare the performance of Preq and BDeu scores by evaluating each corresponding classifier

in an independent test set of 100 examples, the results show that the performance of these

scores is very similar as evidence the results from Table 4.13 and Figure 4.2.

4.4 Concluding Remarks

From the above presented results and analysis we can conclude that varying k, the score

and the training set size can have different effects on the performance of induced k-DBCs for

different domains. We can corroborate that it is difficult to identify which score is better than

another because they were quite sensitive to the amount of data provided and the chosen

k value. Even supervised scores (k-Fold-CV and Preq) did not always show the best results

among all the scores. Nevertheless, for supervised learning it would more appropriate to

choose a supervised score optimized for classification better matching the learning goal. But

k-Fold-CV and Preq, as we know, are very expensive to compute. If for avoiding computa-

tional limitations we choose, instead, an unsupervised score, then we should take into account
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how this score makes the bias-variance trade-off for selecting a model with the appropriate

complexity according to the amount of training data available and the complexity of the do-

main. As demonstrated, some amount of additional training data can affect the performance

of a particular score. If we have few data it should be not appropriate to choose scores that

tend to overfit, such as MLC and BDeu do, because they select complete structures, have

high variance, and hence, cannot perform well. If we, instead, have a complex domain (that

is, it has a great number of classes and attribute values) we should avoid using scores that

tend to underfit, such as MDL and AIC do, because the penalty term will grow faster, and

hence, the amount of data required to find new attribute dependencies becomes much greater.

However, because MDL penalizes complexity more severely than AIC does, the model induced

with MDL tends to be simpler than the model induced with AIC. In general, it will certainly

be more suitable, to choose a score that found models of intermediate complexity, such as,

for instance, the Bayesian score BD or even the AIC did.

Choosing the appropriate k value is also very dependent on the amount of training data

and the score provided to the learning algorithms unless we have some prior beliefs about the

actual degree of attribute dependence. For example, consider an extreme situation in which

we have only 500 training examples of the nursery domain and we unfortunately decided to

use the BDeu score for learning a k-DBC using a 3-DBC class-model. Plots of the training/test

errors in Figures 4.1-4.2 show that BDeu severely overfits the data. The performance of the

resulting model is much worse than that obtained by using the Näıve Bayes. If we decide,

instead, to use the same settings only changing the k value to 1 the resulting classifier now

shows a good performance and can even outperform the Näıve Bayes. These facts raise the

question about the selection of an appropriate k-DBC class-model. As stated, this selection

is still more challenging in a prequential learning framework since the amount of training

data varies over time. In the next chapter we will describe our adaptive algorithms under the

adaptive prequential framework for supervised learning aimed at automatically solving this

problem.





Chapter 5

Adaptive Learning Algorithms for

Bayesian Network Classifiers

5.1 Introduction

In this chapter we consider adaptive learning algorithms for BNCs in a prequential learning

framework. As stated, in this framework data arrives at the learning system sequentially. The

actual predictive model must first make a prediction and then update the current model with

new data. An efficient adaptive algorithm in a prequential learning framework involves an

artful trade-off between the gain in the quality of the updated model and the cost of adaptation.

Since the quality of BNCs is determined by their predictive capability, an efficient adaptive

learning algorithm for BNCs must be able, above all, to improve its predictive accuracy over

time while optimizing the cost of updating. However, in many real-world situations it may

be difficult to improve and adapt to existing workflow, operational setting and changing

environments. Changes in the learning environment may effect changes in the target concept

that the learner is trying to approach at each learning step. This problem is known as concept

drift in machine learning. In changing environments, learning algorithms should be provided

with some control and adaptive mechanisms that effort to handle concept changes and adjust

quickly to these changes. Learning systems that track a changing environment are often called

adaptive learning systems. In this chapter we present an adaptive, prequential framework for

supervised learning called AdPreqFr4SL, which tries to handle the cost-quality trade-off and
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cope with concept drift.

The adaptive strategy in the AdPreqFr4SL for incorporating new data leads to a more

artful trade-off between the cost of updating and the gain in performance. This is based upon

two main policies: bias management and gradual adaptation. The basic idea is that we can

improve the performance of a BNC while reducing the cost of updating if in each learning step

we choose a class-model with the appropriate complexity for the amount of training data we

have. Moreover, we use new data to primarily adapt the parameters. We adapt the structure

only when there is evidence that the performance of the current model no longer improves

in a desirable tempo. The AdPreqFr4SL integrates simple but efficient control strategies for

bias management [18] with a method for handling concept drift based on Statistical Quality

Control [21]. If during the monitoring process a concept drift is detected, some actions to

adapt the learner to these changes are taken. These actions usually forget old examples, as

they are examples of an old target function.

In Section 5.2 we will review the main issues related to adaptive learning systems. Then,

we will present the main assumptions that we have adopted in the design of our adaptive

algorithms. In Section 5.4 we describe the adaptive and control strategies for handling the

cost-quality trade-off. Then, in Section 5.5 we describe our method for handling concept drift

using a Schewart Control Chart. In the last section we will describe the AdPreqFr4SL as a

whole learning framework that integrates all the presented adaptive algorithms.

5.2 Adaptive Learning Systems

In general, adaptive systems are systems whose function evolves over time, as they improve

their performance through learning. In the context of this thesis we consider adaptive learning

systems as on-line learning systems capable of handling concept drift. In general, we could

summarize five main factors which are required for drawing up of an efficient adaptive system:

1. Environment: The main environmental assumption is concerned to the way in which

the instances are presented to the learning system. In off-line learning all examples

are given at the same time to the learning algorithms. In on-line learning, on the

contrary, the examples are presented not at the same time. Thus, on-line learning is

inherently a temporal process where at each time point the system can accept either,
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only one example or a suitable-size batch of examples. The ability to learn from batches

is an important feature that makes a learning algorithm more applicable to real-world

applications [85]. Even if each instance is classified as it arrives, constructing batches is

quite natural since, all examples arriving in the course of a day or a week can be grouped

together thus performing model adaptation in jumps when there is some accumulated

experience. On the other hand, an on-line learning system must make a usable model

available for predictions at any time point. However, as pointed out in [119], there are

real-world environments with very strong constrains in computing time and memory

space that can affect the formulation and performance of on-line learning systems. In

this sort of environments, an incremental algorithm, which continuously revises and

refines a domain model by processing new data as they are available, is more suitable.

Another crucial question concerns whether the environment can change or is assumed

to be constant over time. In changing environments, learning algorithms should be

provided with some extra mechanisms that effort to adapt the system to these changes.

2. Model Memory: on-line learning systems must have policies that deal with the way

the target concept descriptions are stored. There are three possibilities:

(a) store one hypothesis

(b) store several alternative hypotheses

(c) store no hypothesis

This definition depends on the classifier employed (i.e. it is classifier-dependent) and

how it makes use of the available resources (memory space, computer time, etc.) for

learning and adaptation purposes. The most favorable would be a model that would

limit the cost of updating and the use of memory space. For more sophisticated classes

of classifiers (e.g. neural networks) it may be unreasonable to keep in memory several

alternative hypotheses. For systems with model memory, learning can occur either in

an incremental mode or in a temporal batch mode [94]. Incremental learners modify

their current descriptions whenever new data arrives. On the contrary, batch learners

replace current descriptions with new ones using all the examples seen so far. Another

important question is concerned with model initialization (known as cold start), i.e.,

whether some background knowledge (expert or empirical) can be used to build an
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initial hypothesis.

3. Data Memory: The formulation and performance of on-line learning systems also

depends on the way past examples are treated. Three data memory models exist:

(a) long-term memory: all the examples from the input stream are stored

(b) short-term memory: only some of the past examples are stored

(c) no memory: no examples are stored

Approaches with short-term memory have been mostly used in on-line learning systems

that deal with concept drift. This sort of approach requires the identification of policies

of how to select the representative set of examples from the input stream, how to

maintain them, and use them in future learning episodes. Maloof and Michalski in [94]

provide a good classification and survey about how different on-line learning systems

use the model and data memories for handling concept drift.

4. Adaptive actions: They operate over both, the model memory and the data memory.

Actions for updating the model aim to incorporate new data to the current hypothesis

(or alternative hypotheses) so as to yield a more effective classifier, whereas actions

for updating the data memory aim in providing a more representative training set for

learning purposes and are more oriented for handling concept drift. The incorporation

of new data in on-line learning can be conducted using:

(a) an evolutionary approach: the current hypothesis is updated based on new

examples

(b) a revolutionary approach: a batch learning procedure is invoked after new

incoming data using all the examples seen so far, that is, at each learning step the

current hypothesis is rebuilt from scratch

(c) a hybrid approach: it takes elements from both the revolutionary and evolu-

tionary approach. For instance, a new hypothesis can be learned from new data

and then the old hypothesis is combined with the new hypothesis

Thus, for systems follow an evolutionary approach learning occurs in an incremental

mode whereas for those that follow a revolutionary approach learning occurs in a tem-

poral batch mode. Since learning from scratch use all the data provided so far, the
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revolutionary approach for updating the classifier is essentially optimal in terms of the

quality of the hypotheses it can induce [45]. However, although theoretically it is pos-

sible to rebuild a new model from scratch after each new observation is seen, as the

data grows, the cost becomes prohibitive. An alternative approach is to find a way

to accommodate new observations into the current model in an incremental fashion.

However, one disadvantage of the evolutionary approach approach is that the resulting

hypothesis may be of a lower quality when compared to the hypothesis induced from all

the observations seen so far. A hybrid approach that refines the structure of a Bayesian

Network with new data was proposed in [82].

The precise way in which the model memory can be updated in order to include new

data is also classifier-dependent. Some supervised learning algorithms are naturally

incremental, for example k-nearest neighbors and Näıve Bayes. For other classifiers

(e.g. decision trees, Bayesian networks, support vector machines) updating can be a

more difficult task. A more in depth discussion about these issues can be found in

[85]. A pioneer work comparing the revolutionary and evolutionary approaches in on-

line learning is given in [96]. A more related work [45] compares the revolutionary and

evolutionary approaches for sequential updating of Bayesian networks.

Adaptive actions can be performed globally or locally. Local adaptation should rather

be viewed as model refinement. It is based on locality assessments that avoid the

re-learning process of all the structure and parameters. For instance, a technique for

using new data to revise a given Bayesian network in order to improve its classification

accuracy is proposed in [113]. This method employs mechanisms similar to those used

in logical theory refinement. This uses the data to focus the search for effective local

modifications to the networks.

5. Control Strategies: Many adaptive systems employ regular model updates while

new data arrives. However, when the cost of updating the model in light of new data

is high, it is desirable to find a way to decide whether it is inevitable to trigger the

updating process. Thus, an alternative approach is to provide the adaptive system with

some controlling mechanisms that effort to select the best adaptive actions according

to the current learning goal. For deciding about the best adaptive actions, at least

one characteristic value (indicator) should be observed over time and compared to
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previous values regularly. This process is referred as monitoring. An indicator is a

qualitative or quantitative parameter that can be assessed for detecting both qualitative

and quantitative problems in the current state of a learning system. Three categories

of indicators can be considered [70]:

(a) performance measures (e.g. the accuracy or error rate of the current classifier):

independent of the classifier, generally applicable.

(b) properties of the classification model (e.g. the complexity of the current

hypothesis): classifier-dependent.

(c) properties of the data (e.g. class distribution, attribute-value distribution):

independent of the classifier, generally applicable.

Moreover, indicators can be designed globally or locally. Global indicators are more

suitable for assessing the global performance (e.g. accuracy, global scores). In contrast,

local indicators (e.g. local scores, complexity of a local structure) are very useful for

assessing local changes in the behavior in order to perform local refinements of the

current model. For instance, Cowell and el. in [34] presented a range of global and local

indicators for BNs (they called monitors) based on standardized scores in a prequential

learning framework.

5.3 Main Assumptions and Settings

The main environmental assumption that drives the design of our framework is that obser-

vations arrive at the learning system not at the same time, which allows the environment to

change over time. Without loss of generality, we assume that at each time point data arrives

in batches so that we can perform model adaptation in jumps when there is some accumu-

lated experience. These batches are assumed to be of equal size, each containing m examples.

Related to the model memory we propose to maintain an unique hypothesis hC defined as a

pair (S,ΘS), where S is the structure and ΘS are the parameters for that structure. We

chose the class of k-DBCs for illustrating our adaptive approach. This class is very suitable

because, as stated, by increasing the k value we can easily scale-up the model complexity of

BNCs. We assume that all the variables are discrete and the data is complete.
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The main difference between the prequential framework for supervised learning presented

in Algorithm 4 and the AdPreqFr4SL is that the latter is adaptive. The 4 is provided with

some controlling mechanisms that attempt to select the best adaptive actions according to

the current learning goal. Thus, for each incoming batch of examples the current hypothesis

is used to do prediction, the correct class is observed and some performance indicators are

assessed. Then, the indicator values are used to estimate the current system’s state. Finally,

the model is adapted according to the estimated state in order to achieve the current goal.

The incorporation of new data in the AdPreqFr4SL is conducted using an evolutionary

approach, that is, whenever new data arrives to the learning system, the current hypothesis

is updated with new data. In principle, the current hypothesis is subject to changes as a

new batch arrives by modifying both its parameters and its structure. But whenever it is

possible, we will try to update only the parameters. Updating the structure of Bayesian

networks is a computationally expensive task since searching is involved. The space and time

complexity of search procedures increases quadratically with the number of variables (at each

search step, each variable depends on the order of one change with respect to each of the

other variables) [61]. Moreover, search procedures requires keeping in the main memory all

the sufficient statistics needed to compute the scores for all the candidate structures, a huge

memory space.

Nowadays, there are only a limited number of previous works concerning sequential updat-

ing of Bayesian Network structures. These works have mainly adapted a hill-climber search

procedure and/or implemented more sophisticated data structures and methods for storing

and computing the sufficient statistics in an incremental fashion1. We use a hill-climbing

search procedure to learn the structure of BNCs. Whenever a structure adaptation is trig-

gered, the hill-climber moves from the current structure to the best neighbor until it cannot

improve the score anymore. During the search process we use the sufficient statistics from

all the data seen so far for computing the score of each candidate structure. Only when a

concept shift is detected the sufficient statistics are recomputed using the examples of the

new concept. Thus, one of the limitations of our proposal is that we assume that we can

keep in memory all the needed sufficient statistics. We left for future work the integration of

more sophisticated data structures for storing the sufficient statistics into the AdPreqFr4SL

1We will provide a short overview of these approaches in Section 5.4.4.
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and focus here on other issues, namely:

1. We use Bayesian networks for the particular task of classification in a prequential learn-

ing scenario.

2. We approach the cost-performace trade-off through bias management and adaptation

control.

3. We handle concept drift.

In the next sections we will present the adaptive and control strategies that we have

adopted in our adaptive framework for handling the cost-quality trade-off and concept drift.

5.4 Cost-Quality Management

The strategy that we follow in the AdPreqFr4SL for incorporating new data try to perform

an artful cost-quality trade-off. This is based upon two main policies: i) bias management;

and ii) adaptation control.

Since most of the time we have no clear idea of how to select an appropriate class-model of

BNCs for the current learning task, we propose the use of the class of k-DBCs and start with

the simplest class-model, that is, the Näıve Bayes classifier. We can improve the performance

of Näıve Bayes over time if we trade-off the bias reduction which leads to the addition of new

attribute dependencies, and, consequently, to the estimation of more parameters, with the

variance reduction by accurately estimating the parameters. However, as argued in Section

3.7.2 and further corroborated from the results of the study with k-DBCs, as the learning

process advances variance will decrease and we should place more focus on bias management.

We can reduce the bias, if we reduce the bias resulting from the independence assumptions

by gradually adding dependencies among attributes over time. To this end, we gradually

increase the k value so that the search space can be also progressively extended over the

space of possible structures. By choosing an appropriate k value at each learning step we can

scale up the model complexity to suit the available training data thus avoiding the problems

caused by either too much bias (underfitting) or too much variance (overfiting). This way we

reduce bias at a rate that also reduces variance and consequently the classification error.
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On the other hand, we use simple control strategies based on the performance’s dynamics

to decide when it makes sense to do the next move in the spectrum of attribute dependencies

and to start searching for new dependencies. This way we reduce the cost of updating because

we use new data to primarily adapt the parameters. We adapt the structure only at sparse

time points, when there is some accumulated data and there is evidence that the use of the

current structure no longer guarantees the desirable improvement in the performance. Finally,

we stop the adaptation process when there is evidence that the use of more training data will

not result in significantly improved performance. However, if any significant change in the

behavior is further observed, then the adaptation procedures will be once again activated.

Trough all this section we will assume stability in the target concept. In Sections 5.4.1

and 5.4.2 we formalize the adaptive and control policies for handling the cost-quality trade-off

based on bias management and adaptation control. Then, in Section 5.4.3 we will present the

adaptive algorithm that integrates the proposed adaptive and control strategies. Finally, in

Section 5.4.4 we will provide an overview of related work.

5.4.1 Adaptation Policy

The adaptation policy is characterized by a gradual adaptation of the model using four levels

so that increasing the adaptation level increases the cost of updating:

• initial level: a new hypothesis is built using the simplest Näıve Bayes.

• first level: only the parameters are updated with new data. Optionally we can use

the Iterative Bayes for improving the parameter estimates as described in Section 3.6.

• second level: the structure is updated with new data.

• third level: if it is still possible, the maximum number of allowable dependencies (k)

is increased by one, and the current structure is once again adapted.

The rationale of the adaptation strategy is as follows. In the absence of any information

about the true model the adaptive algorithm starts from its initial level: k is set to 0

and a new Näıve Bayes (NB) classifier is built. Then, whenever new data arrives, it first

tries to improve the NB by adapting only its parameters. When there is evidence indicating
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that the performance of the NB stops improving in the desirable tempo, k is incremented by

one and the NB structure begins to be adapted by searching for new attribute dependencies.

At this time point, there is more data available which could allow the search procedure to

find new dependencies. Note that only when k = 0, the algorithm jumps from the first

level to the third level of adaptation. Thus, a 1-DBC structure begins to be searched

using the hill-climber search procedure only with arc additions. Independently of which new

dependencies were found or not, the algorithm is re-launched from the first level, that is,

it continues performing only parameter adaptation.

Suppose that at some time point t a new k-DBC structure is found where k > 0. Whenever

a new structure is found, the algorithm is re-launched from the first level of adaptation,

that is, it performs only parameter adaptation until there will be again evidence that the

performance using this structure stops improving. In this case, the algorithm moves to the

second level of adaptation and the current structure begins to be adapted by searching

for new attribute dependencies. At this stage the search procedure is also allowed to delete

some existing dependencies thus correcting previous errors in the search process. Only if the

resulting structure remains the same, the algorithm moves to the third level of adaptation:

k is incremented by one and the search process continues working, now in the augmented

search space. If after searching the resulting structure still continues the same then some

control heuristic verifies if the current performance has already reached its plateau2. If the

plateau is reached, it is assumed that adding additional data does not result in discovering new

attribute dependencies and further improvements in the accuracy. In this case the adaptation

process is stopped. As a result, the current hypothesis is not further updated with new

data. However, the performance continues to be monitored. If any significant change in the

behaviour is observed, then the adaptation procedures are once again activated. For avoiding

k to increase unnecessarily, the old value of k is recovered whenever the search procedure is

not able to find new dependencies, thus keeping the original search space. Only in the case

when an abrupt concept drift is detected, the algorithm is re-launched from its initial level

and a new NB is built using the examples from a short-term memory. The whole adaptive

algorithm for cost-quality management will be formalized later in section 5.4.3 after we finish

describing the control strategies that we have adopted to this end.

2A plateau is a part of the learning curve where the predictive accuracy is essentially flat.
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Algorithm 9 is the pseudo-code of the parameter-updating procedure. As stated, sequential

updating of the parameters on the light of new data is straightforward for discrete variables

and complete data. This requires a simple scan through all the examples in the given batch

in order to increment the frequency counters corresponding to the values of each example. In

addition, we provide the algorithm with the boolean variable bIterativeBayes to indicate

whether to use the Iterative Bayes for improving the parameter estimates or not.

Algorithm 9 The algorithm for updating the parameters of k-DBCs
Require: A current classifier hC = (S, ΘS) belonging to the class of k-DBCs, a batch B of m labeled examples of

< X, C >, a boolean variable bIterativeBayes to indicate whether the Iterative Bayes is used or not

Ensure: The set of parameters ΘS updated with the examples of B

1: Update T(D | S) with the examples from B

2: if bIterativeBayes then

3: IterativeBayes(hC , B, ...) {improve the parameter estimates using Algorithm 6}
4: return hC with the updated set of parameters ΘS

Algorithm 10 depicts the pseudo-code of the structure-updating procedure. We use the

hill-climbing search procedure due to its incremental nature and obvious simplicity for com-

putational implementation3. We provide the learning algorithm with the current hypothesis

hC = (S,ΘS), the new batch B of labeled examples, a boolean variable bUseArcDeletions

to indicate whether the operator deleteArc is used or not, the space S of possible network

structures for the current k-DBC class-model and a scoring function Score(S,D). Whenever

a structure-adaptation process is launched, the current hypothesis is used as the initial model

for the hill-climbing search procedure. If the current structure is an NB structure, the al-

gorithm uses only arc additions. Otherwise, the search procedure is also allowed to perform

arc deletions, thus correcting from previous errors in the search process. Then it iteratively

chooses the operation that results in the maximal improvements in the given score until there

is no more improvement for that score or until it is no possible to perform a new operation.

5.4.2 Control Policy

Our adaptive proposal requires the definition of some control criteria and tools for deciding

when start adapting the structure because the actual performance no longer improves in a

3As stated, in our implementation we assume that we can keep in main memory all the sufficient statistics

required for computing the score of each candidate structure.
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Algorithm 10 The hill-climbing algorithm for updating the structure of k-DBCs
Require: A current classifier hC = (S, ΘS) belonging to the class of k-DBCs, a batch B of m labeled examples of

< X, C >, a boolean variable bUseArcDeletions to indicate whether the operator deleteArc is used or not, the

space S of possible DAGs restricted for the current maximum allowable degree of attribute dependence k, a scoring

function Score(S,D)

Ensure: A k-DBC with high value of the score Score(S,D)

1: O ⇐ {addArc}
2: if bUseArcDeletions then

3: O ⇐ O⋃ {deleteArc}
4: continue ⇐ True

5: while continue do

6: Compute Score(S,D)

7: Find best operator op ∈ O such that op = arg max
op∈O

Score(op(S),D)

8: if op exists ∧ Score(op(S),D) > Score(S,D) then

9: S ⇐ op(S) {Apply the operator to the current structure}
10: else

11: continue ⇐ False

12: end while

13: return hC with the updated structure S and the updated parameters ΘS

desirable tempo, and also to determine when stop the adaptation process because the use

of more training data will not result in significantly improved performance. To this end, we

monitor the model error defined as the proportion of misclassified examples in the total of

the examples that were classified using the same structure.

Observation of the Model Error

During the whole learning process we obtain a sequence {S0, S1, S2, . . . , Sq} of different struc-

tures which can belong to different class-models of k-DBCs (with increasing k values). More

formally, let t be the current time point and suppose that at time tp, a new structure Sp

begins to be used ( 0 ≤ p ≤ q ). At time point t we are interested in evaluating the model

error of the classifiers hC induced with the actual structure Sp, without considering the errors

when other structures were used for classification.

Definition 41. The model error ErrS of the actual structure Sp with respect to a tar-

get f(x) at the current time point t is the proportion of the misclassified examples by the
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classifiers hC induced with the same structure Sp. That is,

ErrS(t) ≡ 1
Np

t∑
ti=tp

∑
x∈B(ti)

δ(x, f(x), hC(x | Sp,Θ
(ti)
Sp

)) (5.1)

where Np = m(t− tp + 1) is the total of classified examples and m is the number of examples

in one batch.

We monitor the behaviour of the model error ErrS with time in order to asses the actual

performance. To this end, we plot the values of successive model errors y(t) = ErrS(t) in

time order and connect them by a line, thus obtaining the model-error learning curve. We

denote it by model-LC. The model-LC depicts the relationships between the time point t and

the model error ErrS . Since at each learning step we process a batch of m examples, we have

a direct relationships between the number of training instances (t×m) and the performance

over time. Observation of the model-LC is crucial, because it helps explain the behavior of

the adaptive learning algorithm using different structures with increasing complexity.

The slope of a learning curve is an indicator of how much performance can be gained by

increasing the number of examples. Theoretical and empirical studies have pointed out [111]

that learning curves typically have three different parts: i) a steeply sloping part early in

the curve; ii) a more gently sloping middle part; and iii) a plateau late in the curve when

the learning accuracy no longer increases with more training data. A learning curve is well-

behaved if its slope monotonically is non-increasing with t except for local variance [111].

Moreover, it was empirically showed that, in many cases, a learning curve that depicts the

error rate starts behaving well when its graph becomes monotically decreasing and convex for

a given number of points [14]. A learning curve converges when it reaches its final plateau.

We are interested in observing the behaviour of the model-LC for tracking two situations:

S1. At which time point does the performance of the current model stop improving in the

desirable tempo?

S2. At which time point has the performance already reached a plateau?

We consider that the situation S1 is met if at the current time point: i) the model-LC starts

behaving well, that is, the curve is convex and monotically non-increasing for a given number

of points; ii) its slope is gentle. If the situation S1 is detected we start adapting the structure.
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Thus, whenever we start using a new structure we will wait until the model-LC starts behaving

well and shows only little improvements in the performance in order to trigger a new structure

adaptation. If the structure does not change after adaptation, we once again look at the slope

of the model-LC to detect whether it has already reached its plateau (situation S2). If the

plateau is reached, then the stopping criteria is met and we stop adapting the model.

The following question thus arises: How does one verify whether the required criteria of

discrete convexity and non-increasing trend are met? From all the explored methods, we

empirically found out that by using simple heuristics based on the geometrical properties

of the curve we could more consistently determine discrete convexity and the slope of the

model-LC taking into account the local variance. In addition, we use the Sen’s slope estimator

[127] for trend evaluation.

A Geometrical Method for Determining Discrete Convexity

Given the coordinates of a set of points in the plane the task is to find an efficient way to

determine whether the curve that connected these points is convex. We use the signed area

to test whether three points are arranged in a convex pattern as further explained4.

Definition 42. The signed area enclosed by a general n-sided polygon P with vertices

p1 = (x1, y1), . . . , pn = (xn, yn) (in order around the perimeter) is given by

A(P ) =
1
2

n∑
i=1

(xi+1yi − xiyi+1) (5.2)

where xn+1 = x1 and yn+1 = y1. This is called the signed area because the result can be

positive or negative depending on whether the path is counterclockwise or clockwise.

Given the coordinates of three non-colinear points p1 = (x1, y1), p2 = (x2, y2) and p3 =

(x3, y3) in the plane it is always possible to construct a triangle T whose vertices are precisely

the points p1, p2 and p3. The signed area of a triangle T enclosed by the path p1 → p2 → p3

is then given by

A(T ) =
1
2
[(x2y1 − x1y2) + (x3y2 − x2y3) + (x1y3 − x3y1)] (5.3)

4The subjects and results that we here exposed have been extracted from the references [87] and [105] on

Computational Geometry.
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Proposition 5.4.1. Three points p1, p2 and p3 are arranged in a convex pattern iff the signed

area of the triangle A(T ) with vertices p1, p2, p3 is positive.

Convex

Pattern

Concave

Pattern

A(T) > 0

A(T) < 0

Figure 5.1: Concave and convex patterns given three points in the plane

As illustrated in Figure 5.1 the convex pattern is consistent with the existence of a coun-

terclockwise path around the triangle. The concave pattern, on the contrary, is consistent

with the existence of a clockwise path. The signed area is positive if the path p1 → p2 → p3

is oriented counterclockwise and negative otherwise.

The Sen’s Slope for Trend Evaluation

The Sen’s slope estimator [127] is a non-parametric, linear slope estimator that can be used

for trend evaluation. A temporal trend is the general increase or decrease in a set of observed

values over time. Suppose we have observed n values y(t1), y(t2), . . . , y(tn) and we are in-

terested in determining if there is a non-increasing trend in these values. To this end, we

estimate the Sen’s slope, denoted by SenSlope(n). First, we need to compute the slopes

y(tj)− y(ti)
(tj − ti)

for all the pairs of observed data such that tj > ti . The Sen’s slope is then the median value

of the resulting slopes. We consider that there is a non-increasing trend if the Sen’s slope

SenSlope(n) is less than some threshold limit δs, such that δs is a very small positive number.

The Detection Method based on the Model Error

We empirically found that by using simple heuristics based on the graphical behaviour of the

most recent q points in the model-LC, we could more consistently determine discrete convexity

and the slope of the model-LC taking into account the local variance. We experimented our

heuristics with q = 5, 7, 9 and obtained the best results by setting q = 7.
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Figure 5.2: The last seven points p1, p2, ..., p7 in the model-LC are analyzed to determine

the existence of a convex pattern and a non-increasing trend

As illustrated in Figure 5.2, we first construct a triangle T with the points p1, p4 and p7

and compute its signed area A(T ). Taking into account the local variance we consider that

p1, p4 and p7 are arranged in a convex pattern if the resulting signed area is greater than some

threshold limit δa (our tolerance for convexity), such that δa is a very small negative number.

Then, we analyze the angles formed between middle segments, ∠1 = ∠p1, p2, p4,∠2 =

∠p1, p3, p4, ∠3 = ∠p4, p5, p7 and ∠4 = ∠p4, p6, p7 to determine if the remaining points are

well-behaved with respect to the three selected points. We assume this situation if the points

are almost colinear given a tolerance δc, such that δc is a very small positive number. That

is, if the sinus of each angle ∠l is less than δc. The sinus of an angle ∠pi, pj , pk is computed

as follows:

sin(∠pi, pj, pk) =
k2 − k1

1 + k1k2

where

k1 =
y(tj)− y(ti)

tj − ti
, k2 =

y(tk)− y(tj)
tk − tj

, i < j < k

Finally, we obtain the Sen’s slope for trend evaluation. By joining all the above criteria, we

consider that the points p1, p2, . . . , p7 are arranged in a convex pattern with a non-increasing

trend and a gentle slope if for a given positive small number ε1 (our threshold for the gentle

slope), the following criterion is met:

δa < A(T ) < ε1 ∧ sin(∠l) < δc,∀∠l, l = 1, 2, 3, 4 ∧ SenSlope(7) < δs (5.4)

We consider that the model-LC has already reached its plateau if given a positive small
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number ε2 (our threshold for the plateau), such that ε2 < ε1, the following criterion is met:

|A(T )| < ε2 ∧ sin(∠l) < δc,∀∠l, l = 1, 2, 3, 4 (5.5)

We further call the above criterion 5.5 the stopping criterion. We obtained satisfactory

results by setting δa = −0.0001 (our tolerance for convexity), δs = 0.01 (our threshold for

non-increasing trend) and δc = 0.001 (our tolerance for colinearity). Both the thresholds for

the gentle slope (ε1) and for the plateau (ε2) are parameters of the adaptive algorithm.

The Detection Method based on the Batch Error

We combine the previous method based on the observation of the model-LC with an alter-

native heuristic that, instead, is based on the observation of the batch error before and after

the adaptation. This heuristic has been demonstrated to be efficient for an early detection

of the point at which we should start adapting the structure.

Definition 43. The batch error ErrB of a classifier hC with respect to a target f(x) and a

given batch B of m examples is the proportion of the misclassified examples by hC . That is,

ErrB(hC) ≡ 1
m

∑
x∈B

δ(x, f(x), hC(x)) (5.6)

We proceed in the following way. Suppose that a new batch B arrives at the learning

system and the examples are classified using the current hypothesis hC . Assume that feedback

can be obtained and the batch error ErrB can be evaluated. First, the examples from B

are used to update the parameters of hC . After updating, ErrB can be assessed once again,

but now using the adapted hypothesis. Whenever we obtain a decrease of the batch error

after parameter adaptation, it would be a straightforward idea to consider that the learner

is still able to learn about the current target concept using the current structure. Otherwise,

if for a pre-defined number of consecutive times, denoted by maxTimes, the batch error does

not decrease, we assume that increasing the number of training examples will not result in

further improvements on the parameter estimates and signal a STOP-IMPROVING situation in

order to trigger the structure-updating procedure. More formally:

IF consecCounter(ErrAFTER−ADAP
B ≥ ErrBEF−ADAP

B ) = maxTimes

THEN performanceState← STOPIMPROVING
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where, ErrBEF−ADAPB and ErrAFTER−ADAPB denote the batch errors before and after parameter

adaptation, respectively.

An Example to Illustrate the Control Strategies

Figure 5.3 illustrates the behaviour of the model-LC obtained with our AdPreqFr4SL using

one randomly generated sample of the adult dataset and batches of 100 examples. To serve

as baseline we also plot the error rates obtained with a NB classifier (the 0-DBC) and with

a 3-DBC (the class-model with best performance) induced from scratch at each time point

using Algorithm 7. The error rate (of the NB and the 3-DBC) is based on the cumulative

error taking into account all the examples classified so far. The model error, on the contrary,

is recomputed each time a new structure is used. Thus, the examples that were misclassified

in the past, when other structures were used to classify the examples, have no any influence

in the current analysis. Since the adult dataset is a hard domain to learn, its learning

curves are not so well-behaved. However, our detection method works as expected even in

this hard domain. In Figure 5.3 we indicate the points and the conditions which lead to

a structure-adaptation action. We can see that the graphical behavior of the model error

neatly corresponds to the pointed out conditions. Moreover, from the resulting sequence of
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Figure 5.3: Behavior of the model error for the adaptive learning algorithm. Vertical lines

indicate the time points at which the structure changed. On top, the resulting structures

with their corresponding k-DBC class-models are presented
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structures, we can infer that the k value slowly increases from 0 to 3 until that the stopping

criteria is met at t = 120 and the model is not further adapted with new data. As a result,

the structure changed only five times during all the learning process.

5.4.3 The Cost-Quality Handler Algorithm

Algorithm 11 is the adaptive algorithm that aims to incorporate new data to the current

classifier so as to yield an artful trade-off between the cost of updating and the gain in the

performance. For handling the cost-quality trade-off the algorithm integrates all the adaptive

and control strategies presented in the previous sections based on bias management and

adaptation control. Its rationale has been widely described in Section 5.4.1.

The algorithm is provided with the current hypothesis hC belonging to the class of k-

DBCs, a batch B with the new incoming examples, the current k value, and the values of

five parameters: the kMax value for the maximum allowable degree of attribute dependence,

a boolean variable bIterativeBayes to indicate whether to use Iterative Bayes or not, the

two thresholds used in the control criteria: eps1 for the non-increasing gentle slope and eps2

for the plateau, and the number of consecutive times, maxTimes, the ErrB does not decrease

after parameter adaptation that is used in the alternative detection method based on the

batch error.

First, the current hypothesis hC is used to classify the examples of B. Next, the ErrB

and ErrS are evaluated. The behaviour of the model-LC is then analyzed in order to verify

if the conditions of discrete convexity, non-increasing trend and gentle slope are met. If the

conditions are met, it is assumed that the performance no longer improves using the current

structure and the structure-updating procedure is triggered using Algorithm 10. Otherwise, it

is assumed that the performance is still improving and the parameters are updated with new

data using Algorithm 9. If the batch error decreases after parameter adaptation, it is assumed

that the parameter estimates can be still improved using new data. The updating process

finishes and the updated hypothesis hC is returned. Otherwise, if for the predefined number

of consecutive times maxTimes, the batch error does not improve after parameter adaptation,

then it is assumed that the performance stops improving using the current structure. If the

current structure is not the NB structure (k > 0) then the current structure is adapted by
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Algorithm 11 The adaptive algorithm for incorporating new data to the current k-DBC
Require: A current hypothesis hC = (S, ΘS) belonging to the class of k-DBCs, a batch B of m labeled examples, a k

value for the current allowable degree of attribute dependence, a value kMax for the maximum allowable degree of

attribute dependence, the thresholds eps1 for the non-increasing gentle slope and eps2 for the plateau, a number of

consecutive times maxTimes we wait while the batch error does not improve after parameter adaptation, a boolean

variable bIterativeBayes to indicate whether Iterative Bayes is used or not.

Ensure: the updated hypothesis hC
1: Predict B with the current hypothesis hC
2: ErrB ⇐ Estimate the current batch error

3: ErrS ⇐ Estimate the current model error

4: Add y(t) = (t, ErrS) to the model-LC

5: // Observation of the model-LC

6: if model-LC is Convex-NonIncreasing-with-GentleSlope(eps1) then

7: performanceState ⇐ STOP-IMPROVING {criterion 5.4 is met}
ELSE

8: performanceState ⇐ IS-IMPROVING

9: // Decision about the best adaptive actions

10: if performanceState = IS-IMPROVING then

11: updateParameters(hC , B, bIterativeBayes) {first level of adaptation}
12: if consecCounter(Err

tAFTER−ADAP

B ≥ Err
tBEF−ADAP

B ) = maxTimes then

13: performanceState ⇐ STOP-IMPROVING

14: if performanceState = STOP-IMPROVING then

15: if k > 0 then updateStructure(hC , B, . . .) {second level}
16: if (not change(S) ∧ k < kMax) ∨ k = 0 then

17: if k > 0 then bUseArcDeletions ⇐ TRUE

18: k+ = 1 {third level: increment the allowable degree of attribute dependence and continue searching}
19: updateStructure(hC , B, bUseArcDeletions,. . .){use Algorithm 10}
20: if not change(S) then

21: k− = 1 {if the structure doesn’t change, we recover the previous k value}
22: // Observation of the model-LC to verify if it has reached a plateau

23: if (not change(S) ∧ model-LC has-Plateau(eps2)) then

24: StopAdapting ⇐ TRUE {stopping criterion 5.5 is met}
25: return the updated hC

searching for new dependencies or removing existing ones using the hill-climber algorithm.

If after updating the resulting structure remains the same or the current structure is the

NB (k = 0), then the algorithm moves to the third level of adaptation. It increments k

by one and continues searching, now in the extended search space. If after adaptation, the

resulting structure still continues the same, then the stopping criterion is met, and hence, the

adaptation process is stopped. As a result, the algorithm returns the updated hypothesis hC .
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5.4.4 Related Work

A complete discussion about the main drawbacks in the sequential updating of the structure

of Bayesian networks (BNs) as well as an overview of the incremental approaches developed

so far, along with a new proposal, is given by Roure in [119]. All these approaches are based

on hill-climbing search and mainly aimed at optimizing the computational cost and/or the

memory space inherent to the problem of incremental learning of the structure of BNs. The

approaches proposed by Buntine [15] and Friedman and Goldszmidt [45] are very similar to

each other. They proposed to maintain not one, but a set of alternative BNs following an

evolutionary updating strategy and a Bayesian approach. First, new data is used to update the

sufficient statistics and thereof to update the posterior probabilities of alternative structures.

After that, additional search over the space of alternative hypotheses is performed. Both

approaches maintain only the sufficient statistics for the more promising structures, thus

optimizing the memory space, and both create mechanism to efficiently update these statistics

in the light of new data. Lam and Bachus in [82], instead, followed a hybrid updating strategy

by using new data to build a new structure. After that the old structure is combined with the

new one. For that reason they refer their approach as refinement rather than as incremental

learning.

The research done by Roure in [119] is of particular relevance to the work described in this

thesis. Roure proposed some heuristics in order to transform a batch hill-climbing algorithm

into an incremental one. The incremental algorithm is provided with some control strategies

in order to detect when the current network structure should be updated with new data.

To detect when adaptating the structure, he proposed to analyze the order of the different

hypotheses induced during the search process in the previous learning step by means of their

scores. If when new data is available the order of the models in the search path is altered

according to their scores, then he considered that new data provides new information that is

no taken into account in the current hypothesis. In this case, a structure-adaptation process

is triggered; otherwise, the structure is not adapted with new data. In addition, Roure

proposed some heuristics that manipulates an AD-tree in order to avoid storing sufficient

statistics that are unlikely to be useful for the learning task. AD-tree [100] is a tree-like

structure allowed us be more efficient in the way the sufficient statistics are stored in the

memory space.



138 5. Adaptive Learning Algorithms for Bayesian Network Classifiers

Approaches for Scaling up Learning Algorithms

Data mining is concerned with very huge databases available in data streams which usually

do not fit in main memory. Our adaptive proposal in some way is related to the scaling-up

methods to handle massive data streams in data mining applications (see [112] for a survey).

A such a scaling-up method was proposed by Domingos and Hunten in [37, 61]. Their method

is applicable to essentially any induction algorithm based on discrete search. Thus, this is

suitable for learning the structure of BNs using a hill-climbing learning procedure. Their

methods learn structures with a desirable quality using the minimum number of examples.

In order to determine this minimum number, Domingos and Hunten derived some bounds

based on the Hoeffding bound [60] - a statistical bound that gives the number of examples

needed to obtain a “good” empirical estimate of a random variable (within ε of its true

value). Therefore, at each search step, the algorithm uses only as much data from the stream

as required to preserve the desired global quality. As a result, the model is built as fast as

possible, using the minimum possible data.

As pointed out in [64], using a sample from the database can speed up the data mining

process, but this is only acceptable if it does not reduce the quality of the mined knowledge.

Thus, the crucial question in sampling design is how to determine the optimal sample size.

When the number of available instances N is not sufficiently large, the plateau, and even

the entire middle portion, can be missing from curves. Otherwise, when N is sufficiently

large, the plateau region can constitute the majority of curves. If we are able to determine

the sample size, Nmin, at which the learning curve reaches its final plateau, we can obtain

the same accuracy by using only a sample of the data of the found size with a considerable

reduction of the computational cost. However, as stated in [111], “convergence detection

remains a challenging problem on which significant research effort should be focused”.

Different theoretical approaches provide estimates for Nmin. Vapnik Chervonenkis theory

[136] (also known as VC-theory) is the most comprehensive description of learning from

examples from a statistical learning theory point of view. One of the most important concepts

in which this theory relies is the VC-dimension. The VC-dimension allows to predict a

probabilistic upper bound on the generalization error of a classifier as a function of the

training error and the size of the training set. Therefore, there have been identified several
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limitations in order to apply the derived bounds in the practice (e.g. see [14]).

We can, instead, empirically determine a statistical estimate of Nmin. John and Langley

in [64] have provided a comparison between the two main sampling strategies in order to

choose the optimal sample size: i) static sampling where some statistical tests are used to

decide whether a sample is sufficiently similar to the whole dataset (e.g χ2 hypothesis for

testing whether the sample and the large database come from the same distribution, the

PCE criterion [64], etc.); ii) progressive sampling where the knowledge about the behaviour

of the learning algorithm is used for determining Nmin. It stars with a small sample and uses

progressively larger samples until model accuracy no longer improves. One of the methods

commonly used for monitoring the learning algorithm is the extrapolation of learning curve

(ELC) method [14, 54, 95, 111]. The ELC method uses all the historical data to fit a

parametric learning curve and then extrapolate the learning accuracy at the full length.

Their effectiveness can be measured in terms of two performances: i) fitting performance:

how well they fit a full-learning curve; ii) predicting performance: how well a fitted part-

length curve (using a sample of the data) can predict (extrapolate) the learning accuracy at

the full length. The models most widely used to fit learning curves are power law models

(e.g. y = a + b ∗ x−c). An empirical study comparing six potentially useful models by fitting

learning curves using C4.5 and a logistic discrimination learning algorithm was presented in

[54]. Their results provides empirical support for applying the power law model to fitting

learning curves for large datasets. A more recent version of the ELC method for convergence

detection is proposed in [14]. The authors propose a method for an early assessment of the

classification performance by detecting the point at which the learning curve starts behaving

well, that is, where the learning curve becomes monotonically decreasing and the conditions

of discrete convexity are met. When the learning curve reaches these conditions, the estimates

of the future performance are computed.

5.5 Concept Drift Management

The future performance of adaptive learning systems depends not only on how the system

is adapted, but also on the characteristics of the data it will predict. As argued in [62],

machine learning systems can learn incorrect models when they erroneously assume that the
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underlying concept is stationary if in fact it is changing or drifting. Concept drift scenarios

require adaptive algorithms, able to track such changes and to quickly adapt to them.

In the last few years the notion of concept drift has received an increasing amount of atten-

tion in the literature and the research done has been applied in many real-world applications

ranging from network monitoring, information filtering, user modeling to data mining. The

basic idea underlying most concept drift trackers is that in changing environments recent

data is more relevant than older one. Hence old examples (and hypotheses based on these)

should eventually be forgotten, as they are examples of an old target concept that may be

quite different from the concept one is trying to learn.

Several available concept drift trackers employ different approaches that include some

control strategies for deciding whether adaptation is in fact necessary because a concept

change has actually occurred. Deciding whether adaptation is necessary requires being able

to detect changes first. Hence, coping with dynamic environments falls into two subtasks:

1. Detect concept drift;

2. Adapt to the changes, accordingly.

Our method to handle concept drift also follows such an approach. This relies on Statistical

Quality Control. The methods provided in Statistical Quality Control are on-line or in-

process quality control procedures that monitors an on-going production process. Shewhart

control charts5 [126] represent the basic monitoring tools of Statistical Quality Control for

distinguishing trends and out-of-control conditions in a process. For handling concept drift,

we propose to use a Shewhart P-Chart that monitors the behaviour of the batch error.

In the next section we describe some basic concepts related to the problem of concept

drift in supervised learning. Then, in Section 5.5.2 we will explain how the P-Chart can be

used as a monitoring tool for concept drift detection. In Section 5.5.3 we further present the

general algorithm to handle concept drift based on P-Chart. Finally, in Section 5.5.4 we will

provide an overview of related work.

5Shewhart control charts are named after W. A. Shewhart, a statistician at the AT&T Bell Laboratories,

who is generally credited as being the first to introduce the control charts.
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5.5.1 Concept Drift in Supervised Learning

In many real-world applications, when the data is collected over an extended period of time,

the target concepts are often not stable but change with time. A typical example is infor-

mation filtering, which concerns the adaptive classification of documents with respect to a

particular user interest [70]. The user’s interest can change over time and a filtering system

should be able to adapt to such concept changes. Another example is the customers’ buying

preferences, which may also change with time [135]. For classification systems, which attempt

to learn a discrete target function given examples of its inputs and outputs, this problem takes

the form of changes in the target function over time and is known as concept drift.

Concept drift can more formally be defined as follows. Assume that the data generation

itself is time-dependent. Let ΩX be the input space, i.e., the space of all possible examples,

ΩX = ΩX1 × . . .×ΩXn ⊂ �n. Let ΩC be the output space, i.e., the space of possible classes.

Let f : ΩX → ΩC be the target function to be learned over time.

Definition 44. Concept drift represents the changes in the target function f : ΩX → ΩC

over time.

As stated in section 3.2, the target function is called target concept in the particular case of

binary classification, that is, the task of classifying the members of a given set of objects into

two groups on the basis of whether they have some property or not. To better illustrate the

concept drift problem in the context of concept learning we introduce an artificial problem,

referred to as the “STAGGER” concepts [124], which has become a standard benchmark for

testing adaptive learning systems that deal with concept drift.

In this problem, the domain objects are described by three attributes, each of them,

taking on three values:

(A1) size = {small,medium, large}
(A2) color = {red, green, blue}
(A3) shape = {circle, triangle, rectangle}

Thus, there are 27 possible object descriptions in the representation space. 120 training

instances are presented to the learning algorithm with the target concept changing every 40

steps. The STAGGER concepts are then defined as a sequence of three target concepts:
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(C1) (size = small) ∧ (color = red)

(C2) (color = green) ∨ (shape = circular)

(C3) size = (medium ∨ large)

Figure 5.46 depicts the visualization of these three target concepts. Figure 5.5 shows the

results from the application of one adaptive algorithm to cope with concept drift using the

Näıve Bayes (described in [80]) against its non-adaptive version. After a concept drift occurs,

the performance of both algorithms suffer a significant deterioration. However, the adaptive

algorithm shows a better recoverability capability than its non-adaptive version, trying more

quickly to improve its performance back.
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Figure 5.4: Visualization of the STAGGER concepts

Figure 5.5: Predictive accuracy of Näıve Bayes when a concept-drift handler algorithm is

used against its non-adaptive version for the STAGGER domain

6Figure 5.4 is taken from [94] and Figure 5.5 is taken from [80].
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Real Concept Drift versus Virtual Concept Drift

Concept drift is usually referred to as unforeseen changes in the distribution underlying the

data that can also lead to changes in the target concept over time, that is, to real concept drift.

The term virtual concept drift is more oftenly associated to changes in the data distribution

in the input space. Virtual concept drift can occur when the order of training instances for

learning is skewed, so that different types of instances are not evenly distributed over the

training sequence [142]. This kind of drift is also referred to as population drift or sampling

drift [122]. Virtual concept drift can occur alone. For instance, in the context of a spam

categorization task, while our understanding of an unwanted message may remain the same

over time (i.e. the target concept remains constant), the relative frequency of different types

of spam may change drastically with time which can lead to the necessity in adapting the

current model [135]. However, both virtual and real concept drift can more frequently occur

together. In information filtering, for example, both the user’s interest and the document

content can change over time. Since unforeseen changes in the data distribution can lead to

changes in the target concept, from the practical point of view it is not important to make

any distinction. In both cases, the current hypothesis needs to be adapted anyway.

Hidden Contexts

Another aspect of the concept drift problem in many real-world domains is that the concept

of interest may depend on some hidden context, not given explicitly in the form of predictive

features. Daily experience shows that in the real world the meaning of many concepts can

heavily depend on some given context such as season, weather, geography, and so on. Changes

in the context can be hidden, and can induce more or less radical changes in the target concept

[143]. A typical example is weather prediction rules that may vary radically with the season.

Another example [135] is the patterns of customers’ buying preferences that may change

with time, depending on the current day of the week, inflation rate, etc. Typically, context

changes are gradual, whereas changes in user preferences may be abrupt. Hidden changes in

the context may not only be a cause of changes of the target concept, but may also cause

a change of the data distribution in the input space. Thus, the problem of tracking drifting

concepts can be viewed as the problem of tracking context changes over time.
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Concept Drift versus Concept Shift

Let us briefly introduce some useful definitions related to the concept drift problem7.

Definition 45. The extent of drift is the degree of dissimilarity of successive concepts, quan-

tified in terms of the relative error between the concepts.

Depending on the extent of drift, concept changes can be divided into abrupt (sudden)

changes and gradual changes. We further follow the definitions proposed in [70] and use the

term concept shift to represent abrupt changes and the term concept drift to represent gradual

changes. It is more difficult to deal with concept drift than with concept shift. Abrupt changes

lead to an abrupt deterioration of the predictive accuracy, and it is easier to detect and to

remedy. In this case, it would be more appropriate to learn a new model with new data, thus

forgetting all the old data as they are examples of the old target concept.

On the contrary, gradual concept changes lead to a gradual deterioration of the predictive

accuracy. As pointed out in [143], when concepts will change gradually, it creates a period of

uncertainty between stable phases where both the old and new concepts appear. We define

this period as the drift phase. The new concept only gradually takes over, and some examples

may still be classified according to the old concept. The rate at which gradual changes occur

affects the ability to detect changes. Depending of the drift rate, gradual drifts can be further

divided into moderate and slow drifts. While greater it is the rate, more gradual it is the drift.

Thus, recognizing the drift rate is also an important feature of adaptive learning systems that

deal with concept drift. Widmer and Kubat in [143] introduced the definition of the speed of

drift to model scenarios with gradual concept changes, which they found to be a more natural

dimension for practical scenarios that the notion of drift rate.

Definition 46. The speed of drift is the time it takes for a new concept to completely take

over in a drift phase.

Figure 5.6 depicts the function α that model the speed of drift for gradual changes as

defined in [143]. The function α represents the degree of dominance of the old concept A over

the new concept B. α = 1 means that A is fully in effect, α = 0 means that B has completely

taken over. The x axis represents the number of examples processed so far. Assuming that the
7For a more in depth reading the reader is referred, for instance, to the work of Widmer and Kubat [143].
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Figure 5.6: The function α to model the speed of drift for gradual changes

examples arrive at constant intervals this can be regarded as a dimension of time. X1 is the

point where the concept begins to drift. The slope of the function α can be characterized by

∆x (the drift rate) defined as the number of training instances until α reaches zero. Between

X1 and X1 + ∆x, α ∗ 100% of the examples belongs to the old concept A, and, what is

obvious, (1 − α) ∗ 100% belongs to the new concept B. Further, in Section 6.2.3, we will

describe how we make use of the function α to generate artificial concept drift scenarios for

evaluating our adaptive algorithms.

Concept Drift versus Noise

Another difficult problem in handling concept drift is distinguishing between true concept

drift and noise. Some trackers may overreact to noise, erroneously interpreting it as concept

drift, while others may be highly robust to noise, adjusting to changes too slowly [135]. As

argued in [143], an ideal adaptive strategy should combine robustness to noise and sensitivity

to concept drift.

5.5.2 Using P-Chart for Detecting Concept Drift

The main idea behind Statistical Quality Control8 is to monitor the stability of one or more

quality characteristics in production processes. The values of the quality characteristic gen-

erally show some variation, which can be caused by either some “natural causes” inherent

in the production process or by some “special causes” that can be traced to a particular

problem. Whereas “natural causes” are presented all the time, “special causes” can occur

8For a more in-depth study of Statistical Quality Control the reader is referred to the books [36, 99].
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at unpredictable times. A process can be run in either of two mutually exclusive states:

an in-control state or an out-of-control state. An in-control state means that the successive

values of the quality characteristic, as they are observed over time, show a stable random

variation about a target value (variations caused by “natural causes”). Otherwise a process

is out-of-control. A process is in statistical control if “special causes” have been detected and

removed, so these sources of variability will not influence the process in the future. The She-

whart controls charts [126] are a useful process monitoring technique that helps distinguish

whether a process is in-control or out-of-control. If an out-of-control situation is detected

then the process can be corrected by removing the sources of variability.

Figure 5.7 shows a Shewhart control chart. The values of some quality characteristic υt

are plotted on the chart in time order and connected by a line. The chart has a center line

(CL), a upper control limit (UCL) and a lower control limit (LWL). Points that fall outside the

control limits mark statistically significant changes in the process. If a characteristic value υt

falls outside the control limits, it is assumed that the process is out-of-control, that is, some

“special causes” have shifted the process off target. In addition, the control chart can include

an upper warning limit (UWL) and a lower warning limit (LWL), which help to increase its

sensitivity. Warning limits are usually set somewhat closer to the CL than the control limits.

If a characteristic value falls outside the warning limits but is still inside the control limits, the

process might still be in control. However, this situation can also indicate a trend towards a

conceptual change. To make use of the warning limits, the position of successive characteristic

values is often considered. For example, a certain number of successive warnings can indicate

that the process is out-of-control and thus trigger a remediation action.

If the distribution of the characteristic values υt is Normal (or approximately Normal) with

mean µ and variance σ2, then approximately 99, 7% of the observations will fall within 3σ

of the mean of the statistics. Therefore, the use of three-sigma control limits is a reasonable

choice. Assume that both the mean µ and the standard deviation σ can be estimated on the

basis of some historical data. If µ and σ are known we can use them to set the lines of the
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Figure 5.7: A Shewhart control chart

control chart, as follows:

CL = µ, (5.7)

LCL = µ− 3σ; UCL = µ + 3σ, (5.8)

LWL = µ− ασ; UWL = µ + ασ; 0 < α < 3. (5.9)

In general, note that smaller values of α increase the risk of a false alarm, that is, indicating

change when there is none.

The P-Chart Control Chart

The Shewhart controls charts are classified according to the type of quality characteristic that

they monitor: variables or attributes. Attribute data is also known as count variable. We

further focus on the P-Chart - an attribute control chart that monitors the sample proportion

of a count variable. The statistical principles underlying the P-Chart are based on the

binomial distribution.

The binomial distribution describes the behavior of a count variable X if the following

conditions are met: i) each observation is the realization of a Bernoulli random variable

with one of two outcomes (e.g. success or failure) and parameter p (e.g. the probability

of “success”); ii) the successive observations are independent each other; iii) the number of

observations n is fixed. If these conditions are met, then X has a binomial distribution with

parameters n and p. Suppose X is the count of successes in a group of n observations and p
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represents the probability of “success”. The sample proportion of successes p̂ is then defined

as the ratio of the count random variable X to the sample size n, that is, p̂ = X
n .

If we know that X has a binomial distribution with mean np and variance np (1−p), then

the distribution of the random variable p̂ can be obtained from the binomial distribution.

By the multiplicative properties of the mean, the mean of the distribution of p̂ is equal to

the mean of X divided by n, or np/n = p. This proves that the sample proportion p̂ is an

unbiased estimator of the population proportion p. Thus, the mean and standard deviation

of p̂ can be obtained from the parameters p and n of the binomial distribution as follows:

µ = p ; σ =

√
p(1− p)

n
(5.10)

If the sample sizes are large (n ≥ 30), then the distribution of both the count variable X

and the sample proportion p̂ approaches the Normal distribution, a result derived from the

Central Limit Theorem. There are therefore statistical arguments for applying the three-sigma

control limits to the P-Chart. Suppose that we can obtain an estimate p̂ of the population

proportion p from previous data. By replacing Equations 5.10 into Equations 5.7–5.9 we

obtain the equations for the lines of the P-Chart for each individual tth sample with size nt

as follows:

CL = p̂ , (5.11)

UCL = p̂ + 3

√
p̂(1− p̂)

nt
; LCL = max

⎧⎨
⎩0, p̂ − 3

√
p̂(1− p̂)

nt

⎫⎬
⎭ , (5.12)

UWL = p̂ + α

√
p̂(1− p̂)

nt
; LWL = max

⎧⎨
⎩0, p̂ − α

√
p̂(1− p̂)

nt

⎫⎬
⎭ , 0 < α < 3 (5.13)

Further we call p̂ the target value. An usual procedure to estimate the target value is to

use the weighted average of m preliminary sample proportions (as a rule, m is taken to be

20 or 25).

Using the P-Chart for Handling Concept Drift

In quality control, the P-Chart is usually used to monitor the proportion of nonconforming

items in a production process. For a learning process, we propose to use the P-Chart for

monitoring the batch error ErrB - the sample proportion of the misclassified examples in a
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given batch of examples. As pointed out in [85], using batches of examples and the batch

error as an indicator of the current performance offers the advantage to detect changes by

observing the deviation from the current batch error value to the previous observed values

without paying to much attention to outliers. The following crucial question in the design of

the P-Chart for learning purposes thus arises: How does one estimate the target value p̂ to

set the center line?

The sequence of observed batch errors p(t) = Err
(t)
B represents a discrete random process

which has some inherent variation. In classical Shewhart control charts it is assumed that

successive sample proportions should exhibit a stable random variation around the target

value over time. However, such a behavior is not observed in a prequential learning scenario

where it is assumed that concept changes are likely to happen. In this scenario, the data

stream can be analyzed as a sequence of different stable phases between drift phases over

time. On the other hand, as argued above we are interested in controlling the performance of

the current model using the current structure by the means of the current model-LC without

taking into account the error committed in the past, when other structures were used for

classification. Suppose that at time t a new structure begins to be used. At the beginning,

while the learner is still able to learn using the current structure, the successive batch errors

should exhibit a downward trend that reflects the steeply sloping part in the model-LC. At

once a concept change occurred, an opposite, upward trend in the successive batch errors is

immediately observed. In principle, a learning process is in-control only when it becomes

exhibit stable random fluctuations around a resistance level, that is, when the performance

has reached its plateau.

Based on these facts we propose to dynamically estimate the target value taking into

account the natural behaviour of the learning process. Since all the time when a lower value

of the current model error ErrS is achieved, the learner will try to improve, or at least, to

keep its performance level, we propose to maintain a minimum value of the model error ErrS

and set the target value p̂ to this minimum value instead of using some average of previously

observed values. We denote the minimum value by Errmin and proceed in the following way.

Whenever a new structure S is found, Errmin is initialized to some big number. Then, at

each time step t if Err
(t)
S + SErr

(t)
S < Errmin then Errmin is set to Err

(t)
S , where SErr

(t)
S is

the standard deviation of the current model error. Taking into account the way we estimate
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the target value, we can state that our P-chart is not a typical statistical chart since we

don’t use a statistical well-founded estimator to estimate the target value.
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Figure 5.8: A P-Chart for detecting concept drift

Figure 5.8 illustrates an example of a P-Chart for detecting concept drift. At each time

point t, p̂ is set to Errmin and the P-Chart’s lines are computed using Equations 5.12 and

5.13. Since a low error is always desirable, we do not need to use the low limits here. In

this implementation, we use 2-sigma warning limits (that is, set α = 2). Then, it is observed

where the new proportion p(t) = Err
(t)
B falls on the P-Chart. If p(t) falls above the UCL, then

a concept shift is signaled. If for the first time p(t) falls between the UCL and the UWL, then a

concept drift alert is signaled. Otherwise, if this situation occurs for two or more consecutive

times then a concept drift is detected. Only if p(t) falls under the UWL we assume that the

learner is in control. Algorithm 12 describes the pseudo-code of the method for detecting

concept drift using the P-Chart.

5.5.3 The Concept-Drift Handler Algorithm

Algorithm 13 describes the pseudo-code of the adaptive algorithm for handling concept drift,

which is independent of the classifier used. In each time step, the algorithm evaluates the

current batch error Err
(t)
B and the current P-Chart is then used to asses the current state of

the learning system using Algorithm 12. The adaptive strategy mainly consists of manipulat-
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Algorithm 12 The algorithm for detecting concept drift using the P-Chart
Require: A current time point t, a current batch error p(t)=Errt

B , a current P-Chart, a number of examples in the

batch nt, a value to set the warning line α

Ensure: The current state of the P-Chart, the updated P-Chart

1: Add the new point (t, p(t)) to the P-Chart

2: Update Errmin

3: CL⇐ Errmin {set the center line}
4: Sigma⇐ sqrt(CL ∗ (1− CL)/nt)

5: UCL⇐ CL + 3× Sigma {set the control line}
6: UWL⇐ CL + α× Sigma {set the warning line}

7: // observe where p(t) falls

8: if p(t) > UCL then

9: state ⇐ CONCEPT SHIFT

10: else if p(t) > WCL then

11: if LastAlert=t-1 then

12: state ⇐ CONCEPT DRIFT {for two or more consecutive alerts}
13: else

14: state ⇐ CONCEPT DRIFT ALERT

15: else

16: state ⇐ IN-CONTROL {no significative changes was detected}
17: return the detected state and the updated P-Chart

ing a short-term memory, called SHORT-MEMORY, that stores those examples that we suspect

to belong to a new concept different from the current one. Whenever an abrupt or gradual

concept drift is detected, the examples of the current batch are added to the SHORT-MEMORY;

otherwise, the SHORT-MEMORY is cleaned. Only if an abrupt change is suspected, that is con-

cept shift is signaled, the adaptation process is triggered from its initial level. The examples

of the SHORT-MEMORY are used to re-build a new hypothesis. Afterwards, the SHORT-MEMORY

is cleaned for future uses. Otherwise, if for two or more consecutive times the warning sit-

uation was detected, that is, concept drift is signaled, the adaptation process is temporarily

stopped, which means, that the new examples are not used to update the current model.

This way we force a great degradation of the performance. As a result, the successive batch

errors will more quickly jump outside the control line and the P-Chart will more quickly be

able to signal a concept shift thus forcing to build a new model. Finally, only if the learner

is in control or a concept drift alert is signaled, then the current model is updated with the

examples of the current batch according to the updating method employed for each particular

classifier. In the case when k-DBCs are used, we can proceed with Algorithm 11 to update
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the classifier with new data according to the current behavior of the model-LC.

Algorithm 13 The adaptive algorithm for handling concept drift
Require: A current classifier hC , a current time point t, a batch B with new incoming examples, a current P-Chart, a

short-term data memory SHORT-MEMORY with a portion of the past examples that it is suspected to belong to a new

concept

Ensure: The updated classifier hC taking into account the changes in the target concept

1: predictions ⇐ predict(B, hC)

2: observed ⇐ getFeedback(B) {get feedback}
3: Err

(t)
B ⇐ evaluate(predictions, observed)

4: state ⇐ getPChartState(t, ErrB, P-Chart, . . . ){use Algorithm 12}
5: if state is CONCEPT SHIFT then

6: Add B to SHORT-MEMORY

7: AdaptiveAction(hC , SHORT-MEMORY, INITIAL LEVEL) {build a new hypothesis, see Alg. 15}
8: Clean SHORT-MEMORY

9: else if state is CONCEPT DRIFT ALERT ∨ CONCEPT DRIFT then

10: Add B to SHORT-MEMORY

11: else

12: // state is IN CONTROL

13: Clean SHORT-MEMORY

14: if state is IN-CONTROL ∨ CONCEPT DRIFT ALERT then

15: update(hC , B) {update the classifier with the new data (classifier-dependent), use Algorithm 11 for k-DBCs}
16: return the updated classifier hC

5.5.4 Related Work

Motivated by the pioneering work on the STAGGER algorithm [124], several available on-

line adaptive systems have implemented different forgetting mechanisms over either the model

memory or the data memory in order to deal with concept drift [21, 48, 62, 68, 69, 70, 80, 85,

94, 122, 142, 143]. Forgetting as a means of adjusting to concept drift have been used through

two main techniques: i) weighted examples - the weight of an example decreases as a function

of its age, which is based on the simple idea that the importance of an example should

decrease with time; ii) time windows - a partial-memory model where only the examples

from a window that moves over recently incoming examples are used to induce the current

hypothesis. The FLORA family of algorithms proposed by Widmer and Kubat in [142, 143]

is of particular relevance among the window-based approaches. Other relevant algorithms

based on time windows have been proposed, for instance, in [68, 69, 70, 85, 94, 122].

The main issue in window-based approaches is on choosing an appropriate window size.
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A small window can assure a fast adaptability in phases with concept changes but in more

stable phases it can affect the learner performance. A large window would produce good

and stable learning results in stable phases but cannot react quickly to concept changes. In

the simplest case the window is of fixed size. More complex algorithms, instead, use some

heuristic that allow adjusting the window size according to the current extent of concept

drift. For instance, the window adjustment heuristic introduced in the FLORA algorithm in

the work [143] showed a significantly increased system’s flexibility and power. The rationale

is that of decreasing the window size when a concept drift is detected, otherwise the window

size is increased to include the new examples.

Two more related works in the domain of information filtering that have provided the

basis for our drift detection method are the work of Klinkenberg and Renz [70] and the

work of Lanquillon [85]. To detect concept drift, Klinkenberg and Renz proposed a window

adjustment heuristic that monitors the values of three performance indicators: accuracy, recall

and precision. At each time step, the mean µ and the standard deviation σ are computed for

each of these indicators based on the last M batches (where M is a predefined parameter).

Each current indicator value then is compared to the confidence interval µ± α× σ (α > 0),

where the confidence level α is a user-defined constant. If the current indicator value is

smaller than the lower end point of this interval, a concept change is suspected, which is

equivalent to use an α-sigma LCL limit in a Shwehart control chart. In this case, a further

test determines whether the change is abrupt (concept shift) or rather gradual (concept drift).

If the current indicator value is smaller than its predecessor β times (a user-defined constant

such that 0 < β < 1), a concept shift is suspected; otherwise a concept drift is signaled. If a

concept shift is detected then the window is reduced to its minimal size, that is, the size of one

batch (|B|), thus dropping the no longer representative old examples as fast as possible. If a

concept drift is recognized, the window is reduced less radically by a user-defined reduction

rate γ, (0 < γ < 1). This way some of the old data is kept, because it still is at least partially

representative for the current concept.

Similar to our approach, Lanquillon [85] employs Statistical Quality Control to detect

concept changes in the context of an adaptive information filtering system. One of the main

problems when performance indicators are monitored for tracking concept changes is that

indicators which are based on classification results generally require the true class labels
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in order to be evaluated. His methodology using quality control in information filtering

attempted to detect changes without expensive user feedback and to adapt a filtering system

only if necessary to maintain classification performance. Three performance indicators are

monitored using two control charts but not the P-Chart: i) the sample error (similar to

the batch error ErrB); ii) the expected error rate; and iii) virtual rejects. The sample error

requires only partial feedback while the two last measures don’t require any feedback. A

representative training set is maintained through storage of new examples for which the true

class labels have been provided by the user. If the monitor has detected some changes, the

filtering system is adapted based on the current training set by running the learning process

from scratch. The target value in the control chart is estimated by using the weighted average

of the indicator values on recent batches only if they are within the warning limits of the

chart.

In a previous work [21] we explored how two alternatives P-Charts (we called them PAvg

and PMin) can be used to detect concept changes. These P-Charts differ only by the way

they estimate the target value. PAvg uses weighted averaging while PMin uses the minimum

value of the error rate. We presented a general algorithm to handle concept drift based on the

P-Chart in an on-line learning framework, which has served as base to our current proposal.

The experimental results in the context of a user modeling prediction task using a Näıve

Bayes classifier showed that both P-Charts consistently recognize concept changes, and that,

in general, the proposed method allows the learner to adapt quickly to these changes in order

to maintain its performance level. However, for purpose of estimation of the target value we

state that it is more appropriate to consider PMin than PAvg because: i) PMin doesn’t require

any parameter to be tuned; ii) PMin better follows the natural behaviour of the learning

process.

Another drift detection method that controls the error rate of on-line learning algorithms

also based on similar statistical principles related to the binomial distribution is proposed

in [48]. The method was tested with a set of artificial datasets and a real world dataset by

using three learning algorithms: a perceptron, a neural network and a decision tree. The ex-

perimental results showed that this method improves the learning capability of the algorithm

when modeling non-stationary problems.
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5.6 The Adaptive Prequential Learning Framework

In this section we describe the AdPreqFr4SL as a whole learning framework that integrates

all the above described control and adaptive strategies for handling cost-performance and

concept drift.

Algorithm 14 The algorithm of the adaptive prequential framework for supervised learning
Require: A classifier class-model M, a dataset D of i.i.d. labelled examples < x, c = f(x) > divided in batches B of

m examples

Ensure: A classifier hC ∈ M updated at each time point

1: Initialize hC with one of the hypothesis from M

2: for each batch B of m examples of D do

3: for each example x in B do

4: hC(x)⇐ predict(x, hC)

5: f(x)⇐ getActualClass(x)

6: numIncorrected+ = δ(x, f(x), hC(x)) {the 0-1 loss is used}
7: indicators ⇐ assesIndicators(numIncorrected, . . .)

8: state ⇐ estimateState(indicators, monitoring-tools)

9: adapt(hC , B, state)

10: end for

11: return hC

As stated, the main environmental assumption that drives the design of the AdPreqFr4SL

is that observations arrive at the learning system not at the same time, which allows the

environment to change over time. We assume that at each time point data arrives in batches

and the main goal is to sequentially predict the classes of the next batch. Moreover, we

maintain an unique hypothesis hC defined as a pair (S,ΘS), where S is the structure and ΘS

are the parameters for that structure. In order to achieve a desirable performance even when

dealing with concept drift, the AdPreqFr4SL includes some monitoring tools that controls the

value of some performance indicators.

Algorithm 14 summarizes, in a rather informal way, the main processes of the AdPreqFr4SL.

For each batch B of examples the current hypothesis is used to do prediction, the actual class

is observed and some performance indicators are assessed using the current classifications.

Then, the indicator values are used to estimate the actual system’s state. Finally, the model

is adapted according to the estimated state.
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5.6.1 Defining the Indicators, States and Adaptive Actions

Defining the Indicators and States

In the AdPreqFr4SL two performance indicators are monitored over time:

I1 - the BATCH ERROR ErrB

I2 - the MODEL ERROR ErrS

in order to estimate one of the possible system’s states:

S1 - IS IMPROVING: the performance is improving

S2 - STOP IMPROVING: the performance stops improving

S3 - CONCEPT DRIFT ALERT: a first alert of concept drift was signaled

S4 - CONCEPT DRIFT: there is a gradual concept change

S5 - CONCEPT SHIFT: there is an abrupt concept change

S6 - STABLE PERFORMANCE: the performance achieves a plateau. It is the goal state.

In real on-line systems it is not always possible to obtain feedback for all the examples.

In the AdPreqFr4SL we assume that for the most part of examples feedback will be obtained.

In this case, we may draw a sample only from those examples of a batch for which we have

the correct class and estimate, for instance, the batch error.

Defining the adaptive actions

According to the adaptation purposes we can discriminate adaptive actions into two groups:

1. adaptive actions for incorporating new data to the current model as described in Algo-

rithm 15:

A1 - UPDATE PARAMETERS

A2 - UPDATE STRUCTURE

A3 - AUGMENT DEPENDENCIES

A4 - BUILD MODEL

2. adaptive actions for handling concept drift as described in Algorithm 13. These actions

mainly consist of manipulating the short-term memory with those examples that we

suspect belongs to a new concept
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A5 - ADD EXAMPLES TO SHORT MEMORY

A6 - CLEAN SHORT MEMORY

Algorithm 15 The adaptive actions for incorporating new data to the current k-DBCs
Require: A classifier hC = (S, ΘS) belonging to the class of k-DBCs, a batch B of labeled examples of < X, C >,

the level of adaptation, the current k value, the kMax value for the maximum allowable k, a boolean parameter

bIterativeBayes to indicate whether to use Iterative Bayes or not

Ensure: An adaptive action over the classifier hC

1: if INITIAL level then

2: k ⇐ 0 {A0: build a new model using NB}
3: learnNaiveBayes(SHORT-MEMORY)

4: else if FIRST level then

5: updateParameters(hC , B, bUseIterativeBayes) {A1}
6: else if SECOND level then

7: updateStructure(hC , B, . . .) {A2}
8: else if THIRD level then

9: if k < kMax then

10: k+ = 1 {A3}
11: updateStructure(hC , B, . . .) {A2}
12: return the updated hC

Deciding on the best adaptive actions

The AdPreqFr4SL is provided with some controlling tools for deciding the best adaptive

actions according to the current learning goals. Control strategies for bias management are

mainly based on the observation of the model-LC. The main goal is to detect when start

adapting the current structure and stop the adaptation process. Adaptation to concept drift

is based on the findings detected by the P-Chart. Thus, at each learning step, given the

current state’s estimate, a decision maker must select the best adaptive actions, such that

the desired current goals can be achieved. We use a simple rule-based model for defining

decision functions: IF we observe that state THEN do this adaptive action.

5.6.2 The Algorithm for Learning k-DBCs in the AdPreqFr4SL

Algorithm 16 depicts the pseudo-code of the algorithm for learning k-DBCs in the AdPreqFr4SL

which handles the cost-performance trade-off and concept drift. The algorithm is provided

with the values of five parameters: the kMax value for the maximum allowable degree of at-

tribute dependence, a boolean variable bIterativeBayes to indicate whether to use Iterative
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Bayes or not, the two thresholds used in the control criteria for bias management: eps1 for

the gentle slope and eps2 for the plateau and the number of consecutive times maxTimes the

ErrB does not decrease after parameter adaptation used in the alternative detection method

based on the batch error. At each learning step, the system accepts a batch B of examples.

The whole procedure can be summarized by the following main steps:

1. Prediction: classify the examples of B using the current hypothesis hC .

2. Performance Estimation: estimate the batch error Err
(t)
B and the model error Err

(t)
S .

3. Observation of the P-Chart: add the new point p(t) = Err
(t)
B to the P-Chart and

recover its current state (using Algorithm 12). If concept shift is signaled, go to the

initial level of adaptation. The examples of the SHORT-MEMORY are used to re-build a

new hypothesis. Afterwards, the SHORT-MEMORY is cleaned for future uses. If a concept

drift is detected (for two or more consecutive times the warning situation was detected),

temporarily stop adapting. Otherwise, if the P-Chart is in control or a concept drift

alert is signaled, then proceed with the next step.

4. Observation of the model-LC: add the new point y(t) = Err
(t)
S to the model-LC

and analyze the behaviour of its most recent points in order to verify if the conditions

of discrete convexity, non-increasing trend and gentle slope are met. If the conditions

are met, it is assumed that the performance no longer improves in a desirable tempo

using the current structure and the structure-updating procedure is triggered, that is,

go directly to Step 7. Otherwise, it is assumed that the performance is still improving

and proceed with the next step.

5. Parameter Adaptation: perform the first level of adaptation, that is, only update

the parameters with B using Algorithm 9.

6. Observation of the Batch Error: compare the batch error ErrB before and after

parameter adaptation. If for the pre-defined number of consecutive times maxTimes,

the batch error does not improve, then it is assumed that the performance no longer

improves using the current structure. Move to the second level of adaptation, that is,

go to the next step. Otherwise, it is assumed that the parameter estimates can be still
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Algorithm 16 The algorithm for learning k-DBCs in the AdPreqFr4SL
Require: A dataset D divided in batches of m examples, a kMax value for the maximum allowable k, the thresholds:

eps1 for the gentle slope and eps2 for the plateau, the number of consecutive times maxTimes that ErrB does not

decrease after parameter adaptation, a boolean variable bIterativeBayes for using Iterative Bayes or not, a scoring

function Score(S,D)

Ensure: A classifier hC = (S, ΘS) belonging to the class of k-DBCs

1: AdaptiveAction(hC , SHORT-MEMORY, INITIAL LEVEL) {build a NB classifier, see Alg. 15}
2: for each next batch B of m examples of D do

3: predictions ← predict(B, hC)

4: observed ← getFeedback(B) {get feedback}
5: p(t)← Err

(t)
B , y(t) ← Err

(t)
S {asses current indicators}

6: Add (t, y(t)) to model-LC

7: state ← getState(p(t), P-Chart){use Algorithm 12 for concept drift detection using the P-Chart}
8: if state is CONCEPT SHIFT then

9: Add B to SHORT-MEMORY

10: AdaptiveAction(hC , SHORT-MEMORY, INITIAL LEVEL) {use Algorithm 15: build a NB}
11: Clean SHORT-MEMORY

12: else if state is CONCEPT DRIFT ALERT ∨ CONCEPT DRIFT then

13: Add B to SHORT-MEMORY

14: else

15: Clean SHORT-MEMORY

16: // if state is IN CONTROL then observe the model-LC

17: if model-LC is Convex-NonIncreasing-with-GentleSlope(eps1) then

18: state ← STOPS IMPROVING {conditions 5.4 are met}
19: else

20: state ← IS IMPROVING

21: if state IS IMPROVING ∨ CONCEPT DRIFT ALERT then

22: AdaptiveAction(hC , B, FIRST LEVEL, bIterativeBayes){update parameters using Algorithm 9}
23: if consecCounter(Err

tAFTER−ADAP

B ≥ Err
tBEF−ADAP

B ) = maxTimes then

24: state ← STOP IMPROVING

25: if state STOPS IMPROVING then

26: if k > 0 then AdaptiveAction(k-DBC, B, SECOND LEVEL,. . .) {update structure using Algorithm 10}
27: if (not change(S) ∧ k < Maxk) ∨ k= 0 then

28: AdaptiveAction(hC , B, THIRD LEVEL,k, . . .) {increment k; continue searching}
29: if not change(S) then

30: // verify the stopping criterion

31: if model-LC Has-Plateau(eps2) then

32: stopAdapting ← TRUE; state ← STABLE PERFORMANCE

33: end for

34: return the updated hC

improved using new data. The adaptation process using the batch B is completed and

the updated hypothesis hC is returned.
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7. Structure Adaptation: if the current structure is not the NB structure (k > 0) then

perform the second level of adaptation: adapt the current structure using Algorithm 10.

If after updating the resulting structure remains the same or the input structure is the

NB structure (k = 0), then move to the third level of adaptation: increment k by one

and continue searching using Algorithm 10, now in the extended search space. If after

adaptation, the resulting structure still continues the same, then verify the stopping

criterion. If the stopping criterion is met, then stop doing further adaptations while no

significant change in the performance will be observed. Return the updated hC .

5.7 Concluding Remarks

In this chapter we have provided new adaptive algorithms for BNCs into the unified framework

AdPreqFr4SL, which attempts to handle the cost vs. performance trade-off and cope with

concept drift. Instead of selecting a particular class of BNCs and using it during all the

learning process, we propose the use of the class of k-DBCs and start with the simple NB

(k = 0). Then, we use simple control strategies to decide when to do the next move in the

spectrum of attribute dependencies (by gradually increasing k) and to start searching for

new dependences. As a result, our strategy leads to the scaling up of the model’s complexity

slowly enough so that the use of more training data will reduce bias at a rate that also reduces

variance and consequently the classification error. This bias control leads to the selection of

the optimal class-model for the current training data thus avoiding overfitting or underfitting

of the current model to the actual data. Since updating the structure is a costly task, we

reduce the cost of updating during the whole learning process by first adapting parameters.

We adapt the structure only when there is evidence that the performance stops improving.

The AdPreqFr4SL also includes a method for handling concept drift based on the P-Chart,

which has been demonstrated to be efficient for recognizing concept changes. The benefit of

our method is that this is a simple, well-argued, statistically-driven method and independent

of the learning algorithm, which makes it broadly applicable. The following chapter describes

the results and analysis of conducted experiments that demonstrate the advantages of our

adaptive algorithms in comparison against its non-adaptive versions.



Chapter 6

Experimental Evaluation

6.1 Introduction

We carried out a series of experiments in order to evaluate the adaptive algorithms for BNCs

in the AdPreqFr4SL, using both, artificially generated domains and benchmark problems from

the UCI repository [102]. The use of artificial domains allows us to know the true degree of

the attribute dependencies in the domain and when changes in target functions occur. By

generating large samples we could test the specific problems that the algorithm exhibits: bias

management and concept drift management. Most of the benchmark problems, instead, are

based on real-world domains, which allow us to test our adaptive algorithms in real-world

problems.

To test the bias management capability we primarily investigated whether our adaptive

algorithms are actually capable of adjusting the complexity of the current hypothesis to suit

the available training data, thus attempting to select the optimal class-model for the available

amount of training data. To this end we compared the BNCs induced by our adaptive

algorithms under the AdPreqFr4SL described in Algorithm 16 against the Näıve Bayes (NB)

classifier and several k-DBCs induced in the prequential, non-adaptive revolutionary learning

scenario described in Algorithm 8. Since revolutionary updating is essentially optimal in

terms of the quality of the induced classifiers, this kind of experiments allowed us to evaluate

whether the adaptive algorithms are able to approach the performance of the best k-DBC

(i.e. the k-DBC with the best performance) induced from scratch using all the data seen so

161
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far at each learning step while considerably reducing the cost of updating.

To test the concept drift management capability we artificially generated five concept shift

scenarios (CSSs) and five concept drift scenarios (CDSs) using randomly generated k-DBCs.

Both, CSS and CDS represent a sequence of five different learning contexts, associated to

different generative k-DBCs. Whereas k remains constant in a CSS, we used k-DBCs of in-

creasing k for generating CDS (a 1-DBC for the first context, a 2-DBC for the second one,

etc.). The main goal was to evaluate whether the P-Chart is able to consistently recog-

nize concept changes, both abrupt and gradual, and to adapt quickly to these changes, thus

verifying a good recoverability capability.

In all the experiments we present below we evaluated two versions of the adaptive al-

gorithm for learning k-DBCs in the AdPreqFr4SL using Algorithm 16. We call these two

versions Adap1 and Adap2. Adap2 additionally implements the Iterative Bayes procedure for

improving the parameter estimates as described in Algorithm 6. To implement Adap1 and

Adap2 we provided Algorithm 16 with the values of four parameters: the kMax value for the

maximum allowable degree of attribute dependence and the three parameters used in the

control criteria for bias management described in Section 5.4.2: i) eps1 - the threshold for

the gentle slope; ii) eps2 - the threshold for the plateau; and iii) maxTimes - the number of

consecutive times that ErrB does not decrease after parameter adaptation. To avoid very

complex structures we set kMax=5 for all the experiments. The parameter maxTimes is used

to ensure an early detection of the point at which an structure-adaptation action must be

carried out. By choosing small values for this parameter we can accelerate the detection of

this time point. Intuitively, we set maxTimes=2 for artificial domains (less complex domains,

with binary variables) and set maxTimes=3 for benchmark problems. The thresholds eps1 for

the gentle slope and eps2 for the plateau were also set according to the domain complexity.

The smaller the value of eps1 the slower the model’s complexity increases over time. The

smaller the value of eps2 the later the adaptation process is stopped. Intuitively, we chose

lower thresholds for more complex domains. In Section 6.3.2 we will provide the results of a

study that evaluates how different threshold settings can affect the behavior of the adaptive

algorithms.

For almost the experiments we used batches of 100 examples except with generated CDSs

where we used batches of 50 examples. In order to avoid the effect of example ordering, all the
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indicators’ values here presented were obtained as average values over a number of randomly

generated samples. Finally, we compared the performance of different learning algorithms

using different scores, which allowed us to verify whether our adaptive algorithms perform

well independently of the score used.

6.2 Evaluation with Artificial Datasets

We performed three types of studies using artificially generated datasets:

• Study I: we simulated stability in the target function and focused on testing the aspects

concerning the bias management capability of adaptive algorithms.

• Study II: we simulated concept shift scenarios where the target function changes

abruptly at four times and tested the concept shift management capability of adap-

tive algorithms.

• Study III: we simulated concept drift scenarios where four gradual concept changes

occur and focused on testing the aspects concerning the concept drift management

capability of adaptive algorithms.

Dataset Generation

We generated datasets from randomly generated k-DBC models, which are composed by 9

binary attributes and a binary class node as follows:

1. We randomly generated five different classifiers for five k-DBCs class-models, varying

k from 1 to 5. Thus, for each k value we generated five k-DBCs. We denote them by

k-DBC-j, j = 1 . . . 5.

2. From each generated k-DBC-j, we randomly generated 10 samples of 10100 examples,

D(i)
kj

, i = 1 . . . 10.

Overall, there are 25 different k-DBC-j models that were generated and for each k-DBC-j

there are 10 datasets.
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Parameter Settings

The following settings were intuitively chosen as threshold values and found to perform well

for all the conducted studies with artificial datasets: eps1=0.05 and eps2=0.005.

6.2.1 Study I - Evaluating Bias Management Capability

Primarily, we want to investigate if our adaptive algorithms Adap1 and Adap2 are able to scale

up the model’s complexity of k-DBCs while improving their performance over time. With this

aim, we carried out an empirical study comparing the performance of our adaptive algorithms

against its non-adaptive versions, that is, against the NB and different k-DBCs induced from

scratch at each learning step. We chose for this study only three scores among those that are

most commonly used in learning BNs: one score that favours more simple structure (MDL),

another that tends to favours more complex structures (BDeu) and a third score that favors

models of intermediate complexity as the Bayesian score does. The Bayesian score is simple

the marginal likelihood. We further call it Bayes or BD for short. Our main goal was to verify

if the adaptive algorithms are able to perform no worse than the best k-DBC induced with

the same score at each learning step while reducing the cost of updating. We demonstrate

the results using just one of the five generated models in each k-DBC class-model. However,

we observe similar results for all models.

Analysis of the Error Rate

Figure 6.1 shows the learning curves that depict the error rate for the five selected artificially

problems, which were generated using different k-DBCs with k = 1, 2, 3, 4, 5. For each arti-

ficial problem and score, we compare the learning curves of the adaptive algorithms Adap1

and Adap2 against the learning curves of the NB and several k-DBCs induced with the batch

algorithm at each learning step. In addition, to serve as baseline, we also show the learning

curves obtained with the true generative model (True Model) and with a k-DBC induced by

using the true structure and only incrementally learning its parameters (True Struct). Re-

sults show that for all the scores adaptive algorithms have the behavior expected. In most of

cases, the learning curves approach the performance of the best k-DBC over time. Moreover,

for more complex generative models, Adap2 outperforms Adap1. This may indicate that for



6.2. Evaluation with Artificial Datasets 165

5.5

6.5

7.5

8.5

9.5

10.5

11.5

12.5

0 20 40 60 80 100

5.5

6.5

7.5

8.5

9.5

10.5

11.5

12.5

0 20 40 60 80 100

5.5

6.5

7.5

8.5

9.5

10.5

11.5

12.5

0 20 40 60 80 100

5.5

6.5

7.5

8.5

9.5

10.5

11.5

12.5

0 20 40 60 80 100

5.5

6.5

7.5

8.5

9.5

10.5

11.5

12.5

0 20 40 60 80 100

5.5

6.5

7.5

8.5

9.5

10.5

11.5

12.5

0 20 40 60 80 100

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0 20 40 60 80 100

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0 20 40 60 80 100

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0 20 40 60 80 100

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

0 20 40 60 80 100

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

0 20 40 60 80 100

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

0 20 40 60 80 100

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

0 20 40 60 80 100

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

0 20 40 60 80 100

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

0 20 40 60 80 100

MDL

MDL

MDL

MDL

MDL

Bayes

Bayes

Bayes

Bayes

Bayes

BDeu

BDeu

BDeu

BDeu

BDeu

a) Using a 1-DBC Generative Model

b) Using a 2-DBC Generative Model

c) Using a 3-DBC Generative Model

d) Using a 4-DBC Generative Model

e) Using a 5-DBC Generative Model

Figure 6.1: Error rate of Adap1 and Adap2 against NB, several k-DBCs, True Model and

True Struct per generative k-DBC class-model and score
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more complex domain by using IB for parameter refinement the AdPreqFr4SL can also im-

prove the parameter estimates, which allows not only a reduction of the bias resulting from

the modeling error but also a reduction of the bias resulting from the estimation error.

Analysis of the Model Error

As stated, one of the main goals in our adaptive framework is to control the performance

of the induced k-DBCs without considering the error committed in the past. To this end,

during all the learning process we control the behavior of the model error ErrS by means

of its learning curve, model-LC, as described in Section 5.4.2. In Figure 6.2 we compare the

model-LC of adaptive algorithms against the learning curves of the NB, the True Model the

True Struct and several k-DBCs. Note that the model error is recomputed each time a new

structure is used whereas the error rate is based on the cumulative error taking into account

all the examples classified so far. We observe that the adaptive algorithms have the behavior

expected, that is, the model-LC approaches the behavior of the best k-DBC induced with

the batch approach at each learning step. Moreover, in some cases, the model-LC approaches

the behavior of the True Model, a phenomenon that is more pronounced in scenarios with

simpler generative models and when the MDL score is used.

Analysis of the Final Error

Table 6.2 shows the batch error of the last incoming batch of examples, which was not used

to update the classifier, for the five selected artificially problems using different generative

k-DBCs. These results were obtained at the last learning step, when 10000 training examples

were used to induce the different classifiers. For each generative model and score we first show

the error obtained with the NB, the True Model and the True Struct. Then we show the errors

obtained with different k-DBCs (varying k from 1 to 5). The best results that give lower

errors among the different k-DBCs are reported with bold text and are placed separately in

line (4) in order to compare the results obtained with the adaptive algorithms Adap1 and

Adap2 against the best k-DBC. The last lines of Table 6.2 show some comparative studies of

the performance for a pair of approaches:

I - This study compares the reduction of the error obtained by using the true model (line
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Figure 6.2: Model error of Adap1 and Adap2 against the error rate of NB, several k-DBCs,

True Model and True Struct per generative k-DBC class-model and score
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“(2)vs.(1)”) or the true structure (line “(3)vs.(1)”), instead of using the NB. By

looking at these differences we know what is the maximum possible range of reduction

of the error of the NB which we can obtain by knowing the true model or the true

structure. The last line “(3)vs.(2)” shows the differences between the final error of

the true structure and the true model. These differences come mainly from the

bias resulting from the parameter estimates in the classifier induced with the true

structure.

II - This study summarizes the differences in the final error between the best k-DBC and the

true model(line “(4)vs.(2)”) or the true structure (line “(4)vs.(3)”), respectively. In

general, the differences in the final performance are quite small. However, as we can

verify by looking at the plots of the error rate and the model error in Figures 6.1

and 6.2, the best results over time were obtained for those learning scenarios where

simpler generative models were used. In learning scenarios with a 4-DBC or a 5-DBC

generative class-model, the differences in the performance’s behavior between the best

k-DBC and the classifier induced with the true structure become greater. Note that the

best k-DBC was induced using a hill-climbing search algorithm, which approximates the

optimal solution, that is, the true structure. The hill-climbing procedure can require

more training data to better approximate more complex models, but it can also be

trapped in local maximums during the searching process.

III - This study is the most relevant for the evaluation of the adaptive algorithms, since

our main goal was to investigate whether Adap1 and Adap2 are able to approach the

best k-DBC induced with the same underlying learning algorithm and score. This

compares the results of Adap1 and Adap2 against the best k-DBC (lines “(5)vs.(4)”

and “(6)vs.(4)”, respectively). As stated, since learning from scratch uses all the data

provided so far, the induced k-DBCs are essentially optimal in terms of the quality of

the model if we choose the appropriate k value at each learning step. Specially for more

complex generative models (e.g. a 4-DBC or 5-DBC class-model) and for the BDeu score

we can observe significative differences in the results for different k-DBCs varying the

k value. However, in most cases, the differences in the final error between an adaptive

algorithm (Adap1 or Adap2) and the best k-DBC are quite small. In general, Adap1

and Adap2 not only approach the best k-DBC but, in some cases, they can outperform
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it. Table 6.1 summarizes how many times the final error of the classifier induced with

Adap1 and Adap2 was less, equal or greater than that of the best k-DBC.

Table 6.1: Number of times the final error of the adaptive algorithms was less, equal or

greater than that of the best k-DBC for the five artificially generated problems

Adap1 Adap2

Event  Times Event  Times

(5)<(4) 3/15 (6)<(4) 6/15

(5)=(4) 4/15 (6)=(4) 2/15

(5)-(4) ≤ 0.5 8/15 (6)-(4) ≤ 0.5 7/15

IV - This study compares the reduction of the error obtained by using Adap2 against Adap1.

In most cases the results show that a more significant reduction of the error can be

achieved when the adaptive algorithm is combined with the Iterative Bayes procedure.

By using AdPreqFr4SL with the Iterative Bayes, specially for more complex domains,

we can better trade-off the reduction of the bias resulting from the assumptions of

attribute independence with the reduction of the bias resulting from the estimation

error by also improving the parameter estimates.

All the presented results give us some evidence that our adaptive algorithms are able to

select an appropriate class-model (i.e. an appropriate k value) for the current amount of

training data. Further we provide some results about the complexity of the induced models

that will help us to corroborate this hypothesis.
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Analysis of the Model Complexity

Figure 6.3 shows the k values per adaptive algorithm and score for the five selected learning

scenarios. We can make the following observations:

1. Adap1 and Adap2 are able to scale up the model’s complexity as it is shown by the

increasing value of the k value over time. Note that at some time point the k value stops

increasing and reaches some resistance level, which can evidence that the adaptation

process could be stopped.

2. When adaptive algorithms are used with the MDL and the Bayes scores, we can observe

that they are able to approach the real degree of attribute dependence existing in each

domain: k approaches 1 if a 1-DBC generative model is used, k approaches 2 if a 2-DBC

model is used, and so on. However, for the BDeu score, in most cases, k approaches 5

(the maximum degree of allowable attribute dependence), even in the case when simpler

generative models are used. This may indicate that, in fact, BDeu favours the choice of

models with greater complexity. Further, we will provide some extra analysis to better

understand why we obtain these results with the BDeu score.

3. Specially for more complex domains, the increasing slope of the k value using Adap2

is more gradual than that using Adap1. As a result, Adap2 can induce less complex

classifiers. Adap2 can get trapped in less complex structures while reducing the bias on

the parameter estimates.

Table 6.3 summarizes the number of arcs added to the NB structure, that is, the number

of added attribute dependencies in all the resulting classifiers. These results give us an idea of

the difference in the complexity of the models induced by different algorithms and scores. For

each generative model and score we present the number of existing attribute dependencies

in the true structure (line (1)) and the number of added dependencies using different k-

DBCs class-models (varying k from 1 to 5). Then the number of attribute dependencies in

the best k-DBC 1 are placed separately in line (2) in order to compare this number against

the number of dependencies added to the NB structure by Adap1 and Adap2, respectively.

1The “best” k-DBC is the k-DBC with the best performance, according to the results of the final error

shown in Table 6.2.
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Figure 6.3: k values of Adap1 and Adap2 per generative k-DBC class-model and score
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The last lines of Table 6.3 present some comparative studies:

V - This study summarizes the differences in the number of attribute dependencies found

when a hill-climbing search algorithm is used to approximate a Bayesian network struc-

ture against the real number of existing dependences.

VI - This study compares the number of attribute dependencies found by Adap1 and Adap2

against those found by the best k-DBC. In most cases the differences in the number of

added dependences between the best k-DBC and adaptive algorithms are small. The

only exception is when the BDeu score and simpler generative models (for k ≤ 3) are

used. As stated, we further provide an analysis to explain why the results with the

BDeu score are not satisfactory in terms of the complexity of induced classifiers.

VII - This study compares the number of attribute dependencies found by Adap2 against

Adap1. In most cases, the number of dependencies found by Adap2 is less than those

found by Adap1. Results give us extra evidence that there is a reduction of the com-

plexity in the resulting classifiers when the AdPreqFr4SL is combined with IB.

Analysis of the Bias-Variance Decomposition for the Error using BDeu score

In fact, BDeu favours complex structures because the addition of an arc will always increase

the likelihood of a model. When the complexity grows significantly, BDeu can lead to severe

overfitting and consequently to a great deterioration of the performance. The overfitting

produced by BDeu was previously illustrated in the case-study of Chapter 4 with the nursery

dataset (see, for instance, Figure 6.4). We further show the results of a conducted case study

with the artificial domain generated by a 1-DBC model, which aims to investigate how BDeu

handles the bias-variance trade-off for different k-DBCs. Figure 6.4 shows the bias-variance

decomposition of the test error in the next batch of examples for several k-DBCs varying k

from 0 to 5 at three selected time points: t = 5 (using 500 training examples), t = 50 (using

5000 training examples) and t = 100 (using 10000 training examples). To serve as baseline

we also show the bias-variance decomposition for the true model.

For this particular domain the resulting test error of different k-DBCs does not show

significant differences with the increasing of the k value. This may indicate that overfitting

does not take place. Note that all the variables in the artificial domain are binary, so the
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Figure 6.4: Bias-variance decomposition of the test error of several k-DBCs against the

true model for the BDeu score using a 1-DBC generative model at three selected time points

number of parameters does not grow so much as k increases. Consequently, the induced

models present low variance. Since the variance represents only a small portion of the test

error in this domain, the reduction of the bias component is still more crucial to obtain the

desirable improvements in the performance with time. However, in spite of the fact that

induced models become more and more complex as k values increases (see the number of

added arcs for the BDeu score and the 1-DBC class-model in Table 6.3), it is noticed from the

bias-variance decomposition, similar behaviors in bias and variance. Thus, in these artificial

problems our adaptive algorithms with the BDeu score are not able to find less complex models

and to approach the true degree of attribute dependence because when k is increased (i.e.

the search space is expanded) a model with a higher BDeu score can be found, which also

presents a good performance. In the next sections, we will prove that this situation does

not take place with other domains where there is clear evidence that overfitting takes place,

specially for smaller amount of training data and more complex k-DBC class-models.

Analysis of the Adaptive Actions and Control Strategies

Table 6.4 shows the number of times different states have been detected and different adaptive

actions have been carried out per class-model, score and adaptive algorithm. The list of states

and adaptive actions corresponds to the definitions provided in Section 5.6.1. From the results

we can observe that in most cases the number of times that the state S2=STOP IMPROVING

was detected is quite small. These values represent the number of times during the whole
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learning process at which the adaptive algorithm triggered a structure-adaptation action. The

reduction of the cost of updating is evident if we compare the small number of adaptations

performed on the structure by Adap1 and Adap2 in a total of 100 learning steps.

Figure 6.5 shows the decomposition of the number of times a structure adaptation has

been carried out (the values represented in the line that corresponds to the action A2 in

Table 6.2) into two components: i) the number of times that the structure actually changed

after structure adaptation; ii) the number of times that the structure remains the same after

adaptation.

From the graphics on Figure 6.5 we can make the following observations:

1. The proportion of the number of times the structure actually changed when a search

procedure was invoked is satisfactory for all the scores, thus evidencing that it is more

appropriate to perform adaptations on the structure when there is some accumulated

data and the search procedure is able to find new dependencies.
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2. The use of the MDL score leads to an increase of the number of structure adaptations as k

increases. Since MDL prefers simpler structures, adaptive algorithms are forced to trigger

more adaptations on the structure when the generative models becomes more complex.

On the contrary, since BDeu favors more complex structures, adaptive algorithms reduce

the number of structure adaptations as k increases. These results reflect the efforts made

by the adaptive algorithms to compensate for the limitations of both scores, that is, for

avoiding underfitting or overfitting.

3. There is a clear rupture in the general tendency of the behavior in all these graphics for

the artificial scenario that was generated using a 4-DBC class-model. We can observe

that for all the scores and the two adaptive algorithms the total of performed structure

adaptations was superior to the total of other class-models. Looking at the results from

Table 6.2 we can verify that the best performance in this scenario generated by a 4-DBC

is obtained with a 5-DBC classifier instead of a 4-DBC. This evidences that adaptive

algorithms continued searching for new dependencies after k has overcome the value 4,

while continuing to improve the performance.

4. For all the scores and generative class-models the total of adaptations performed in the

structure using Adap2 is inferior to the total obtained with Adap1. On the other hand,

we had already shown that in most cases, a more significant reduction of the error can

be achieved when the AdPreqFr4SL is combined with the IB procedure for parameter

refinement. This may indicate that Adap2 ensures a best balance between the cost of

updating and the gain in performance.

Finally, the results that correspond to the number of times that the state S4= CONCEPT

DRIFT and S5=CONCEPT SHIFT has been detected provide evidence that our control strategies

for detecting concept drift worked quite well. It was never detected neither a concept drift nor

concept shift during the whole learning process. Only at some sporadic situations a concept

drift alert was signaled (the results corresponding to the state S3). Consequently, the action

A4=BUILD MODEL that builds a new model was never activated.
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Analysis of the Stopping Criterion

The graphics in Figure 6.6 show the learning step for which the adaptation process has been

stopped (i.e. the stopping point) as a function of the k-DBC generative class-model for Adap1

and Adap2, respectively. Thus, each point in a line represents the stopping point of the

related k-DBC generative model for a particular score. When scores that favour less complex

structures, such as, MDL and Bayes are used, there is a clear tendency to delay the stopping

point as generative models become more complex. Since MDL and Bayes need more training

data to find more complex structures, adaptive algorithms should force the search procedure

to continue searching for new dependencies. For BDeu, instead, the results are not clear. For

less complex generative models (e.g. k = 1, 2) the stopping point occurred much more late

than with the other scores. This behavior can be explained from the analysis previously

done using the bias-variance decomposition of the test error for the BDeu score and a 1-DBC

generative model. As we observed in Figure 6.4, for less complex generative k-DBCS, when

the k value is increased the search algorithm was able to find a model with a higher BDeu

score that also presents a good performance. This is why, for less complex generative models,

the adaptive algorithms using BDeu were not able to stop the adaptation earlier.
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Figure 6.6: The stopping point as a function of the k-DBC generative class-model per

adaptive algorithm
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Summary of Results

In this particular experiment all the results show that adaptive algorithms performed as

expected, independently of the score used. They were able to significantly improve the

performance of NB over time and approach the performance of the best k-DBC induced from

scratch at each learning step with the same underlying learning algorithm and score. On the

other hand, we have demonstrated that a considerable reduction of the cost of updating is

achieved, as shown by the small number of adaptations performed on the structure during the

whole learning process. This fact evidences that it is more appropriate to perform adaptations

on the structure when there is some accumulated data and the search procedure is able to

find new dependencies. Moreover, we showed that the adaptive algorithms are able to scale

up the model’s complexity and to perform an artful bias management during the whole

learning process. The k value increased over time and, in most of cases, approached the

real degree of attribute dependencies. Although both, Adap1 and Adap2, show the desirable

behavior, results evidence that Adap2 ensures a best cost-performance trade-off for more

complex domains: the number of structure adaptations and the resulting error are smaller.

6.2.2 Study II - Concept Shift Scenarios

The main purpose of this study was to verify whether our control and adaptive strategies are

able to detect abrupt concept changes and to adapt quickly to these changes thus verifying

a good recoverability capability. In this study we use only the Bayes score.

Generation of Concept Shift Scenarios

We generated five different concept shift scenarios, CD-I, CD-II, . . ., CD-V, each of them

representing a sequence of five different learning contexts with four abrupt concept changes.

Each scenario was associated to a k-DBC generative class-model: CD-I to a 1-DBC, CD-

II to a 2-DBC and so on. For each scenario we generated 10 different datasets with 10000

examples where the underlying generative distribution model was forced to change after every

2000 training examples. Therefore, we can assume that each generated sample represents a

sequence of five different learning contexts with four abrupt concept changes, as shown in

Figure 6.7.
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k-DBC_1

Learning Step (t)

k-DBC_3 k-DBC_4 k-DBC_5k-DBC_2
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Figure 6.7: Artificially generated concept shift scenarios

We used the 25 randomly generated k-DBCs to generate the five concept shift scenarios.

We composed each sample D(i)
k , i = 1 . . . 10 for the concept shift scenario associated to the

k-DBC class-model as follows:

1. We used the first 200 examples from each randomly generated dataset D(i)
kj

for j =

1 . . . 5. We denote the sample of these 200 examples by B
(i)
kj

.

2. We composed D(i)
k in this way:

D(i)
k = B

(i)
k1

⋃
B

(i)
k2

⋃
B

(i)
k3

⋃
B

(i)
k4

⋃
B

(i)
k5

A Case-Study of the Concept Shift Management

Figure 6.8 illustrates a P-chart for concept shift detection using one of the randomly gen-

erated samples in the scenario CS-II (associated to a 2-DBC generative class-model). As

described in Section 5.5.2, in each time point, the target value is set to Errmin - the mini-

mum value of the model error ErrS using the current structure. Then, the chart lines are

adjusted according to the target value. In this particular sample, the P-Chart was able to

detect the four concept shifts that actually are in the data. As a result, a new model was

re-built after each shift detection.

Figure 6.9 compares the behavior of the model error against the true model error over

time in this particular concept shift scenario. Vertical light-grey dotted lines indicate the

time points at which the current structure was adapted. Vertical black dashed lines indicate

the time points at which the current structure was rebuilt using a NB structure and the

examples from the SHORT-MEMORY. On top, the resulting sequence of different structures and

their corresponding k-DBC class-models is presented. The structure was rebuilt four times
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Figure 6.8: A P-Chart for handling concept shift in the artificial scenario CS-II

at time points that exactly correspond to the abrupt concept changes. The model error

decreases with time and, in most cases, approaches the error of the true model, except when

a concept shift occurs and the performance suffers a significant deterioration. However,

the adaptive algorithm shows a good recoverability capability. This was able to control the

performance, trying to improve it back to a level, that even approaches the performance of
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the true model. Finally, vertical dark-grey dotted lines indicate the time points at which the

adaptation process was stopped. At t=14 the adaptation process was temporarily stopped

until at t=20 a concept shift was detected and the adaptation procedures were once again

activated in order to recover the performance. At t=94, the performance reached its plateau

and the adaptation process was definitively stopped.

Global Analysis of the Concept Shift Management

Figure 6.10 allow us to globally analyze the performance of adaptive algorithms for the five

generated concept shift scenarios. Plots on the left compare the error rate of the adaptive

algorithms Adap1 and Adap2 against the NB and one k-DBC induced by scratch at each

learning step. For the scenario SC-I we induced a 1-DBC; for the SC-II, we induced a 2-

DBC, and so on. While there is no concept drift, all the classifiers show improvements

in the performance as time increases. After a concept shift occurs, the performance of all

the algorithms suffers a significant deterioration. However, Adap1 and Adap2 show a good

recoverability capability. Results evidence that significant improvements in the performance

are achieved by using adaptive algorithms with concept-drift detection instead of their non-

adaptive versions.

Plots on the middle depict the model error of Adap1 and Adap2. To serve as baseline we

also plot the error rate of the true model for each learning context. For all the scenarios, the

behavior of the model error reflects the effort made by the adaptive algorithms for recovering

the performance after a concept shift occurs. Moreover, in most cases, the model error

of Adap1 and Adap2 approaches the error of the true model in each learning context, a

phenomenon that is more pronounced in scenarios with simpler generative k-DBCs (e.g. CS-

I, CS-II and CS-III). Finally, plots on the right show the k values per adaptive algorithm.

We can make two observations. First, the k value gradually increases in stable phases. After

a concept shift occurs, in most cases, the k value falls to 0, which evidences that a concept

shift has been detected and a new NB has been built. Second, the maximum value of k

accomplished by the adaptive algorithms, as a rule, increases from scenario to scenario. This

provides evidence that adaptive algorithms attempt to select a class-model that approaches

the complexity of the generative distribution.

However, from the plots of the k values we can also observe that adaptive algorithms were
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a) Concept Shift Scenario I

b) Concept Shift Scenario II

c) Concept Shift Scenario III

d) Concept Shift Scenario IV

e) Concept Shift Scenario V
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Figure 6.10: Behavior of the error rate, model error and k values of the different algorithms

for the five concept shift scenarios

not always capable of detecting concept shift in all the 10 generated samples. We can observe

that the averaged k values do not fall to 0, for instance, in the scenario CS-I at t=60 and in
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the scenario CS-V at t=80. Nevertheless, looking at the plots of the model errors for these two

scenarios at these time points, we see that adaptive algorithms show an acceptable behavior.

This may indicate that at these time points the changes in the generative distribution may

not have been so abrupt and, hence, would not lead to a significant deterioration of the

performance so that the batch error falls outside the control line and the P-Chart could

detect a concept shift situation.

Analysis of the Adaptive Actions and Control Strategies

Table 6.5 presents the number of times and learning steps at which concept shift was detected

for all the generated samples of each concept shift scenario and adaptive algorithm. Only in

the scenario CS-III for all the 10 generated samples the four concept shifts were detected. In

the scenarios CS-II and CS-IV, in most cases, the four concept shifts were also detected. In

the scenarios CS-I and CS-V, instead, we observe a less number of shift detections. However,

from the plots of the error rate and the model error in Figure 6.10, we can see that these

failures in the detection of concept shift do not seem to have a negative effect in the overall

performance.

Table 6.6 shows the number of times different states have been detected and different

adaptive actions have been carried out per concept shift scenario and adaptive algorithm2.

We can observe that in average the number of times that the state S5=CONCEPT SHIFT

was detected is satisfactory and, in most cases, this number approaches 4. The results

for the state S3 represent the number of times a first warning was detected. The results

for the state S4 represent the number of times a concept drift was signaled, that is, the

number of times a certain number of successive warnings was detected. Note that the total

of warning situations detected is greater for scenarios with a less number of shift detections

(e.g. for CS-I and CS-V). This may indicate that, in some cases, concept drift alerts were

signaled instead of concept shift. As argued above, we suspect that at some shift time

points, the differences in the generative distributions were not so significant. Otherwise, the

performance should have shown a great deterioration. As depicted in the plots of Figure

6.10 this situation did not take place. On the other hand, the values that correspond to the

state S6 represent the number of times the stopping criterion was meet during the whole

2The list of states and adaptive actions corresponds to the definitions provided in Section 5.6.1.
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Table 6.5: Number of times and learning steps at which concept shift was detected per

concept shift scenario and adaptive algorithm
CS-I CS-II CS-III CS-IV CS-V

ADAP1

Sample �S5 Steps �S5 Steps �S5 Steps �S5 Steps �S5 Steps

1 3 20,40,80 4 20,40,60,80 4 20,40,60,80 4 20,40,60,80 3 20,40,60

2 3 20,40,80 3 20,40,60 4 20,40,60,80 4 20,40,60,80 4 20,40,60,80

3 3 20,40,80 4 20,40,60,80 4 20,40,60,80 4 20,40,61,80 2 20,40

4 3 20,40,80 4 20,40,60,80 4 20,40,60,80 4 20,40,60,80 4 20,40,60,80

5 3 20,40,80 4 20,40,60,80 4 20,40,60,80 4 20,40,61,80 3 20,40,60

6 2 20,40 4 20,40,60,80 4 20,40,60,80 3 20,65,80 4 20,40,60,80

7 2 20,40 4 20,40,60,80 4 20,40,60,80 3 20,60,80 3 20,40,80

8 3 20,40,80 4 20,40,60,80 4 20,40,60,80 4 20,40,60,80 4 20,40,60,80

9 2 20,40 4 20,40,60,80 4 20,40,60,80 4 20,40,60,80 3 20,40,60

10 3 20,40,80 4 20,40,60,82 4 20,40,60,80 4 20,40,60,80 3 20,40,60

Avg 2.70 3.90 4.00 3.80 3.30

ADAP2

Sample �S5 Steps �S5 Steps �S5 Steps �S5 Steps �S5 Steps

1 3 20,40,80 4 20,40,60,80 4 20,40,60,80 3 20,60,80 3 20,40,62

2 3 20,40,80 3 20,40,60 4 20,40,60,80 4 20,40,60,80 4 20,40,60,80

3 3 20,40,80 4 20,40,60,80 4 20,40,60,80 2 20,80 3 20,40,62

4 3 20,40,80 4 20,40,60,80 4 20,40,60,80 4 20,40,60,80 2 20,40

5 3 20,40,80 4 20,40,60,80 4 20,40,60,80 3 20,60,80 4 20,40,60,80

6 3 20,40,80 4 20,40,60,80 4 20,40,60,80 3 20,62,80 3 20,40,62

7 3 20,40,80 4 20,40,60,80 4 20,40,60,80 3 20,60,80 4 20,40,60,80

8 3 20,40,80 4 20,40,60,80 4 20,40,60,80 3 20,60,80 3 20,40,62

9 3 20,40,80 4 20,40,60,80 4 20,40,60,80 4 20,40,60,80 3 20,40,60

10 3 20,40,80 4 20,40,60,82 4 20,40,60,80 4 20,40,60,80 3 20,40,60

Avg 3.00 3.90 4.00 3.30 3.20

learning process. We can see that the adaptation process was stopped at least once when

less complex generative class-models were used (e.g. for the CS-I and CS-II). As illustrated

in Figure 6.9, adaptive algorithms can converge to a particular classifier and then stop doing

any adaptation. However, the monitoring process will continue working. If any significant

change in the behavior is observed, then the adaptation process is re-launched.

From Table 6.6 we can also observe that the number of times that the state S2=STOP

IMPROVING was signaled fluctuates between 11.1 and 16.9 times over a total of 100 leaning

steps. These values represent the number of times that the adaptive algorithm triggered a
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Table 6.6: Number of states detected and adaptive actions carried out per concept shift

scenario and adaptive algorithm
SCENARIO CS-I CS-II CS-III CS-IV CS-V

STATES Number of times the state has been detected

S2 Adap1 16.0 14.5 16.9 16.2 15.0

Adap2 14.5 12.5 12.8 13.0 11.1

S3 Adap1 0.9 0.5 0.0 0.4 1.0

Adap2 0.9 0.4 0.1 0.4 0.9

S4 Adap1 0.0 0.3 0.0 0.3 0.2

Adap2 0.0 0.1 0.0 0.2 0.3

S5 Adap1 2.7 3.9 4.0 3.8 3.3

Adap2 3.0 3.9 4.0 3.3 3.2

S6 Adap1 1.4 1.2 0.3 0.1 0.1

Adap2 1.0 0.6 0.4 0.0 0.1

ACTIONS Number of times the action has been executed

A2 Adap1 17.1 15.2 17.0 16.3 15.1

Adap2 15.2 12.9 13.1 13.0 11.2

A3 Adap1 12.1 9.3 13.5 13.9 12.9

Adap2 10.7 8.4 11.6 11.8 10.4

A4 Adap1 2.7 3.9 4.0 3.8 3.3

Adap2 3.0 3.9 4.0 3.3 3.2

structure-adaptation procedure. We can observe that, in general, this number is superior

in concept shift scenarios than in stationary scenarios. Note that in concept shift scenarios

the classifier is rebuilt using the simplest NB structure whenever a change is detected. As
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Figure 6.11: The decomposition of the number of times a structure adaptation has been

carried out per adaptive algorithm and concept shift scenario
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a result, the adaptive algorithm is forced to trigger new adaptations in the structure until

a new satisfactory level of performance is once again reached. Nevertheless, the number of

adaptations performed in the structure, even in concept shift scenarios, is acceptable. Figure

6.11 indicates the number of times the structure really changed when a search procedure was

invoked. Results suggest that, in general, adaptation in the structure was triggered when the

search algorithm was actually capable of finding a different structure.

6.2.3 Study III - Concept Drift Scenarios

The main purpose of this study was to verify whether our control and adaptive strategies are

able to detect gradual concept changes and to adapt quickly to these changes, thus showing

a good recoverability capability. Unlike previous experiments where we used batches of 100

examples, in this study we reduced the number of examples in one batch from 100 to 50. In

changing environments where gradual changes are more likely to occur, it is more appropriate

to assess the performance of learning algorithms more frequently, at shorter time intervals.

In this study we also use the Bayes score.

Generation of Concept Drift Scenarios

The simulation of concept drift scenarios is a more difficult task since we need to simulate

gradual changes of the target function. Similarly to the previous experiments, we used the

25 artificially generated k-DBC-j in order to produce five different concept drift scenarios.

We denote them by CD-I, CD-II, . . ., CD-V, respectively. Each concept drift scenario is

defined as a sequence of five learning contexts, each of them associated to a different k-DBC

class-model. Thus, whereas k remains constant in concept shift scenarios, we used k-DBCs of

increasing complexity for generating concept drift scenarios (a 1-DBC for the first context, a

2-DBC for the second one, etc.). Thus, for each scenario, we generated 10 different datasets

with 10000 examples where each sample represents a sequence of five learning contexts with

four gradual changes, as shown in Figure 6.12.

Following the methodology proposed in [143] based on the α function depicted in Figure

5.6, we provided the simulation procedure with the following parameter settings, which were

arbitrarily set and not as a result of preliminary experiments:
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Figure 6.12: Artificially generated concept drift scenarios

• t1 = 37, t2 = 77, t3 = 117, t4 = 157 - the time points where the concept begins to drift.

• ∆ = 300 - the number of examples in the drift phase (a slow drift).

• α = 3/4 - each 3 examples of the old concept appears one example of the new concept.

We generated each sample D(i)
j , i = 1 . . . 10 associated to the jth concept drift scenario for

j = 1, 2, 3, 4, 5 as follows:

1. From the generated datasets D(i)
kj

we selected the required number of examples for

stables and drift phases according to the current parameter settings. We denote the set

of selected examples for stable phases by B
(i)
kj

for k = 1, 2, 3, 4, 5 and the set of examples

for drift phases by T
(i)
k,k+1j

for k = 1, 2, 3, 4.

2. We composed the sample D(i)
k is this way:

D(i)
j = B

(i)
1j

⋃
T

(i)
1,2j

⋃
B

(i)
2j

⋃
T

(i)
2,3j

⋃
B

(i)
3j

⋃
T

(i)
3,4j

⋃
B

(i)
4j

⋃
T

(i)
4,5j

⋃
B

(i)
5j

(6.1)

A Case-Study of the Concept Drift Management

Figure 6.13 illustrates how the P-chart is used to handle gradual changes for one of the

generated concept drift scenarios using Adap2. Parallel light-grey dotted lines identify the

beginning and the end of each drift phase. Points inside dark circles are those points that

fall outside the control limit where a concept shift was signaled. Points inside light circles

are those points that fall between the warning and control limits where a concept drift was

signaled. Figure 6.14 depicts the behavior of the model error and the true model error over
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time for this concept drift scenario. Vertical light-grey dotted lines and black dashed lines

indicate the time points at which the current structure was adapted or rebuilt, respectively.

On top, the sequence of different structures is presented. Vertical dark-grey dotted lines

indicate the time points where the adaptation process was stopped.
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Figure 6.13: The P-Chart for one generated concept drift scenario

In the first drift phase (between t=37 and t=43) the P-Chart detected two concept shifts

and a new NB was built using the examples of the current batch. In the second drift phase

(between t=77 and t=83) almost all the points fell above the UWL but very close to the UCL.

The P-Chart signaled concept drift and the adaptation process was temporarily stopping to

force the ErrB to jump outside the UCL. Later, at t=83, when a concept shift was detected,

all the examples stored in the SHORT-MEMORY were used to build a new NB. For the remaining

drift phases our detection method using P-Chart also worked as expected. As a result, the

structure was rebuilt five times, at time points that belong to the drift phases. Note that

the complexity of the induced k-DBCs increased from context to context: in the first context

the resulting k-DBC is a 1-DBC, in the third - a 3-DBC, in the fourth - a 4-DBC, in the last

context it is a 4-DBC too (searching for more complex structures can require more training

data). Only in the second context the NB structure was not modified since the adaptation

process was stopped early. However, the model error shows a good behavior in this context.

In this particular sample, the adaptive algorithm shows a good recoverability capability in
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order to deal with concept drift scenarios.
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Figure 6.14: Behavior of the model error for a concept drift scenario

Global Analysis of the Concept Drift Management

Figure 6.15 allows us to globally analyze the performance of adaptive algorithms for the five

concept drift scenarios. Results evidence that significant improvements in the performance are

achieved by using adaptive algorithms with concept-drift detection capability instead of their

non-adaptive versions. Moreover, the performance of both adaptive versions is very similar.

Only in the CD-I and the CD-III Adap2 can slightly outperfoms Adap1. The model error

of adaptive algorithms also shows the behavior expected. In stable phases the model error

approaches the error of the true model, specially in the first three learning contexts where

simpler generative k-DBCs were used. After drift phases the behavior of the model error

reflects the effort made by our adaptive algorithms for recovering their performance level. We

can observe that the k value falls to 0 in most of drift phases, which evidences that a concept

shift has been detected and a new NB classifier has been built. The only exception is the

scenario CD-III, where the adaptive algorithms were not always capable of detecting a concept

shift and, hence, rebuilding the model. Nevertheless, it does not seem to have a negative effect

in the overall performance. Finally, we can verify that adaptive algorithms are able to scale up
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the model’s complexity in stable phases. The k value gradually increases with time. Moreover,

as expected, the maximum value of k accomplished by the adaptive algorithms increases

from context to context. This evidences that adaptive algorithms attempt to approach the

appropriate degree of attribute dependence associated to each learning context.

Analysis of the Adaptive Actions and Control Strategies

Table 6.7 shows the number of times different states have been detected and different adaptive

actions have been carried out per concept drift scenario and adaptive algorithm. We can

observe that the number of times that the state S5=CONCEPT SHIFT was detected is located

in the range between 3.7 (for CD-III) and 5.0 (for CD-I, IV). These values, in average,

correspond to the number of times a new classifier was rebuilt during all the learning process

(i.e., when the action A4 was carried out). Comparing these results with the results from

Table 6.6 we can observe that the number of concept drift alerts (state S3) and concept drift

alarms (state S4) is greater than these numbers for concept shift scenarios. These results

reflect that adaptive algorithms were able to detect concept drift situations. Moreover, the

number of times a concept drift alert S3 was detected is greater for scenarios with a less

number of shift detections. In fact, in the scenario CD-III was detected a great number of

warning situations. As a result, the number of times the classifier was rebuilt was less than

in the other scenarios. This evidences that gradual changes in the context may not always

lead to such a great deterioration of the performance so that the values of the error sample

fall outside the control line of the P-Chart. Finally, the values that correspond to the state

S6 represent the number of times the stopping criterion was meet during the whole learning

process. In most cases, the adaptation process was stopped at least once.

From Table 6.7 we can also observe that, in most cases, the number of times that the

state S2=STOP IMPROVING was signaled fluctuates between 19.9 and 33.3 times over a total

of 100 leaning steps. When we compare these results with the results from Table 6.6 using

concept shift scenarios, we can see an increase in the number of adaptations performed in the

structure. This increase happens for several reasons: in concept drift scenarios the learning

process suffers of instability phases during more time. Hence, the probability that the error

sample falls outside the control line is higher. Moreover, in this experiment we increase the

model’s complexity from context to context. Therefore, adaptive algorithms need to search
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c) Concept Drift Scenario III
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Figure 6.15: Behavior of the error rate, model error and k values of the different algorithms

for the five concept drift scenarios
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Table 6.7: Number of states detected and adaptive actions carried out per concept drift

scenario and adaptive algorithm
SCENARIO CD-I CD-II CD-III CD-IV CD-V

STATES Number of times the state has been detected

S2 Adap1 32.8 33.3 31.0 28.5 27.2

Adap2 22.3 27.4 24.6 23.8 19.9

S3 Adap1 4.2 5.9 8.0 5.6 4.3

Adap2 4.0 5.3 7.1 5.3 3.0

S4 Adap1 1.7 2.7 3.0 2.2 1.4

Adap2 1.4 2.2 2.9 1.5 1.0

S5 Adap1 5.0 4.7 3.7 5.0 4.3

Adap2 5.0 4.2 3.8 4.5 4.0

S6 Adap1 1.0 0.6 0.7 1.3 0.8

Adap2 1.7 0.4 0.8 1.1 1.8

ACTIONS Number of times the action has been executed

A2 Adap1 33.2 33.8 31.5 28.9 27.6

Adap2 23.3 27.8 25.2 24.2 20.8

A3 Adap1 21.3 22.8 18.8 17.4 18.9

Adap2 16.8 19.3 15.3 16.5 13.6

A4 Adap1 5.0 4.7 3.7 5.0 4.3

Adap2 5.0 4.2 3.8 4.5 4.0
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Figure 6.16: The decomposition of the number of times a structure adaptation has been

carried out per adaptive algorithm and concept drift scenario

for more complex structures as time increases in all the concept drift scenarios. Figure 6.16

illustrates the number of times the structure really changed when a search procedure was

invoked. These graphics indicate that in concept drift scenarios, in general, adaptations in



6.3. Evaluation with UCI Datasets 195

the structure also was triggered when the search algorithm was actually capable of finding a

different structure.

Finally, note that similarly to the previous experiments, the number of times an adapta-

tion structure action has been carried out during the whole learning process using Adap2 is

inferior to the number obtained using Adap1. Moreover, we have shown that in this study

both algorithms show a similar performance and that in some contexts Adap2 slightly out-

performs Adap1. Therefore, for concept drift scenarios, Adap2 can also ensure a best balance

between the cost of updating and the gain in performance.

6.3 Evaluation with UCI Datasets

In this section we will show through experiments on a set of classification problems from the

UCI repository [102] that adaptive algorithms are able to perform an artful cost-performance

trade-off independently of the score used. We started with experiments involving the same

three datasets (balance, nursery and adult) and experimental settings used in the empirical

study with k-DBCs of Chapter 4 so that we can give continuity to this study. The main

purpose was to compare the performance of adaptive algorithms against their non-adaptive

versions for five selected scores. Since we use different scores for the same learning algo-

rithm, these experiments allowed us to verify that adaptive algorithms perform as expected

independently of the score used.

6.3.1 Evaluating the Behavior for Different Scores

The main purpose of these experiments was to test the hypothesis that adaptive algorithms

are able to approach the performance of the best k-DBC induced with the same underlying

learning algorithm and score using a temporal batch learning approach while considerable

reducing the cost of updating. To this end we compared the performance of adaptive and

non-adaptive algorithms using five scores: MDL, AIC, Bayes (BD), Preq and BDeu. All the

indicators’ values were obtained as the average over 10 generated samples

The results presented below were obtained using the following parameter settings in the

AdPreqFr4SL. We set maxTimes to 3 which means that if for three consecutive times the batch

error does not improve after parameter adaptation a structure adaptation action is launched.
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The thresholds eps1 and eps2 were slightly smoothed in relation to the values chosen with

artificial problems. We set eps1=0.01 and eps2=0.001 for the balance and nursery domains

and eps1=0.001 and eps2=0.0001 for the adult domain. Since adult is a more difficult domain

to learn, our intuition was to set smaller thresholds for this particular domain. In Section

6.3.2 we present the results of a conducted study involving other three classification problems

from the UCI repository [102] where the main goal was to evaluate the effect of different

parameter settings on the behavior of the adaptive algorithms.

Analysis of the Performance versus Complexity over Time

Figures 6.17, 6.18 and 6.19 allow us to analyze the evolution of the performance and complexity

of the induced classifiers using adaptive algorithms against their non-adaptive versions for the

five selected scores and the three datasets. As before, plots on the left depict the error rate

of the classifiers obtained with Adap1, Adap2 against the NB and several k-DBCs induced

from scratch at each learning step. Plots on the middle depict the model error of Adap1 and

Adap2 against the error rate of the best k-DBC. Plots on the right show the averaged k values

per adaptive algorithm, which give us an idea about the increasing complexity of resulting

classifiers over time.

In most cases adaptive algorithms showed the expected behavior for all the datasets and

scores: the performance of adaptive algorithms approach the performance of the best k-DBC

induced with the same score. There is only one exception, for the adult dataset and BDeu

score, when Adap1 cannot outperform NB. Analyzing the results we found that for one of

the generated samples of the adult dataset at some time point a concept shift was detected

and a new model was built3. As a result, the averaged performance was strongly penalized.

Moreover, Adap2 outperforms Adap1 for more complex domains. For the adult dataset it

is specially evident the advantages of using the Iterative Bayes procedure for parameter

adaptation. This domain is very hard to learn, presents a great number of parameters, and

hence, more bias and variance in the parameter estimates. Thus, the reduction of the error

rate observed with Adap2 is also due to a reduction of the bias component in the parameter

estimates. On the other hand, for the balance domain and for all the scores except MDL, the

3This situation is evident from the results corresponding to the state S5 and the adaptive action A4 for

the adult dataset and the BDeu score in Table 6.10.
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a) MDL Score

b) AIC Score

d) Preq. Score

e) Bdeu Score

c) Bayes Score
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Figure 6.17: Behavior of the error rate, model error and k values of the different algorithms

per score for the balance dataset
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a) MDL Score

b) AIC Score

d) Preq. Score

e) Bdeu Score
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Figure 6.18: Behavior of the error rate, model error and k values of the different algorithms

per score for the nursery dataset
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Figure 6.19: Behavior of the error rate, model error and k values of the different algorithms

per score for the adult dataset

model error approaches 0 and k approaches 3, thus evidencing that Adap1 and Adap2 were

able to find structures that represent the existing strong degree of attribute dependencies.
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Finally, when we compare the behavior of the k values for the nursery dataset in Figure 6.18

with the graphics of the bias-variance decomposition of the test error depicted in Figures

4.1 and 4.2, we can observe that in most cases, k approaches the k value of the optimal

class-model that we have found at the selected time points. Specially the results obtained

with BDeu in the nursery dataset evidence that by gradually increasing the k value over time,

we can avoid severe overfitting and obtain the desirable performance.

Analysis of the Final Performance versus Complexity

Although we are more interested in showing the advantages of our adaptive algorithms over

time, that is during all the learning process, Table 6.9 helps us to compare the final per-

formance and complexity of all the classifiers induced with different algorithms. For each

dataset and score we show the batch error of the last incoming batch of examples, which was

not used to update the classifier. To serve as baseline, we first show the batch error obtained

with the NB and with different k-DBCs. As before, the best results that give lower errors

among the induced k-DBCs are reported with bold text and placed separately in line (2) in

order to compare the results obtained with Adap1 and Adap2 against the best k-DBC. To

give evidence about the differences in the complexity of the induced classifiers, this table also

summarizes the number of arcs added to the NB structure for each compared classifier. The

number of added arcs for the best k-DBC are reported with bold text and rewritten in line

(5). Similarly to the previous study with artificial datasets, the last lines of Table 6.9 show

some comparative studies for a pair of approaches:

I - This study compares the reduction of the error obtained with the best k-DBC instead

of using the NB. This comparison allow us to know what is the maximum possible range

of reduction of the error of the NB which we can obtain by inducing a k-DBC with an

appropriate k value, a hill-climbing search procedure and different scores. Note that for

the balance dataset we can obtain zero error using a 3-DBC in combination with all the

scores, except with the MDL. For the nursery dataset the greatest reduction (10.60%)

was obtained with the Preq score using a 3-DBC. For adult the reductions obtained

were more modest, because this domain is more difficult to learn. However, the greater

reductions (2.60%) were obtained with the AIC and BDeu scores using a 1-DBC. Results
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evidence that the combination of a particular score with a particular class-model leads

to different results in the performance of k-DBCs for different domains.

II - This study compares the results of our adaptive algorithms against the best k-DBC.

A number in bold indicates that the differences in the errors are less or equal to zero.

In most cases, the differences in the final error between an adaptive algorithm (Adap1

or Adap2) and the best k-DBC are quite small. In general, Adap1 and Adap2 not

only approach the best k-DBC but, in some cases, they can outperform it. Table 6.1

summarizes how many times the final error of the classifier induced with Adap1 and

Adap2 was less, equal or greater than that of the best k-DBC.

Table 6.8: Number of times the final error of the adaptive algorithms was less, equal or

greater than that of the best k-DBC for the UCI’s datasets

Adap1 Adap2

Event  Times Event  Times

less (3)<(2) 6/15 (4)<(2) 9/15

equal (3)=(2) 2/15 (4)=(2) 1/15

greater (3)-(2) ≤ 0.5 4/15 (4)-(2) ≤ 0.5 3/15

(3)-(2) ≥ 1 3/15 (4)-(2) ≥ 1 2/15

III - This study compares the reduction of the error obtained with Adap2 instead of Adap1.

A number in bold indicates the cases when Adap2 outperforms Adap1. We can observe

that in 10 of a total of 15 cases, a greater reduction of the error is achieved when

adaptive methods are combined with the Iterative Bayes procedure.

IV - This study compares the number of attribute dependencies found by Adap1 and Adap2

against those found by the best k-DBC. These differences give us an idea about how

different in complexity the induced classifiers are. We observe that these differences

become greater for the adult dataset when scores that favor the choice of more complex

structures, such as Preq and BDeu do, are used.
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V - This study compares the number of attribute dependencies found by Adap2 against

Adap1. In most cases, the number of dependencies found by Adap2 is less than those

found by Adap1. Results give us more evidence that there is a reduction of the com-

plexity in the resulting classifiers when the AdPreqFr4SL is combined with the Iterative

Bayes procedure.

All the presented results give us additional evidence to the tested hypothesis that our

adaptive algorithms, in most cases, are able to approach the performance of the the best

k-DBC induced with the same score.

Analysis of the Adaptive Actions and Control Strategies

Table 6.10 shows the number of times different states have been detected and different adap-

tive actions have been carried out per dataset, score and adaptive algorithm4. Figures 6.20,

6.21 and 6.22 show the graphics of the decomposition of the number of adaptations performed

in the structure for the balance, nursery and adult datasets, respectively. Only for the balance

and nursery datasets these figures also show a graphic depicting the stopping point for each

adaptive algorithm and score. For the adult dataset this graphic is not presented because the

adaptation process was never stopped for any score. From the presented table and graphics

we can make the following observations:

1. The number of times S2=STOP IMPROVING was detected is located between 2.0 (for

adult using Adap1 with BDeu) and 18.6 (for nursery using Adap1 with Bayes), which

represent, in average, the number of structure adaptations performed during the whole

learning process. In most cases, this number was always minimal when using BDeu. On

the contrary, the number of adaptations using MDL or AIC, was greater. Results reflect

the efforts made by the adaptive algorithms for avoiding overfitting and underfitting.

2. The number of times S4= CONCEPT DRIFT and S5=CONCEPT SHIFT were detected pro-

vide evidence that our control strategies for detecting concept drift worked also well in

these problems. Only in one sample for the adult dataset was erroneously detected one

concept shift.

4The list of states and adaptive actions corresponds to the definitions provided in Section 5.6.1.
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3. The number of times that the structure was adapted using Adap2 was always inferior

that using Adap1 while we had already shown that we obtain similar or lower errors

when adaptive methods are combined with Iterative Bayes. Results evidence that Adap2

ensures a best cost-performance trade-off also for these three domains.

1.6

12.5

3.2

1.4

3.2

1.5

3.2

0.4

3.0

0.4

0

2

4

6

8

10

12

14

16

MDL AIC BAYES PREQ BDEU

Adap1

# Times the structure did not change
# Times the structure changed

1.5

8.9

2.7

1.2

3.8

0.4

2.8

0.3

3.0

0.4

0

2

4

6

8

10

12

14

16

MDL AIC BAYES PREQ BDEU

Adap2 Learnig step at which the adaptation 

procedure has been stopped

0 20 40 60 80 100

MDL

AIC

BAYES

PREQ

BDEU

Adap1 Adap2

Figure 6.20: Number of structure adaptations and the stopping point for the balance dataset
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6.3.2 Evaluating the Behavior for Different Parameter Settings

In the following experiments we want to primarily analyze the effect of different threshold

settings in the performance of adaptive algorithms.

Experimental Setup

For these experiments we chose three datasets from the UCI repository [102] with large

number of examples. The main characteristics of the three datasets are summarized in Table

6.11. This table also shows the accuracy of batch learning algorithms reported in previous

work for different classes of BNCs. Superscripts denote references from which these results

were taken.

Table 6.11: Datasets used in the experiments with different parameter settings
# # # Learning Reported Results with batch learning

Dataset Attrib. Classes Inst. Steps NB TAN BAN GBN

mushrooms 22 2 6300 62 95.79[22] 99.82[22] 100.00[22] 99.30[22]

page-blocks 10 5 5400 53 94.70[76] n/a n/a n/a

letters 17 24 20000 199 74.96[44] 85.86[44] n/a 75.02[44]

The mushrooms problem consists in classifying 23 species of gilled mushrooms in the

Agaricus and Lepiota Family. The page-block problem consists in classifying all the blocks of

the page layout of a document that has been detected by a segmentation process in order to

separate text from graphic areas. Finally, the letters problem consists in classifying each of

a large number of black-and-white rectangular pixel displays as one of the 26 capital letters

in the English alphabet. All these three problems present numerical attributes and missing

values. We used their discretized versions available on-line at [76]. All the indicators’ values

that we will show below were obtained as the averaged values over 5 generated samples. We

performed all the experiments using only the BD score and batches of 100 examples.
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Results with Different Parameter Settings

Table 6.12 summarizes the final results related to the performance, complexity and adaptive

actions of the adaptive algorithms Adap1 and Adap2 with different threshold settings for the

three selected datasets5. For each dataset we first show the results obtained with the NB.

Then we show the results obtained with the best k-DBC, that is, with the classifier that

showed that best performance among the k-DBCs induced from scratch at each learning

step. The number (or numbers) that appears in the line “best k-DBC” and the column

“Final k value” corresponds to the k value for that best k-DBC. Finally we present the

results obtained by using Adap1 and Adap2 with different settings of eps1 (the threshold for

the gentle slope) and eps2 (the threshold for the plateau). The number that appears in the

column “When stopped” corresponds to the learning step for which the adaptation process

was stopped. We next summarize the main observations for each dataset.

• mushrooms dataset: In this domain, both a 2-DBC and a 3-DBC showed the best

performance among the k-DBCs induced from scratch, providing zero final batch errors.

The adaptive algorithms behaved as expected for almost all threshold settings. Figure

6.23 depicts the error rate, the model error and the k-values of the adaptive algorithms

with eps1=0.01 and eps2=0.0001. We have not found significant differences in the

behavior of the graphical curves using other threshold settings. However, from the

results of the final batch error we can observe that slightly worse results were obtained

with eps1=0.05 and eps2=0.005. In this case adaptive algorithms found a little less

dependencies that those that were found using other thresholds because the adaptation

process was stopped earlier. This domain has a lot of attributes (a total of 22), and

hence, a considerable amount of parameters. It is intuitively more appropriate to use

smaller threshold values than those used with the artificial problems where all the

variables are binary. We can observe that the best results were obtained with eps1=0.01

and eps2≤ 0.0001.

• page-blocks dataset: In this domain a 2-DBC is the best k-DBC. The adaptive

algorithms also showed a good performance for all the threshold settings. The final

batch errors of Adap1 and Adap2 for all the settings are even lower than those obtained

5The remaining parameters remained constant for the following values: kMax=5 and maxTimes=3.
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Figure 6.23: Behavior of the error rate, model error and k values of the different algorithms

for the mushrooms dataset

with the best k-DBC (3.80%). This may indicate that in this domain the choice of

different threshold settings have no significant influence on the performance of adaptive

algorithms. However, the best results were obtained with eps1=0.01 and eps2≤ 0.001.

Figure 6.24 depicts the graphical behavior of the error rate, the model error and k-values

for these threshold values. In general, we have not observed significant differences in

the behavior of the graphical curves using other threshold settings.
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Figure 6.24: Behavior of the error rate, model error and k values of the different algorithms

for the page-blocks dataset

• letters dataset: This domain is more difficult to learn because the class has 24 la-

bels and during the discretization process some attributes take up 20 different discrete

values. However, large reduction of the error rate is obtained when going from k=0

(the NB classifier) to k=2 (the best k-DBC). From the results of Table 6.12 we can

see that the error rate falls from 28.77% for the NB to 18.54% for the best k-DBC and

the final batch error from 26.80% to 11.40%. These results evidence the advantages of
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using BNCs in this complex domain when there is a considerable amount of training

data available. On the other hand, the adaptive algorithms behaved as expected for

almost all the threshold settings. They were able to scale up the complexity of induced

k-DBCs while improving their performance over time. However, from the results it is

evident that in this complex domain lower thresholds for the stopping criterion produce

better results. The worst results were obtained using greater thresholds eps1=0.05 and

eps2=0.005 whereas the best ones were obtained with lower thresholds eps1=0.01 and

eps2=0.00001.
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Figure 6.25: Behavior of the error rate, model error and k values of the different algorithms

for the letters dataset by setting eps1 = 0.05 and eps2 = 0.005
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Figure 6.26: Behavior of the error rate, model error and k values of the different algorithms

for the letters dataset by setting eps1=0.01 and eps2 = 0.00001

Figure 6.25 and 6.26 depict the graphical behavior of the error rate, the model error

and k-values for the worst and the best threshold settings, respectively. We can observe

that when eps2 is set to 0.005 the adaptation process is stopped very early (at t = 97.2

for Adap1 and at t = 93.4 for Adap2 in a total of 199 learning steps). In average the
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number of added dependencies by Adap1 and Adap2 was 15.2 and 15.0, respectively.

Hence, all the attribute dependencies found by the best k-DBC (a total of 16) could

not be captured. Moreover this domain has a great number of parameter estimates.

Results indicate that in more complex domains with a great number of parameters we

must use lower values for eps2 to give more time for the adaptation process to continue

looking for new dependencies and improving the parameter estimates.

From all the obtained results we can state that the choice of a particular threshold setting

can influence the performance of our adaptive algorithms, specially for more complex domains.

In less complex domains, as observed, there are only tiny differences in the performance for

different parameter settings. As stated, the smaller we choose the value of eps1, the slower

the model’s complexity increases over time. On the other hand, the smaller we choose the

value of eps2, the later the adaptation process is stopped. The ideal situation is to choose

the thresholds so as to produce the best balance between performance and complexity. The

conducted studies with different datasets reveal that we can obtain a better balance if we

choose the threshold values in correspondence with the complexity of each particular domain.

Thus, we suggest the use of lower thresholds for more complex domains.

Finally, we would like to make some last comments from the results depicted in Table 6.12.

The column “ Struct.Changes” shows the number of times the structure actually changed

during all the learning process in relation to the number of performed structure adaptations.

The number shown in the line “best k-DBC” corresponds to the number of times the structure

actually changed when the best k-DBC was induced from scratch at each learning step. For

example, for the page-blocks dataset, in average, 25.4 different structures were found at 53

attempts to update the structure. By using, for instance, the adaptive algorithm Adap1

with eps1=0.01 and eps2=0.0001, we can observe that the structure changed 4 times in a

total of 4.2 adaptations performed. In general, all the results provide evidence that adaptive

algorithms attempt to perform an artful cost-performance trade-off. Note that for all these

datasets the number of adaptations performed in the structure is small. Moreover, for the

mushrooms and page-blocks domains, in most cases, the number of times the structure actually

changed approaches the number of times an adaptation process was launched. This indicates

that the structure was adapted only when it was really necessary. For the letter datasets,

instead, we can observe that the percent of the number of times the structure actually changed
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over the number of adaptations performed is lower for lower values of eps2. For instance, using

Adap1 with eps1=0.01 and eps2=0.0001 we obtain 5/10.2 = 49% whereas for eps2=0.00001

we obtain 5.4/15 = 36%. By setting a lower threshold for the plateau, the adaptive algorithm

is forced to trigger adaptation in the structure more frequently because the slope of the model

error becomes more and more gentle as time increases while the required threshold is still not

reached. However, although the cost of updating increased we observe a reduction of the final

error from 11.40% using eps2=0.0001 until 10.80% using eps2=0.00001. This reduction of

the error takes place because by using a lower threshold value for eps2, the adaptive algorithm

is able to continue searching for new attribute dependencies and improving the parameter

estimates. Note that the number of dependencies added to the NB structure increases from

16.2 using eps2=0.0001 until 16.6 using eps2=0.0001.

In general, comparing the number of adaptations performed in the structure we can

observe a reduction using Adap2 instead of Adap1. On the other hand, for the mushrooms

and page-blocks domains Adap2 outperforms Adap1 for almost all threshold settings. For the

letters domain Adap2 shows a better performance over time but it does not outperform Adap1

in the final batch error. For these three datasets we can also state that Adap2, in general,

performs a better cost-performance trade-off than Adap1.

6.4 Concluding Remarks

We have evaluated the adaptive algorithms for BNCs, using both, artificial and benchmark

problems. The use of artificial domains allowed us to test the two main issues that the

algorithm exhibits: bias management and concept drift management knowing the true degree

of attribute dependencies and when concept drift actually occurs. Results show that the

adaptive algorithms are able to scale up the model’s complexity and to perform an artful

bias management during the whole learning process. Moreover, in most cases, the resulting

k values approach the real degree of attribute dependence. On the other hand, the method

for handling concept drift based on the P-Chart demonstrated to be efficient. Results show

that the P-Chart is able to consistently recognize concept changes, both abrupt and gradual,

and to adapt quickly to these changes, thus verifying a good recoverability capability.

Results in conducted experiments with UCI’s benchmark problems show that adaptive
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algorithms work as expected, independently of the score used. By gradually increasing the k

value adaptive algorithms are capable of improving the predictive accuracy of the Näıve Bayes

significantly over time. This evidence that modeling attribute dependencies can improve the

classification results. Results also show that, in most cases, the resulting classifier approaches

the best k-DBC induced with the same underlying learning algorithm and score but using

a temporal batch learning approach. On the other hand, a considerable reduction of the

cost of updating is achieved by using adaptive algorithms, as shown by the small number of

adaptations performed on the structure during the whole learning process in contrast to the

great cost of rebuilding the structure from scratch at each learning step. Results evidence

that it is more appropriate to perform adaptations on the structure only when there is some

accumulated data and the search procedure is actually able to find new dependencies.

All the results in general give us some evidence that the control criteria for detecting

when to start searching for a new structure and when to stop adapting work quite consis-

tent. However, these criteria depend on two thresholds: the threshold for the gentle slope

eps1 and the threshold for the plateau eps2. From the results of a conducted study with

different threshold settings we observe that the choice of a particular setting can influence the

performance of our adaptive algorithms, specially for more complex domains. In less com-

plex domains were observed only tiny differences in the performance for different parameter

settings. As suggested, it is more appropriate the use of lower thresholds for more complex

domains.

Finally, although both Adap1 and Adap2 show a desirable behavior, results evidence

that Adap2, in general, ensures a better cost-performance trade-off: the number of structure

adaptations and the resulting error are smaller. We also observed that the increasing slope of

the k value using Adap2 is more gradual, specially for more complex domains, thus inducing

less complex classifiers. Adap2 can get trapped in less complex structures while reducing

the bias on the parameter estimates. By using the AdPreqFr4SL with the Iterative Bayes,

specially for more complex domains, we can better trade-off the reduction of the bias resulting

from the assumptions of attribute independence with the reduction of the bias resulting from

the estimation error by also improving the parameter estimates.





Conclusions and Future Research

The main contribution of this thesis has been the development of adaptive algorithms for

Bayesian network classifiers in a prequential learning scenario, which attempt to handle the

trade-off between the cost of adaptation and the gain in performance and cope with concept

drift. We approach the cost-performance trade-off through bias management and adapta-

tion control. The method for handling concept drift is explicitly modeled using a Shewhart

P-Chart.

Our contributions to the area of machine learning are both general and specific. They

are general because we integrated all the adaptive algorithms into the AdPreqFr4SL - an

unified, adaptive prequential framework for supervised learning. The AdPreqFr4SL is pro-

vided with simple and effective controlling mechanisms that try to select the best adaptive

actions according to the current learning goals. To this end, two performance indicators -

the batch error and the model error, are monitored over time. Since indicators are classifier-

independent, our controlling methods are broadly applicable to a range of supervised learning

algorithms. Moreover, we believe that almost all of the adaptive policies for bias manage-

ment could be applied to essentially any supervised learning algorithm based on parametric

models and discrete search with a hierarchical and increasing control over the complexity of

its induced hypotheses.

Our contributions are also specific because we applied the adaptive algorithms for the

particular class of Bayesian network classifiers. Unlike previous work in the field of learning

Bayesian networks, which have mainly focused in batch learning algorithms (with only a

few exceptions), we have developed and evaluated the adaptive algorithms in a prequential

learning framework. We further summarize the main contributions of this thesis to the

particular field of Bayesian network classifiers (BNCs):
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• Whereas previous studies focused on the comparison of unsupervised versus supervised

scores, we have investigated how the combination of three factors: i) the score; ii) the

class-model; and iii) the size of the training data; can affect the performance of BNCs

in a prequential learning framework. Experimental results suggest that the selection

of an appropriate score depends not only on the learning goal, that is, whether the

score is specialized for the classification task or not. This selection should be also

based on how each score makes the bias-variance trade-off for selecting a structure with

the appropriate complexity according to the chosen class-model and available data.

Moreover, we experimentally give more evidence to the fact that not only the choice of

the score but also the choice of a class-model with the appropriate complexity for the

available training data is crucial to obtain a good performance of BNCs.

• The selection of an appropriate class-model is still more challenging when we learn BNCs

in a prequential learning framework since the amount of training data varies over time.

We propose a simple and practical adaptive strategy based upon bias management and

adaptation control aimed at automatically solving this problem. Instead of selecting

a particular class-model of BNCs (e.g. TAN, BAN, etc.) and using it during all the

learning process, we use the class of k-DBCs and start with its simplest class-model:

the Näıve Bayes classifier. We then attempt to reduce the bias of the Näıve Bayes

by gradually adding dependencies between the attributes over time. To this end, we

gradually increase the maximum number of allowable attribute dependencies (the k

value) so that at each learning step we can use a k-DBC class-model that better suits

the available data. On the other hand we reduce the cost of updating by using new data

to primarily adapt the parameters. We use simple heuristics aimed at controlling the

current performance to decide whether it makes sense to adapt the structure. Moreover

we stop doing any adaptation when there is evidence that the use of more training data

will not result in significantly improved performance. All these adaptive and control

strategies attempt to perform an artful cost-performance trade-off.

• We experimentally showed that adaptive algorithms are able to improve the predictive

accuracy of the Näıve Bayes significantly over time. This may corroborate that modeling

attribute dependencies can improve the classification results, much better when there

is enough training data to discover them.
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• We experimentally showed that adaptive algorithms produce k-DBCs approaching the

best k-DBC induced with the same underlying learning algorithm and score but using a

temporal batch learning approach. This revolutionary approach for updating the clas-

sifier uses all the processing power and memory to do model selection at each learning

step, and hence, it is essentially optimal in terms of the quality of its induced models.

On the other hand, adaptive algorithms ensure a considerable reduction of the cost of

updating since the number of adaptations performed on the structure during the whole

learning process is small. Results suggest that it would be more appropriate to perform

adaptations on the structure only when there is some accumulated data and the search

procedure is able to find new dependencies.

• Although both Adap1 and Adap2 showed a desirable behavior, results evidence that

Adap2, in general, ensures a better cost-performance trade-off: the number of structure

adaptations and the resulting errors are generally smaller. By using the AdPreqFr4SL

with the Iterative Bayes, specially for more complex domains, we can better trade-

off the reduction of the bias resulting from the assumptions of attribute independence

with the reduction of the bias resulting from the estimation error by also improving the

parameter estimates.

• We experimentally showed that adaptive algorithms performed as expected indepen-

dently of the score used. For scores more biased toward simplicity, as MDL, the number

of adaptations performed in the structure is, in most of cases, maximal, when compared

with other scores. Adaptive algorithms are forced to trigger more adaptations on the

structure, specially in those domains with a more strong degree of attribute depen-

dence. On the contrary, for scores more biased toward complex models, as BDeu and

MLC, the number of adaptations performed in the structure is, in most of cases, minimal.

These results reflect the efforts made by the adaptive algorithms to compensate for the

limitations of each particular score, thus attempting to avoid underfitting or overfitting

to the current data.

• Knowing when to start searching for a new structure and when to stop adapting are

the most difficult aspects of the AdPreqFr4SL. Rather than focusing on exact conver-

gence, we are more interested in detecting the moment when it does not make sense
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to continue adapting the model because increasing the number of training examples

will not result in discovering new attribute dependencies and further improvements on

the parameter estimates. The results from conducted experiments give us some evi-

dence that the heuristics for detecting these two situations based on the observation of

the model-LC work quite well. However, these criteria depend on two thresholds: the

threshold for the gentle slope eps1 and the threshold for the plateau eps2. Results

with different threshold settings indicate that the choice of a particular threshold can

influence the performance of the adaptive algorithms, specially for more complex do-

mains. In less complex domains were observed only tiny differences in the performance

for different parameter settings. Results suggest the use of lower thresholds for more

complex domains.

• The method for handling concept drift is explicitly modeled using a Shewhart P-Chart,

a statistically well-argued control method for monitoring the stability of one or more

quality characteristics in production processes. Using batches of examples and the

batch error as the quality characteristic to be monitored offers the advantage to detect

changes by observing the deviation from the actual value to the previous observed

values without paying too much attention to outliers. Results in simulated concept drift

scenarios showed that the P-Chart is able to consistently recognize concept changes,

both abrupt and gradual, and to adapt quickly to these changes, thus verifying a good

recoverability capability.

Future Work

Issues in Sequential Updating of Bayesian Networks

An obvious topic for this line of investigation includes a more systematic investigation of

adaptive issues in sequential updating of Bayesian Network structures. Many of the current

limitations of the proposed adaptive algorithms come from the assumptions that we made

in the implementation of the underlying incremental hill-climber algorithm for BNCs. We

have assumed that we can keep in the main memory all the sufficient statistics needed to

calculate the scores of candidate structures whenever a search process is invoked. This is

a very strong assumption since the memory space for storing all the sufficient statistics of
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Bayesian networks is huge (it is exponential in the number of variables). In future works

it is desirable to include more sophisticated data structures and methods for storing and

computing the sufficient statistics in an incremental fashion that will continue the line of

investigation proposed, for instance, in [119]. On the other hand, it is well-known that hill-

climbing searchers have the drawback of halting at local maxima. We have implemented a

simple backtracking strategy in order to correct previous errors by allowing the exclusion of

previously added arcs between the attributes. Nevertheless, in future works we can explore

the implementation of more sophisticated backtracking methods, such as, for instance, the

floating search algorithm proposed in [109] and adapting it for incremental learning.

Performing Future Subset Selection

Mainly for computational reasons in this actual implementation we have not considered per-

forming feature subset selection. However, as stated above, feature subset selection may

help in improving the Näıve Bayes performance, specially when the attribute space is highly

dimensional. By reducing the number of attributes we reduce the number of parameters to

be estimated, and hence, the variance of the test error. Therefore, it would be desirable in

future works to use the hill-climber algorithm for learning k-DBCs including the restriction

that not all the attributes can be added to the Näıve Bayes structure, as it was proposed in

[8, 86].

Application to Real-World On-Line Systems

Another topic for future research would be the application of the proposed AdPreqFr4SL

to real-world on-line systems. Although in this thesis we have only used a limited number

of real-world problems from the UCI’s repository, results encourage us to state that the

AdPreqFr4SL can be used in those real-world on-line applications where it is needed to refine

the initial model on the light of new data and where concept changes are likely to occur.

Such a real problem is user modeling. User modeling systems are basically concerned with

making inferences about the user’s assumptions (e.g. preferences, goals, interests, etc.) from

observations of the user’s behavior during his/her interaction with the system. Observations

of the user’s behavior can provide data that a machine learning system can use to induce a
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model designed to predict future actions [140]. There are two issues that are critical in the use

of machine learning for user modeling. The first is related to the uncertainty of the collected

information about the user. The second is related to the changes of the user’s behavior with

time. Since concept drift can be a regular phenomenon in user modeling, adaptive predictive

models, capable to adapt quickly to changes in the user’s behavior, are desirable.

Because of its simplicity and specially its incremental nature, the Näıve Bayes classifier

has been one of the most commonly used predictive models in user modeling, namely, in

information filtering, recommender systems and student modeling. The first two applications

concern the adaptive classification of documents or objects according to a particular user

interest [107, 5]. The latter involves the construction of the student model to assist adaptive

learning environments [20]. However, nowadays there are only few user modeling applications

using adaptive learning algorithms that can deal with concept drift. Usually the authors of

existing systems address the need for adaptation by regularly rebuilding the model from

scratch using the most recent stored data. Results with our adaptive algorithms evidence

significant improvements on the performance of the Näıve Bayes over time and that the

AdPreqFr4SL is able to recognize concept changes and to adapt quickly to these changes.

Therefore, we believe that the AdPreqFr4SL framework can be successfully implemented in

user modeling tasks. For instance, in [19] and [20] we presented an adaptive predictive

model for a student modeling prediction task in the context of an Adaptive Educational

Hypermedia System. The task consists in determining what kind of learning resources are

more appropriate to a particular student according to his/her learning style. This task

presents the two critical issues in user modeling: uncertainty and concept drift. To solve

it we implemented our adaptive algorithms for handling concept drift in combination with

the Iterative Bayes using Näıve Bayes. The results using artificial students showed that

the adaptive algorithm is able to adapt quickly to the changes in the user’s behavior thus

reflecting the current student’s preferences more accurately. In future works it is desirable

the use of the AdPreqFr4SL and k-DBCs for this kind of user modeling prediction task.
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[7] R. Blanco, I. Inza, and P. Larrañaga. Learning Bayesian networks in the space of

structures by estimation of distribution algorithms. International Journal of Intelligent

Systems, 18(2):205–220, 2003.

221



222 REFERENCES

[8] R. Blanco, I. Inza, I. Merino, M.Quiroga, and P. Larrañaga. Feature selection in
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[86] P. Larrañaga. Clasificacion supervisada via modelos graficos probabilisticos. Trabajo de

investigacion presentado como documentacion para la segunda prueba de habilitacion

para Catedraticos de Universidad en el area de Ciencia de la Computacion e Inteligencia

Artificial, University of the Basque Country, 2002.

[87] M. Laszlo. Computational Geometry and Computer Graphics in C++. Prentice Hall,

Upper Saddle River, NJ, 1996.

[88] S. Lauritzen and D. Spiegelhalter. Local computations with probabilities on graphical

structures and their application to expert systems. Journal of the Royal Statistical

Society, Series B, 50(2):157–224, 1988.

[89] P. Lee. Bayesian Statistics: An Introduction. A Hodder Arnold Publication, third

edition, 2004.

[90] T. Leonard and J. S. Hsu. Bayesian Methods. An Analysis for Statisticians and Inter-

disciplinary Researchers, volume 5 of Cambridge Series in Statistical and Probabilistic

Mathematics. Cambridge University Press, 2001.

[91] J. Lindsey. Parametric Statistical Inference. Clarendon Press, Oxford, 1996.

[92] H. Linhart and W. Zucchini. Model Selection. John Wiley & Sons, Inc., 1986.

[93] M. G. Madden. The performance of Bayesian network classifiers constructed using dif-

ferent techniques. In Proceedings of the 14th European Conference on Machine Learn-

ing, Workshop on Probabilistic Graphical Models for Classification (Available on-line at

http://www.sc.ehu.es/ccwBayes/ecml-pkdd-03-workshop/call.htm), pages 59–70, 2003.

[94] M. A. Maloof and R. S. Michalski. Selecting examples for partial memory learning.

Machine Learning, 41(1):27, 2000.



230 REFERENCES

[95] C. Meek, B. Thiesson, and D. Heckerman. The learning-curve method applied to

model-based clustering. Journal of Machine Learning Research, 2:397–418, 2002.

[96] R. S. Michalski. Knowledge repair mechanisms: Evolution vs. Revolution. In Proceed-

ings of the 3rd International Machine Learning Workshop, pages 116–119. Boston, MA:

Kluwer, 1985.

[97] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, editors. Machine learning, neural and

statistical classification. Ellis, New York, 1994.

[98] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[99] D. Montgomery. Introduction to Statistical Quality Control. John Willey & Sons, Inc.,

New York, 3rd edition, 1997.

[100] A. W. Moore and M. S. Lee. Cached sufficient statistics for efficient machine learning

with large datasets. Journal of Artificial Intelligence Research, 8:67–91, 1998.

[101] K. Murphy. A brief introduction to graphical models and Bayesian networks. Available

on-line at http://www.cs.ubc.ca/ murphyk/Bayes/bnintro.html, 1998.

[102] P. M. Murphy and D. W. Aha. UCI repository of machine learning databases. Machine-

readable data repository, University of California, Department of Information and Com-

puter Science, Irvine, CA, 1992.

[103] R. E. Neapolitan. Learning Bayesian Networks. Pearson Prentice Hall, Upper Saddle

River, NJ, 2004.

[104] K. G. Olesen, S. L. Lauritzen, and F. V. Jensen. aHUGIN: A system creating adaptive

causal probabilistic networks. In Proceedings of the 8th Conference on Uncertainty in

Artificial Intelligence, pages 223–229. Morgan Kaufmann Publishers, Inc, 1992.

[105] J. O’Rourke. Computational Geometry in C. Cambridge University Press, Cambridge,

1992.

[106] M. Pazzani. Searching for attribute dependencies in Bayesian classifiers. In D. Fisher

and H. Lenz, editors, Proceedings of the Fifth International Workshop on Artificial

Intelligence and Statistics, pages 424–429, Ft.Lauderdale, FL., 1995.



REFERENCES 231

[107] M. J. Pazzani, J. Muramatsu, and D. Billsus. Syskill & Webert: Identifying interesting

Web sites. In Proceedings of the 13th National Conference on Artificial Intelligence,

volume 1, pages 54–61. AAAI Press, 1996.

[108] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-

ence. Morgan Kaufmann Publishers, Inc, 1988.

[109] F. Pernkopf and P. O’Leary. Floating search algorithm for structure learning of Bayesian

network classifiers. Pattern Recognition Letters, 24(15):2839–2848, 2003.

[110] M. Plutowski. Survey: Cross-validation in theory and practice. Available on-line at

http://www.emotivate.com/CvSurvey.doc, 1996.

[111] F. Provost, D. Jensen, and T. Oate. Efficient progressive sampling. In Proceedings

of the 5th International Conference on Knowledge Discovery and Data Mining, pages

23–32. Springer-Verlag, 1999.

[112] F. Provost and V. Kolluri. A survey of methods for scaling up inductive algorithms.

Data Mining and Knowledge Discovery, 3(2):131–169, 1999.

[113] S. Ramachandran. Theory Refinement of Bayesian Networks with Hidden Variables.

PhD thesis, The University of Texas at Austin, 1998.

[114] M. Ramoni and P. Sebastiani. Intelligent Data Analysis: An Introduction, chapter

Bayesian Methods for Intelligent Data Analysis. Springer Verlag, New York, 1999.

[115] I. Rish, J. Hellerstein, and T. Jayram. An analysis of data characteristics that affect
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