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Abstract

Spoken language, especially conversational speech, is characterized by great variabil-
ity in word pronunciation, including many variants that differ grossly from dictionary
prototypes. This is one factor in the poor performance of automatic speech recog-
nizers on conversational speech. One approach to handling this variation consists
of expanding the dictionary with phonetic substitution, insertion, and deletion rules.
Common rule sets, however, typically leave many pronunciation variants unaccounted
for and increase word confusability due to the coarse granularity of phone units.

We present an alternative approach, in which many types of variation are explained
by representing a pronunciation as multiple streams of linguistic features rather than
a single stream of phones. Features may correspond to the positions of the speech
articulators, such as the lips and tongue, or to acoustic or perceptual categories. By
allowing for asynchrony between features and per-feature substitutions, many pro-
nunciation changes that are difficult to account for with phone-based models become
quite natural. Although it is well-known that many phenomena can be attributed
to this “semi-independent evolution” of features, previous models of pronunciation
variation have typically not taken advantage of this.

In particular, we propose a class of feature-based pronunciation models represented
as dynamic Bayesian networks (DBNs). The DBN framework allows us to naturally
represent the factorization of the state space of feature combinations into feature-
specific factors, as well as providing standard algorithms for inference and parameter .
learning. We investigate the behavior of such a model in isolation using manually
transcribed words. Compared to a phone-based baseline, the feature-based model
has both higher coverage of observed pronunciations and higher recognition rate for
isolated words. We also discuss the ways in which such a model can be incorporated
into various types of end-to-end speech recognizers and present several examples of
implemented systems, for both acoustic speech recognition and lipreading tasks.

Thesis Supervisor: James R. Glass
Title: Principal Research Scientist
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Chapter 1

Introduction

Human speech is characterized by a great deal of variability. Two utterances of the
same string of words may produce speech signals that, on arrival at a listener’s ear,
may differ in a number of respects:

e Pronunciation, or the speech sounds that make up each word. Two speakers
may use different variants of the same word, such as EE-ther vs. EYE-ther, or
they may have different dialectal or non-native accents. There are also speaker-
independent causes, such as (i) speaking style—the same words may be pro-
nounced carefully and clearly when reading but more sloppily in conversational
or fast speech; and (ii) the surrounding words—green beans may be pronounced
“greem beans”.

e Prosody, or the choice of amplitudes, pitches, and durations of different parts
of the utterance. This can give the same sentence different meanings or em-
phases, and may drastically affect the signal.

e Speaker-dependent acoustic variation, or “production noise”, due to the
speakers’ differing vocal tracts and emotional or physical states.

e Channel and environment effects. The same utterance may produce one
signal at the ear of a listener who is in the same room as the speaker, another
signal in the next room, yet other signals for a listener on a land-line or cellular
phone, and yet another for a listener who happens to be underwater. In addi-
tion, there may be interfering signals in the acoustic environment, such as noise
or crosstalk.

The characterization of this variability, and the search for invariant aspects of
speech, is a major organizing principle of research in speech science and technology
(see, e.g., [PK86, IM97]). Automatic speech recognition (ASR) systems must account
for each of these types of variability in some way. This thesis is concerned with
variability in pronunciation, and in particular speaker-independent variability. This
has been identified in several studies [MGSN98, WTHSS96, FL99] as a main factor
in the poor performance of automatic speech recognizers on conversational speech,
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which is characterized by a larger degree of variability than read speech. Fosler-
Lussier [FL99] found that words pronounced non-canonically, according to a manual
transcription, are more likely to be deleted or substituted by an automatic speech
recognizer of conversational speech. Weintraub et al. [WTHSS96] compared the error
rates of a recognizer on identical word sequences recorded in identical conditions but
with different styles of speech, and found the error rate to be almost twice higher
for spontaneous conversational speech than for the same sentences read by the same
speakers in a dictation style. McAllaster and Gillick [MGSN98] generated synthetic
speech with pronunciations matching the canonical dictionary forms, and found that it
can be recognized with extremely low error rates of around 5%, compared with around
40% for synthetic speech with the pronunciations observed in actual conversational
data, and 47% for real conversational speech.

Efforts to model pronunciation variability in ASR systems have often resulted
in performance gains, but of a much smaller magnitude than these analyses would
suggest (e.g., [RBFt99, WWK*96, SC99, SK04, HHSLO05]). In this thesis, we propose
a new way of handling this variability, based on modeling the evolution of multiple
streams of linguistic features rather than the traditional single stream of phones.
We now describe the main motivations for such an approach through a brief survey
of related research and examples of pronunciation data. We will then outline the
proposed approach, the contributions of the thesis, and the remaining chapters.

1.1 Motivations

We are motivated in this work by a combination of (i) the limitations of existing
ASR pronunciation models in accounting for pronunciations observed in speech data,
(ii) the emergence of feature-based acoustic observation models for ASR with no
corresponding pronunciation models, and (iii) recent work in linguistics and speech
science that supersedes the linguistic bases for current ASR systems. We describe
these in turn, after covering a few preliminaries regarding terminology.

1.1.1 Preliminaries

The term pronunciation is a vague one, lacking a standard definition (see, e.g., efforts
to define it in [SC99]). For our purposes, we define a pronunciation of a word as a
representation, in terms of some set of linguistically meaningful sub-word units, of the
way the word is or can be produced by a speaker. By a linguistically meaningful rep-
resentation, we mean one that can in principle differentiate between words: Acoustic
variations in the signal caused by the environment or the speaker’s vocal tract char-
acteristics are not considered linguistically meaningful; degrees of aspiration of a stop
consonant may be. Following convention in linguistics and speech research, we distin-
guish between a word’s (i) underlying (or target or canonical) pronunciations, the ones
typically found in an English dictionary, and its (ii) surface pronunciations, the ways
in which a speaker may actually produce the word. Underlying pronunciations are
typically represented as strings of phonemes, the basic sub-word units distinguishing
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words in a language. For example, the underlying pronunciations for the four words
sense, probably, everybody, and don’t might be written

e sense — [sehns/

e probably — /praabaxbliy/

e everybody — /eh v riy b ahd iy/
o don't — /downt/!

Here and throughout, we use a modified form of the ARPABET phonetic alpha-
bet [Sho80], described in Appendix A, and use the linguistic convention that phoneme
strings are enclosed in “/ /7.

While dictionaries usually list one or a few underlying pronunciations for a given
word, the same word may have dozens of surface pronunciations. Surface pronuncia-
tions are typically represented as strings of phones, usually a somewhat more detailed
label set, enclosed in square brackets (“[|”) by convention. Table 1.1 shows all of
the surface pronunciations of the above four words that were observed in a set of
phonetically-transcribed conversational speech. 2

1.1.2 The challenge of pronunciation variation

The pronunciations in Table 1.1 are drawn from a set of recorded American En-
glish conversations consisting of approximately 10,000 spoken word tokens (GHE96].
The exact transcriptions of spoken pronunciations are, to some extent, subjective. 3
However, there are a few clear aspects of the data in Table 1.1 that are worthy of
mention:

e There is a large number of pronunciations per word, with most pronunciations
occurring only once in the data.

e The canonical pronunciation rarely appears in the transcriptions: It was not
used at all in the two instances of sense, eleven of probably, and five of everybody,
and used four times out of 89 instances of don't.

1'We note that not all dictionaries agree on the pronunciations of these words. For example,
Merriam-Webster’s Online Dictionary [M-W] lists the pronunciations for sense as /s eh n s/ and
/s ehnts/, and for probably as /praa b axbliy/ and /p r aa (b) b 1iy/ (the latter indicating
that there may optionally be two /b/s in a row). This appears to be unusual, however: None
of the Oxford English Dictionary, Random House Unabridged Dictionary, and American Heritage
dictionary list the latter pronunciations. [SW89, RHD87, AHDO00]

2These phonetic transcriptions are drawn from the phonetically transcribed portion of the Switch-
board corpus, described in Chapter 4. The surface pronunciations are somewhat simplified from the
original transcriptions for ease of reading; e.g., [dx] has been transcribed as [d] and [nx] as [n], and
vowel nasalization is not shown.

3As noted by Johnson, “Linguists have tended to assume that transcription disagreements indi-
cate ideolectal differences among speakers, or the moral degeneracy of the other linguist.” [Joh02]
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l sense probably everybody don’t j
canonical || sehns praabaxbliy ehvriybaadiy downt
observed || (1)sehnts | (2) praabiy (l)ehvraxbaxdiy | (37)down

(I)sihts (1) pray (I)ehverbahdiy (16) d ow
(1) prawluh (1) eh ux b ax iy (6) ow n
(1) prahbiy (1) eh r uw ay (4)downt
(1) praaliy (1) eh b ah iy 3)dowt
(1) praabuw (3)dahn
(1) pow ih (3) ow
(1) p aa iy (3) n ax
(1) paabuhbliy (2) d ax n
(1) p aa ah iy (2) ax
(1) n uw
(1) n
(1) t ow
(1)dowaxn
(1) d el
(1) d ao
(1) d ah
(1) dhow n
(1)dubhn
(1) ax ng
Table 1.1: Canonical and observed pronunciations of four example words found

in the phonetically transcribed portion of the Switchboard conversational speech
database [GHE96]. The number of times each observed pronunciation appears in
the database is given in parentheses. Single-character labels are pronounced like the
corresponding English letters; the remaining labels are: [az], as in the beginning of
about; [aa/, as in father; [ay/, as in bye; [ah], as in mud; [ao], as in awe; [el], as
in bottle; [ow/, as in low; [dh], as in this; [uh], as in book; [ih], as in bid; [iy], as
in be; [er], as in bird; [uz], as in toot; and fuw/, as in boom.

e Many observed pronunciations differ grossly from the canonical one, with entire
phones or syllables deleted (as in probably — [p r ay] and everybody — [eh b ah
iy]) or inserted (as in sense — [s eh n t g]).

e Many observed pronunciations are the same as those of other English words. For
example, according to this table, sense can sound like cents and sits; probably
like pry; and don'’t like doe, own, oh, done, a, new, tow, and dote. In other
words, it would seem that all of these word sets should be confusable.

These four words are not outliers: For words spoken at least five times in this database,
the mean number of distinct pronunciations is 8.8. ¢ We will describe and analyze
this database further in Chapter 4.

4 After dropping diacritics and collapsing similar phone labels.
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Humans seem to be able to recognize these words in all of their many manifesta-
tions. How can an automatic speech recognizer know which are the legal pronuncia-
tions for a given word? For a sufficiently small vocabulary, we can imagine recording
a database large enough to obtain reliable estimates of the distributions of word pro-
nunciations. In fact, for a very small vocabulary, say tens of words, we may dispense
with sub-word units entirely, instead modeling directly the signals corresponding to
entire words. This is the approach used in most small-vocabulary ASR systems such
as digit recognizers (e.g., [HP00]). However, for larger vocabularies, this is infeasible,
especially if we wish to record naturally occurring speech rather than read scripts: In
order to obtain sufficient statistics for rare words, the database may be prohibitively
large. The standard approach is therefore to represent words in terms of smaller units
and to model the distributions of signals corresponding to those units. The problem
therefore remains of how to discover the possible pronunciations for each word.

1.1.3 Previous work: Pronunciation modeling in ASR

One approach used in ASR research for handling this variability is to start with a
dictionary containing only canonical pronunciations and add to it those alternate pro-
nunciations that occur often in some database [SW96]. The alternate pronunciations
can be weighted according to the frequencies with which they occur in the data. By
limiting the number of pronunciations per word, we can ensure that we have suf-
ficient data to estimate the probabilities, and we can (to some extent) control the
degree of confusability between words. However, this does not address the problem
of the many remaining pronunciations that do not occur with sufficient frequency
to be counted. Perhaps more importantly, for any reasonably-sized vocabulary and
reasonably-sized database, most words in the vocabulary will only occur a handful
of times, and many will not occur at all. Consider the Switchboard database of
conversational speech [GHM92], from which the above examples are drawn, which
is often considered the standard database for large-vocabulary conversational ASR.
The database contains over 300 hours of speech, consisting of about 3,000,000 spoken
words covering a vocabulary of 29,695 words. Of these 29,695 words, 18,504 occur
fewer than five times. The prospects for robustly estimating the probabilities of most
words’ pronunciations are therefore dim.

However, if we look at a variety of pronunciation data, we notice that many of the
variants are predictable. For example, we have seen that sense can be pronounced [s
eh n t s]. In fact, there are many words that show a similar pattern:

defense — [d ih fehn t s

prince — [prihnt s

insight — [th n t s ay t]
e expensive — [eh k s p eh n t s ih v

These can be generated by a phonetic rewrite rule:
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ec—t/n_s,

read “The empty string (&) can become ¢ in the context of an n on the left and s on
the right.” There are in fact many pronunciation phenomena that are well-described
by rules of the form

.pl_ﬁ)p2/cl—cf‘7

where p1, pa, ¢, and ¢, are phonetic labels. Such rules have been documented in
the linguistics, speech science, and speech technology literature (e.g., [Hef50, Sch73,
Lad01, Kai85, OZW*75]) and are the basis for another approach that has been used
in ASR research for pronunciation modeling: One or a few main pronunciations are
listed for each word, and a bank of rewrite rules are used to generate additional pro-
nunciations. The rules can be pre-specified based on linguistic knowledge [HHSLO05],
or they may be learned from data [FW97]. The probability of each rule “firing” can
also be learned from data [SH02]. A related approach is to learn, for each phoneme,
a decision tree that predicts the phoneme’s surface pronunciation depending on con-
text [RL96].

This approach greatly alleviates the data sparseness issue mentioned above: In-
stead of observing many instances of each word, we need only observe many instances
of words susceptible to the same rules. But it does not alleviate it entirely; there are
many possible phonetic sequences to consider, and many of them occur very rarely.
When such rules are learned from data, therefore, it is still common practice to ex-
clude rarely observed sequences. As we will show in Chapter 4, it is difficult to account
for the variety of pronunciations seen in conversational speech with phonetic rewrite
rules.

The issue of confusability can also be alleviated by using a finer-grained phonetic
labeling of the observed pronunciations. For example, a more detailed transcription
of the two instances of sense above would be

esehnnts
e sihnts

indicating that the two vowels were nasalized. Similarly, dont — [d ow t| is more
finely transcribed [d ow.n t]. Vowel nasalization, in which there is airflow through
both the mouth and the nasal cavity, often occurs before nasal consonants (/m/, /n/,
and /ng/). With this labeling, the second instance of sense is no longer confusable
with sits, and don’t is no longer confusable with dote. The first sense token, however,
is still confusable with cents.

1.1.4 Feature-based representations

The presence of [t] in the two examples of sense might seem a bit mysterious until
we consider the mechanism by which it comes about. In order to produce an [n], the
speaker must make a closure with the tongue tip just behind the top teeth, as well as
lower the soft palate to allow air to flow to the nasal cavity. To produce the following
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s], the tongue closure is slightly released and voicing and nasality are turned off. If
these tasks are not done synchronously, new sounds may emerge. In this case, voicing
and nasality are turned off before the tongue closure is released, resulting in a segment
of the speech signal with no voicing or nasality but with complete tongue tip closure;
this configuration of articulators happens to be the same one used in producing a [t].
The second example of sense is characterized by more extreme asynchrony: Nasality
and voicing are turned off even before the complete tongue closure is made, leaving
no [n] and only a [t].

This observation motivates a representation of pronunciations using, rather than
a single stream of phonetic labels, multiple streams of sub-phonetic features such as
nasality, voicing, and closure degrees. Tables 1.2 and 1.3 show such a representation
of the canonical pronunciation of sense and of the observed pronunciation [s eh.n n
t s], along with the corresponding phonetic string. Deviations from the canonical
values are marked (*). The feature set is described more fully in Chapter 3 and in
Appendix B. Comparing each row of the canonical and observed pronunciations, we
see that all of the feature values are produced faithfully, but with some asynchrony
in the timing of feature changes.

Table 1.4 shows a feature-based representation of the second example, [s ih.n t s].
Here again, most of the feature values are produced canonically, except for slightly
different amounts of tongue opening accounting for the observed [ih_n]. This contrasts
with the phonetic representation, in which half of the phones are different from the
canonical pronunciation.

This representation allows us to account for the three phenomena seen in these
examples—vowel nasalization, [t] insertion, and [n] deletion—with the single mech-
anism of asynchrony, between voicing and nasality on the one hand and the tongue
features on the other. don’t — [d ow_n t] is similarly accounted for, as is the common
related phenomenon of [p] insertion in words like warmth — [w ao r m p th].

In addition, the feature-based representation allows us to better handle the sense/cents
confusability. By ascribing the [t] to part of the [n] closure gesture, this analysis pre-
dicts that a [t] inserted in this environment will be shorter than a “true” [t]. This, in
fact, appears to be the case in at least some contexts [YBO03]. This implies that we
may be able to distinguish sense — [s eh_n n t s| from cents based on the duration
of the [t], without an explicit model of inserted [t] duration.

This is an example of the more general idea that we should be able to avoid
confusability by using a finer-grained representation of observed pronunciations. This
is supported by Saraglar and Khudanpur [SK04], who show that pronunciation change
typically does not result in an entirely new phone but one that is intermediate in some
way to the canonical phone and another phone. The feature-based representation
makes it possible to have such a fine-grained representation, without the explosion in
training data that would normally be required to train a phone-based pronunciation
model with a finer-grained phone set. This also suggests that pronunciation models
should be sensitive to timing information.
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[ feature | values |
voicing off ] on off
nasality off [ on off
lips open
tongue body mid/uvular mid/palatal mid/uvular
tongue tip || critical/alveolar | mid/alveolar | closed/alveolar | critical/alveolar
phone s eh n s

Table 1.2: Canonical pronunciation of sense in terms of articulatory features.

[ feature values
voicing off on off
nasality off on off
lips open
tongue body mid/uvular mid/palatal mid/uvular
tongue tip || critical/alveolar | mid/alveolar | closed/alveolar | critical/alveolar
phone s [ ehn  [n] t(*) [ s ]

Table 1.3: Observed pronunciation #1 of sense in terms of articulatory features.

[ feature ] values |
voicing off on off
nasality off on off
lips open
tongue body mid/uvular mid-narrow /palatal (*) mid/uvular
tongue tip || critical/alveolar | mid-narrow/alveolar (*) | closed/alveolar | critical/alveolar
[ phone s | ih.n (*) t (%) s

Table 1.4: Observed pronunciation #2 of sense in terms of articulatory features.

1.1.5 Previous work: Acoustic observation modeling

Another motivation for this thesis is provided by recent work suggesting that, for
independent reasons, it may be useful to use sub-phonetic features in the acoustic
observation modeling component of ASR systems [KFS00, MW02, Eid01, FKO01].
Reasons cited include the potential for improved pronunciation modeling, but also
better use of training data—there will typically be vastly more examples of each
feature than of each phone—better performance in noise [KFS00], and generalization
to multiple languages [SMSWO03].

One issue with this approach is that it now becomes necessary to define a mapping
from words to features. Typically, feature-based systems simply convert a phone-
based dictionary to a feature-based one using a phone-to-feature mapping, limiting
the features to their canonical values and forcing them to proceed synchronously in
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phone-sized “bundles”. When features stray from their canonical values or evolve
asynchronously, there is a mismatch with the dictionary. These approaches have
therefore benefited from the advantages of features with respect to data utilization
and noise robustness, but may not have reached their full potential as a result of this
mismatch. There is a need, therefore, for a mechanism to accurately represent the
evolution of features as they occur in the signal.

1.1.6 Previous work: Linguistics/speech research

A final motivation is that the representations of pronunciation used in most current
ASR systems are based on outdated linguistics. The paradigm of a string of phonemes
plus rewrite rules is characteristic of the generative phonology of the 1960s and 1970s
(e.g., [CH68]). More recent linguistic theories, under the general heading of non-
linear or autosegmental phonology [Gol90], have done away with the single-string
representation, opting instead for multiple tiers of features. The theory of articulatory
phonology [BG92] posits that most or all surface variation results from the relative
timings of articulatory gestures, using a representation similar to that of Tables 1.2—
1.4. Articulatory phonology is a work in progress, although one that we will draw
some ideas from. However, the principle in non-linear phonology of using multiple
streams of representation for different aspects of speech is now standard practice.

1.2 Proposed approach

Motivated by these observations, this thesis proposes a probabilistic approach to
pronunciation modeling based on representing the time course of multiple streams of
linguistic features. In this model, features may stray from the canonical representation
in two ways:

e Asynchrony, in which different features proceed through their trajectories at
different rates.

e Substitution of values of individual features.

Unlike in phone-based models, we will not make use of deletions or insertions of fea-
tures, instead accounting for apparent phone insertions or deletions as resulting from
feature asynchrony or substitution. The model is defined probabilistically, enabling
fine tuning of the degrees and types of asynchrony and substitution and allowing
these to be learned from data. We formalize the model as a dynamic Bayesian net-
work (DBN), a generalization of hidden Markov models that allows for natural and
parsimonious representations of multi-stream models.

1.3 Contributions

The main contributions of this thesis are:
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e Introduction of a feature-based model for pronunciation variation, formalizing
some aspects of current linguistic theories and addressing limitations of phone-
based models.

e Investigation of this model, along with a feature set based on articulatory
phonology, in a lexical access task using manual transcriptions of conversational
speech. In these experiments, we show that the proposed model outperforms a
phone-based one in terms of coverage of observed pronunciations and ability to
retrieve the correct word.

e Demonstration of the model’s use in complete recognition systems for (i) landmark-
based ASR and (ii) lipreading applications.

1.4 Thesis outline

The remainder of the thesis is structured as follows. In Chapter 2, we describe the
relevant background: the prevailing generative approach to ASR (which we follow),
several threads of previous research, and related work in linguistics and speech science.
Chapter 3 describes the proposed model, its implementation as a dynamic Bayesian
network, and several ways in which it can be incorporated into a complete ASR
system. Chapter 4 presents experiments done to test the pronunciation model in
isolation, by recognizing individual words excised from conversational speech based
on their detailed manual transcriptions. Chapter 5 describes the use of the model in
two types of acoustic speech recognition systems. Chapter 6 describes how the model
can be applied to lipreading and presents results showing improved performance using
a feature-based model over a viseme-based one. Finally, Chapter 7 discusses future
directions and conclusions.
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Chapter 2

Background

This chapter provides some background on the statistical formulation of automatic
speech recognition (ASR); the relevant linguistic concepts and principles; dynamic
Bayesian networks and their use in ASR; and additional description of previous work
beyond the discussion of Chapter 1.

2.1 Automatic speech recognition

In this thesis, we are concerned with pronunciation modeling not for its own sake,
but in the specific context of automatic speech recognition. In particular, we will
work within the prevailing statistical, generative formulation of ASR, described below.
The history of ASR has seen both non-statistical approaches, such as the knowledge-
based methods prevalent before the mid-1970s (e.g., [Kla77]), and non-generative
approaches, including most of the knowledge-based systems but also very recent non-
generative statistical models [RSCJ04, GMAPO05]. However, the most widely used
approach, and the one we assume, is the generative statistical one. We will also
assume that the task at hand is continuous speech recognition, that is, that we are
interested in recognition of word strings rather than of isolated words. Although
much of our experimental work is in fact isolated-word, we intend for our approach to
apply to continuous speech recognition and formulate our presentation accordingly.

In the standard formulation [Jel98], the problem that a continuous speech recog-
nizer attempts to solve is: For a given input speech signal s, what is the most likely
string of words w* = {w;,ws, ..., wp} that generated it? In other words,!

w = argmvgxp(wls), (2.1)

where w ranges over all possible word strings W, and each word w; is drawn from a
finite vocabulary V. Rather than using the raw signal s directly, we assume that all
of the relevant information in the signal can be summarized in a set of acoustic 0b-

We use the notation p(zx) to indicate either the probability mass function Px(z) = P(X = z)
when X is discrete or the probability density function fx(x) when X is continuous.
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servations® o = {01, 09, ...,0r}, where each o; is a vector of measurements computed
over a short time frame, typically 5ms or 10ms long, and 7 is the number of such
frames in the speech signal . The task is now to find the most likely word string
corresponding to the acoustic observations:

w* = arg max p(w|o), (2.2)

Using Bayes’ rule of probability, we may rewrite this as

Y — arem p(o|lw)p(w)
w* = arg 53“‘—;0(0) (2.3)
= argmax p(o|w)p(w), (24)

where the second equality arises because o is fixed and therefore p(o) does not affect
the maximization. The first term on the right-hand side of 2.4 is referred to as the
acoustic model and the second term as the language model. p(o|w) is also referred to
as the likelihood of the hypothesis w.

2.1.1 The language model

For very restrictive domains (e.g., digit strings, command and control tasks), the
language model can be represented as a finite-state or context-free grammar. For
more complex tasks, the language model can be factored using the chain rule of
probability:

M
p(w) = [Ip(wilws, ..., wiz1) (2.5)

and it is typically assumed that, given the history of the previous n — 1 words (for
n = 2,3, or perhaps 4), each word is independent of the remaining history. That is,
the language model is an n-gram model:

M
p(w) = ] p(wilwinsa, ..., wisy) (2.6)

i=1

2.1.2 The acoustic model

For all but the smallest-vocabulary isolated-word recognition tasks, we cannot hope
to model p(o|w) directly; there are too many possible o, w combinations. In general,
the acoustic model is further decomposed into multiple factors, most commonly using
hidden Markov models. A hidden Markov model (HMM) is a modified finite-state

2These are often referred to as acoustic features, using the pattern recognition sense of the term.
We prefer the term observations so as to not cause confusion with linguistic features.

3 Alternatively, acoustic observations may be measured at non-uniform time points or over seg-
ments of varying size, as in segment-based speech recognition [Gla03]. Here we are working within
the framework of frame-based recognition as it is more straightforward, although our approach
should in principle be applicable to segment-based recognition as well.
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machine in which states are not observable, but each state emits an observable output
symbol with some distribution. An HMM is characterized by (a) a distribution over
initial state occupancy, (b) probabilities of transitioning from a given state to each of
the other states in a given time step, and (c) state-specific distributions over output
symbols. The output “symbols” in the case of speech recognition are the (usually)
continuous acoustic observation vectors, and the output distributions are typically
mixtures of Gaussians. For a more in-depth discussion of HMMs, see [Jel98, RJ93].

For recognition of a limited set of phrases, as in command and control tasks, each
allowable phrase can be represented as a separate HMM, typically with a chain-like
state transition graph and with each state intended to represent a “steady” portion
of the phrase. For example, a whole-phrase HMM may have as many states as phones
in its baseform; more typically, about three times as many states are used, in order
to account for the fact that the beginnings, centers, and ends of phone segments
typically have different distributions. For somewhat less constrained tasks such as
small-vocabulary continuous speech recognition, e.g. digit string recognition, there
may be one HMM per word. To evaluate the acoustic probability for a given hy-
pothesis w = {ws, ..., wpn}, the word HMMs for wy, ..., wp can be concatenated to
effectively construct an HMM for the entire word string. Finally, for larger vocabu-
laries, it is infeasible to use whole-word models for all but the most common words,
as there are typically insufficient training examples of most words; words are further
broken down into sub-word units, most often phones, each of which is modeled with
its own HMM. In order to account for the effect of surrounding phones, different
HMMs can be used for phones in different contexts. Most commonly, the dependence
on the immediate right and left phones is modeled using triphone HMMs.

The use of context-dependent phones is a way of handling some pronunciation
variation. However, some pronunciation effects involve more than a single phone
and its immediate neighbors, such as the rounding of [s] in strawberry. Jurafsky
et al. [JWJ*T01] show that triphones are in general adequate for modeling phone
substitutions, but inadequate for handling insertions and deletions.

2.1.3 Decoding

The search for the most likely word string w is referred to as decoding. With the
hypothesis w represented as an HMM, we can rewrite the speech recognition problem,
making several assumptions (described below), as

w* = argmaxp(o|w)p(w) (2.7)
= argmax ) p(o|w, @)p(q|w)p(w) (2.8)
~ argmax y_p(o|q)p(alw)p(w) (2.9)
~ arg maxmax p(o|q)p(q|w)p(w) (2.10)
T
~  argmaxmax [ | p(oclg.)p(alw)p(w). (2.11)

t=1
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(2.12)

where ¢; denotes the HMM state in time frame ¢. Eq. 2.9 is simply a re-writing of
Eq. 2.8, summing over all of the HMM state sequences q that are possible realizations
of the hypothesis w. In going from Eq. 2.9 to Eq. 2.10, we have made the assumptions
that the acoustics are independent of the words given the state sequence. To obtain
Eq. 2.11, we have assumed that there is a single state sequence that is much more likely
than all others, so that summing over q is approximately equivalent to maximizing
over q. This allows us to perform the search for the most probable word string
using the Viterbi algorithm for decoding [BJM83]. Finally, Eq. 2.12 arises directly
from the HMM assumption: Given the current state ¢, the current observation o; is
independent of all other states and observations. We refer to p(o;|q;) as the observation
model.*

2.1.4 Parameter estimation

Speech recognizers are usually trained, i.e. their parameters are estimated, using the
maximum likelihood criterion,

©" = arg mgaxp(w, OIG)a

where © is a vector of all of the parameter values. Training data typically consists
of pairs of word strings and corresponding acoustics. The start and end times of
words, phones, and states in the training data are generally unknown; in other words,
the training data are incomplete. Maximum likelihood training with incomplete data
is done using the Expectation-Maximization (EM) algorithm [DLR77], an iterative
algorithm that alternates between finding the expected values of all unknown variables
and re-estimating the parameters given these expected values, until some criterion of
convergence is reached. A special case of the EM algorithm for HMMs is the Baum-
Welch algorithm [BPSW70).

2.2 Pronunciation modeling for ASR

We refer to the factor p(q|w) of Eq. 2.12 as the pronunciation model. This is a
nonstandard definition: More typically, this probability is expanded as

plalw) = 3 p(alu, w)p(ulw) (2.13)

~ maxp(q|u)p(ulw) (2.14)

(2.15)

where u = {ug,ug,...,ur} is a string of sub-word units, usually phones or phonemes,

corresponding to the word sequence w, and the summation in Eq. 2.14 ranges over all

4This, rather than p(o|w), is sometime referred to as the acoustic model.
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possible phone/phoneme strings. To obtain Eq. 2.15, we have made two assumptions:
That the state sequence q is independent of the words w given the sub-word unit
sequence u, and that, as before, there is a single sequence u that is much more likely
than all other sequences, so that we may maximize rather than sum over u. The
second assumption allows us to again use the Viterbi algorithm for decoding.

In the standard formulation, p(u|w) is referred to as the pronunciation model,
while p(q|u) is the duration model and is typically given by the Markov statistics of
the HMMs corresponding to the u;. In Chapter 1, we noted that there is a dependence
between the choice of sub-word units and their durations, as in the example of short
epenthetic [t]. For this reason, we do not make this split between sub-word units and
durations, instead directly modeling the state sequence q given the words w, where
in our case q will consist of feature value combinations (see Chapter 3).

2.3 Dynamic Bayesian networks for ASR

Hidden Markov models are a special case of dynamic Bayesian networks (DBNs), a
type of graphical model. Recently there has been growing interest in the use of DBNs
(other than HMMSs) for speech recognition (e.g., [Zwe98, BZR*02, Bil03, SMDB04],
and we use them in our proposed approach. Here we give a brief introduction to
graphical models in general, and DBNs in particular, and describe how DBNs can
be applied to the recognition problem. For a more in-depth discussion of graphical
models in ASR, see [Bil03].

2.3.1 Graphical models

Probabilistic graphical models [Lau96, Jor98] are a way of representing a joint prob-
ability distribution over a given set of variables. A graphical model consists of two
components. The first is a graph, in which a node represents a variable and an edge
between two variables means that some type of dependency between the variables
is allowed (but not required). The second component is a set of functions, one for
each node or some subset of nodes, from which the overall joint distribution can be
computed.

2.3.2 Dynamic Bayesian networks

For our purposes, we are interested in directed, dynamic graphical models, also re-
ferred to as dynamic Bayesian networks [DK89, Mur02]. A directed graphical model,
or Bayesian network, is one in which the graph is directed and acyclic, and the func-
tion associated with each node is the conditional probability of that variable given
its parents in the graph. The joint probability of the variables in the graph is given
by the product of all of the variables’ conditional probabilities:

N

p(wh cee ,ZL'N) = Hp(milpa(xi))’ (216)
i=1
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where x; is the value of a variable in the graph and pa(x;) are the values of z;’s
parents.

A dynamic directed graphical model is one that has a repeating structure, so as
to model a stochastic process over time (e.g., speech) or space (e.g., images). We
refer to the repeating part of the structure as a frame. Since the number of frames
is often not known ahead of time, a dynamic model can be represented by specifying
only the repeating structure and any special frames at the beginning or end, and then
“unrolling” the structure to the necessary number of frames. An HMM is a simple
DBN in which each frame contains two variables (the state and the observation) and
two dependencies (one from the state to the observation, and one from the state in
the previous frame to the current state).

One of the advantages of representing a probabilistic model as a Bayesian net-
work is the availability of standard algorithms for performing various tasks. A basic
“subroutine” of many tasks is inference, the computation of answers to queries of the
form, “Given the values of the set of variables X4 (evidence), what are the distribu-
tions or most likely values of variables in set Xg?” This is a part of both decoding
and parameter learning. Algorithms exist for doing inference in Bayesian networks
in a computationally efficient way, taking advantage of the factorization of the joint
distribution represented by the graph [HD96]. There are also approximate inference
algorithms [JGJS99, McK99], which provide approximations to the queried distri-
butions, for the case in which a model is too complex for exact inference. Viterbi
decoding and Baum-Welch training of HMMSs are special cases of the corresponding
generic DBN algorithms [Smy98].

Zweig [Zwe98] demonstrated how HMM-based speech recognition can be repre-
sented as a dynamic Bayesian network. Figure 2-1 shows three frames of a phone
HMM-based decoder represented as a DBN. This is simply an encoding of a typical
HMM-based recognizer, with the hidden state factored into its components (word,
phone state, etc.). Note that the model shown is intended for decoding, which cor-
responds to finding the highest-probability settings of all of the variables and then
reading off the value of the word variable in each frame. For training, slightly differ-
ent models with additional variables and dependencies are required to represent the
known word string.

Several extensions to HMMSs have been proposed for various purposes, for example
to make use of simultaneous speech and video [GPN02] or multiple streams of acous-
tic observations [BD96]. Viewed as modifications of existing HMM-based systems,
such extensions often require developing modified algorithms and new representa-
tions. Viewed as examples of DBNs, they require no new algorithms or representa-
tions, and can stimulate the exploration of a larger space of related models. It is
therefore a natural generalization to use DBNs as the framework for investigations
in speech recognition. Bilmes [Bil99, Bil00] developed an approach for discriminative
learning of aspects of the structure of a DBN, and used this to generate extensions
of an HMM-based speech recognizer with additional learned dependencies between
observations.

There have been several investigations into using models similar to that of Fig-
ure 2-1 with one or two additional variables to encode articulatory information [SMDB04,
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frame i-1 frame i frame i+1

Figure 2-1: A phone-state HMM-based DBN for speech recognition. The word vari-
able is the identity of the word that spans the current frame; word trans is a binary
variable indicating whether this is the last frame in the current word; phone state is
the phonetic state that spans the current frame (there are several states per phone);
pos indicates the phonetic position in the current word, i.e. the current phone state is
the post® phone state in the word; phone trans is the analogue of word trans for the
phone state; and O is the current acoustic observation vector.

Zwe98]. In [Zwe98], Zweig also suggested, but did not implement, a DBN using a
full set of articulatory features, shown in Figure 2-2. A related model, allowing for a
small amount of deviation from canonical feature values, was used for a noisy digit
recognition task in [LGBO03].

2.4 Linguistic background

We now briefly describe the linguistic concepts and theories relevant to current prac-
tices in ASR and to the ideas we propose. We do not intend to imply that recognition
models should aim to faithfully represent the most recent (or any particular) linguistic
theories, and in fact the approach we will propose is far from doing so. However, ASR
research has always drawn on knowledge from linguistics, and one of our motivations
is that there are many additional ideas in linguistics to draw on than have been used
in recognition to date. Furthermore, recent linguistic theories point out flaws in older
ideas used in ASR research, and it is worthwhile to consider whether these flaws merit
a change in ASR practice.

2.4.1 Generative phonology

Much of the linguistic basis of state-of-the-art ASR systems originates in the gen-
erative phonology of the 1960s and 1970s, marked by the influential Sound Pattern
of English of Chomsky and Halle [CH68). Under this theory, phonological represen-
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Figure 2-2: An articulatory feature-based DBN for speech recognition suggested by
Zweig [Zwed8]. a* are articulatory feature values; remaining variables are as in Fig-
ure 2-1.

tations consist of an underlying (phonemic) string, which is transformed via a set
of rules to a surface (phonetic) string. Speech segments (phonemes and phones) are
classified with respect to a number of binary features, such as voicing, nasality, tongue
high /low, and so on, many of which are drawn from the features of Jakobson, Fant,
and Halle [JFH52]. Rules can refer to the features of the segments they act on; for
example, a vowel nasalization rule may look like

e x — xn / __ [+nasal]

However, features are always part of a “bundle” corresponding to a given segment
and act only as an organizing principle for categorizing segments and rules. In all
cases, the phonological and phonetic representation of an utterance is a single string
of symbols. For this reason, this type of phonology is referred to as linear phonology.

In ASR research, these ideas form the basis of (i) the string-of-phones repre-
sentation of words, (ii) clustering HMM states according to binary features of the
current /neighboring segments, and (iii) modeling pronunciation variation using rules
for the substitution, insertion, and deletion of segments.

2.4.2 Autosegmental phonology

In the late 1970s, Goldsmith introduced the theory of autosegmental phonology [Gol76,
Gol90]. According to this theory, the phonological representation no longer consists
of a single string of segments but rather of multiple strings, or tiers, corresponding
to different linguistic features. Features can be of the same type as the Jakobson,
Fant, and Halle features, but can also include additional features such as tone. This
theory was motivated by the observation that some phenomena of feature spreading
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are more easily explained if a single feature value is allowed to span (what appears
on the surface to be) more than one segment. Autosegmental phonology posits some
relationships (or associations) between segments in different tiers, which limit the
types of transformations that can occur. We will not make use of the details of
this theory, other than the motivation that features inherently lie in different tiers of
representation.

2.4.3 Articulatory phonology

In the late 1980s, Browman and Goldstein proposed articulatory phonology [BG86,
BG92|, a theory that differs from previous ones in that the basic units in the lexicon
are not abstract binary features but rather articulatory gestures. A gesture is essen-
tially an instruction to the vocal tract to produce a certain degree of constriction at
a given location with a given set of articulators. For example, one gesture might be
“narrow lip opening”, an instruction to the lips and jaw to position themselves so as
to effect a narrow opening at the lips. Figure 2-3 shows the main articulators of the
vocal tract to which articulatory gestures refer. We are mainly concerned with the
lips, tongue, glottis (controlling voicing), and velum (controlling nasality).

Figure 2-3: A midsagittal section showing the major articulators of the vocal tract,
reproduced from [0L04].
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The degrees of freedom in articulatory phonology are referred to as tract variables
and include the locations and constriction degrees of the lips, tongue tip, and tongue
body, and the constriction degrees of the glottis and velum. The tract variables and
the articulators to which each corresponds are shown in Figure 2-4.

tract wariable articulators involved
LP lip protrusion upper & lower lips, jaw
LA lip aperture upper & lower lips, jaw
TTCL  tongue tip constrictlocation tongue tip, tongue body, jaw
TTCD  tonguetip constrictdegres tongue tip. tongue body. jaw
TBCL  tongue body constrictlocation tongue body. jaw
TBCD  tonguebody constrictdegree tongue body, jaw
VEL velic aperture velum
GLO 3 lo ttal aperture glottis

+ uppalip
+ lowerlip
jaw

velum

a

Figure 2-4: Vocal tract variables and corresponding articulators used in articulatory
phonology. Reproduced from [BG92].

d(;lis

In this theory, the underlying representation of a word consists of a gestural score,
indicating the gestures that form the word and their relative timing. Examples of
gestural scores for several words are given in Figure 2-5. These gestural targets may
be modified through gestural overlap, changes in timing of the gestures so that a
gesture may begin before the previous one ends; and gestural reduction, changes from
more extreme to less extreme targets. The resulting modified gestural targets are
the input to a task dynamics model of speech production [SM89], which produces
the actual trajectories of the tract variables using a second-order damped dynamical
model of each variable.

Browman and Goldstein argue in favor of such a representation on the basis of
fast speech data of the types we have discussed, as well as articulatory measurements
showing that underlying gestures are often produced faithfully even when overlap pre-
vents some of the gestures from appearing in their usual acoustic form. For example,
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YELUM
TONGUETIP
TONGUE BODY
ues

GLOTNS

YELUM
TONGUETIP
TONGUE BODY

upPs
GLOTTS

Figure 2-5: Gestural scores for several words. Reproduced from
http:/ /www.haskins.yale. edu/haskins/MISC/RESEARCH/GesturalModel. html.

they cite X-ray evidence from a production of the phrase perfect memory, in which
the articulatory motion for the final [t] of perfect appeared to be present despite the
lack of an audible [t].

Articulatory phonology is under active development, as is a system for speech
synthesis based on the theory [BGK*84]. We draw heavily on ideas from articulatory
phonology in our own proposed model in Chapter 3. We note that in the sense in
which we use the term “feature”, Browman and Goldstein’s tract variables can be
considered a type of feature set (although they do not consider these to be the basic
unit of phonological representation). Indeed, the features we will use correspond
closely to their tract variables.

2.5 Previous ASR research using linguistic features

The automatic speech recognition literature is rife with proposals for modeling speech
at the sub-phonetic feature level. Rose et al. [RSS94] point out that the primary
articulator for a given sound often displays less variation than other articulators,
suggesting that while phone-based models may be thrown off by the large amount
of overall variation, the critical articulator may be more easily detected and used to
improve the robustness of ASR systems. Ostendorf [Ost99, Ost00] notes the large
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distance between current ASR technology and recent advances in linguistics, and
suggests that ASR could benefit from a tighter coupling.

Although linguistic features have not yet found their way into mainstream, state-
of-the-art recognition systems, they been used in various ways in ASR research. We
now briefly survey the wide variety of related research. This survey covers work at
various stages of maturity and is at the level of ideas, rather than of results. The goal
is to get a sense for the types of models that have been proposed and used, and to
demonstrate the need for a different approach.

An active area of work has been feature detection and classification, either as a
stand-alone task or for use in a recognizer [FKO01, Eid01, WFK04, KFS00, MWO02,
WRAO00]. Different types of classifiers have been used, including Gaussian mixture [Eid01,
MWO02] and neural network-based classifiers [WFKO04, KFS00]. In [WFKO04], asyn-
chronous feature streams are jointly recognized using a dynamic Bayesian network
that models possible dependencies between features. In almost all cases in which the
outputs of such classifiers have been used in a complete recognizer [KFS00, MWO02,
Eid01], it has been assumed that the features are synchronized to the phone and with
values given deterministically by a phone-to-feature mapping.

There have been a few attempts to explicitly model the asynchronous evolution
of features. Deng et al. [DRS97|, Erler and Freeman [EF94], and Richardson et
al. [RBD00] used HMMs in which each state corresponds to a combination of feature
values. They constructed the HMM feature space by allowing features to evolve asyn-
chronously between phonetic targets, while requiring that the features re-synchronize
at phonetic (or bi-phonetic) targets. This somewhat restrictive constraint was nec-
essary to control the size of the state space. One drawback to this type of system is
that it does not take advantage of the factorization of the state space, or equivalently
the conditional independence properties of features.

In [Kir96], on the other hand, Kirchhoff models the feature streams independently
in a first pass, then aligns them to syllable templates with the constraint that they
must synchronize at syllable boundaries. Here the factorization into features is taken
advantage of, although the constraint of synchrony at syllable boundaries is perhaps
a bit strong. Perhaps more importantly, however, there is no control over the asyn-
chrony within a syllable, for example by indicating that a small amount of asynchrony
may be preferable to a large amount.

An alternative approach, presented by Blackburn [Bla96, BYO01], is analysis by
synthesis: A baseline HMM recognizer produces an N-best hypothesis for the input
utterance, and an articulatory synthesizer converts each hypothesis to an acoustic
representation for matching against the input.

Bates [Bat04] uses the idea of factorization into feature streams in a model of
phonetic substitutions, in which the probability of a surface phone s, given its context
¢t (typically consisting of the underlying phoneme, previous and following phonemes,
and some aspect of the word context), is the product of probabilities corresponding
to each of the phone’s N features f;;,i = 1..N:

N.

P(stlce) = Hp(ft,ilct) (2.17)

=1
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Bates also considers alternative formulations where, instead of having a separate
factor for each feature, the feature set is divided into groups and there is a factor for
each group. This model assumes that the features or feature groups are independent
given the context. This allows for more efficient use of sparse data, as well as feature
combinations that do not correspond to any canonical phone. Each of the probability
factors is represented by a decision tree learned over a training set of transcribed
pronunciations. Bates applies a number of such models to manually transcribed
Switchboard pronunciations using a set of distinctive features, and finds that, while
these models do not improve phone perplexity or prediction accuracy, they predict
surface forms with a smaller feature-based distance from ground truth than does a
phone-based model. In this work, the values of features are treated as independent,
but their time course is still dependent, in the sense that features are constrained to
organize into synchronous, phoneme-sized segments.

In addition, several models have been proposed in which linguistic and speech
science theories are implemented more faithfully. Feature-based representations have
been, for a long time, used in the landmark-based recognition approach of Stevens [Ste02].
In this approach, recognition starts by hypothesizing the locations of landmarks, im-
portant events in the speech signal such as stop bursts and extrema of glides. Various
cues, such as voice onset times or formant trajectories, are then extracted around
the landmarks and used to detect the values of distinctive features such as voicing,
stop place, and vowel height, which are in turn matched against feature-based word
representations in the lexicon.

Recent work by Tang [Tan05] combines a landmark-based framework with a pre-
vious proposal by Huttenlocher and Zue [HZ84] of using sub-phonetic features as a
way of reducing the lexical search space to a small cohort of words. Tang et al. use
landmark-based acoustic models clustered according to place and manner features
to obtain the relevant cohort, then perform a second pass using the more detailed
phonetic landmark-based acoustic models of the MIT SUMMIT recognizer [Gla03] to
obtain the final hypothesis. In this work, then, features are used as a way of defining
broad phonetic classes.

In Lahiri and Reetz’s [LR02] featurally underspecified lexicon (FUL) model of
human speech perception, the lexicon is underspecified with respect to some features.
Speech perception proceeds by (a) converting the acoustics to feature values and
(b) matching these values against the lexicon, allowing for a no-mismatch condition
when comparing against an underspecified lexical feature. Reetz [Ree98] describes a
knowledge-based automatic speech recognition system based on this model, involv-
ing detailed acoustic analysis for feature detection. This system requires an error
correction mechanism before matching features against the lexicon.

Huckvale [Huc94] describes an isolated-word recognizer using a similar two-stage
strategy. In the first stage, a number of articulatory features are classified in each
frame using separate multi-layer perceptrons. Each feature stream is then separately
aligned with each word’s baseform pronunciations and an N-best list is derived for
each. Finally, the N-best lists are combined heuristically, using the N-best lists corre-
sponding to the more reliable features first. As noted in [Huc94], a major drawback
of this type of approach is the inability to jointly align the feature streams with the
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baseforms, thereby potentially losing crucial constraints. This is one problem that
our proposed approach corrects.

2.6 Summary

This chapter has presented the setting in which the work in this thesis has come
about. We have described the generative statistical framework for ASR and the
graphical modeling tools we will use, as well as the linguistic theories from which
we draw inspiration and previous work in speech recognition using ideas from these
theories. One issue that stands out from our survey of previous work is that there
has been a lack of computational frameworks that can combine the information from
multiple feature streams in a principled, flexible way: Models based on conventional
ASR technology tend to ignore the useful independencies between features, while
models that allow for more independence typically provide little control over this
independence. Our goal, therefore, is to formulate a general, flexible model of the joint
evolution of linguistic features. The next chapter presents such a model, formulated
as a dynamic Bayesian network.
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Chapter 3

Feature-based Modeling of
Pronunciation Variation

This chapter describes the proposed approach of modeling pronunciation variation in
terms of the joint evolution of multiple sub-phonetic features. The main components
of the model are (1) a baseform dictionary, defining the sequence of target values
for each feature, from which the surface realization can stray via the processes of
(2) inter-feature asynchrony, controlled via soft constraints, and (3) substitutions of
individual feature values.

In Chapter 1, we defined a pronunciation of a word as a representation, in terms
of a set of sub-word units, of the way the word is or can be produced by a speaker.
Section 3.1 defines the representations we use to describe underlying and surface
pronunciations. We next give a detailed procedure—a “recipe”—by which the model
generates surface feature values from an underlying dictionary (Section 3.2). This
is intended to be a more or less complete description, requiring no background in
dynamic Bayesian networks. In order to use the model in any practical setting, of
course, we need an implementation that allows us to (a) query the model for the
relative probabilities of given surface representations of words, for the most likely
word given a surface representation, or for the best analysis of a word given its surface
representation; and to (b) learn the parameters of the model automatically from data.
Section 3.3 describes such an implementation in terms of dynamic Bayesian networks.
Since automatic speech recognition systems are typically presented not with surface
feature values but with a raw speech signal, Section 3.4 describes the ways in which
the proposed model can be integrated into a complete recognizer. Section 3.5 relates
our approach to some of the previous work described in Chapter 2. We close in
Section 3.6 with a discussion of the main ideas of the chapter and consider some
aspects of our approach that may bear re-examination.

3.1 Definitions

We define an underlying pronunciation of a word in the usual way, as a string of
phonemes. Closely related are baseform pronunciations, the ones typically stored in
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an ASR pronouncing dictionary. These are canonical pronunciations represented as
strings of phones of various levels of granularity, depending on the degree of detail
needed in a particular ASR system.! We will typically treat baseforms as our “un-
derlying” representations, from which we derive surface pronunciations, rather than
using true phonemic underlying pronunciations.

We define surface pronunciations in a somewhat unconventional way. In Sec-
tion 1.1.4, we proposed a representation consisting of multiple streams of feature
values, as in this example:

[ feature | values j
voicing off on off
nasality off on off
lips open
tongue body mid/uvular mid-narrow /palatal mid/uvular
tongue tip critical/alveolar | mid-narrow /alveolar | closed/alveolar | critical/alveolar
[ phone s 1 ih.n t B s |

Table 3.1: An example observed pronunciation of sense from Chapter 1.

We also mentioned, but did not formalize, the idea that the representation should
be sensitive to timing information, so as to take advantage of knowledge such as
the tendency of [t|s inserted in a [n] __ [s] context to be short. To formalize this,
then, we define a surface pronunciation as a time-aligned listing of all of the surface
feature values produced by a speaker. Referring to the discussion in Chapter 2, this
means that we define q; as the vector of surface feature values at time ¢. Such a
representation might look like the above, with the addition of time stamps (using
some abbreviations for feature values):

voi. off .lIs on .25 off .5s
nas. off .1s on 2s off .58
lips open .5s
t. body || m/u .1s | m-n/p .28 m/u .5s
t. tip cr/a .1s | m-n/a .2s [cl/a .35s | cr/a .5s

Table 3.2: Time-aligned surface pronunciation of sense.

In practice, we will assume that time is discretized into short frames, say of 10ms
each. Therefore, for our purposes a surface pronunciation will be represented as in
Table 3.3. This representation is of course equivalent to the one in Table 3.2 when
the time stamps are discretized to multiples of the frame size.

'For example, a baseform for tattle may differentiate between the initial plosive [t] and the
following flap [dx]: [t ae dx el], although both are phonemically /t/; but the baseform for ninth may
not differentiate between the two nasals, although the first is typically alveolar while the second is
dental.
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| frame 1 2 [ 3 4 [ 5 1 6 ] 7 8 9 10 11 J..]
voi. off off off off | off | off | off | off off off on
nas. off off off off | off off | off | off off | off on
lips op | op | op | op | op | op | op | op | op | op op
t. body || m/u | m/u | m/u | m/u | m/u | m/u | m/u | m/u | m/u | m/u | m-n/p
t. tip cr/a | crfa | cr/a | cr/a | cr/a | cr/a | cr/a | cr/a | cr/a | cr/a | m-n/a

Table 3.3: Frame-by-frame surface pronunciation of sense.

3.2 A generative recipe

In this section, we describe a procedure for generating all of the possible surface
pronunciations of a given word, along with the relative likelihoods of the different
pronunciations. We denote the feature set, consisting of N features, F*,1 < i < N.
A T-frame surface pronunciation in terms of these features is denoted Si, 1 < i <
N,1 <t <T, where S! is the surface value of feature F* in time frame t.

Our approach begins with the usual assumption that each word has one or more
baseforms. Each baseform is then converted to a table of underlying, or target, feature
values, using a phone-to-feature mapping table?. For this purpose, dynamic phones
consisting of more than one feature configuration are divided into multiple segments:
Stops are divided into a closure and a release; affricates into a closure and a frication
portion; and diphthongs into the beginning and ending configurations. More precisely,
the mapping from phones to feature values may be probabilistic, giving a distribution
over the possible values for a given feature and phone. Table 3.4 shows what a
baseform for sense and the corresponding underlying feature distributions might look
like. For the purposes of our example, we are assuming a feature set based on the
locations and opening degrees of the articulators, similarly to the vocal tract variables
of articulatory phonology [BG92|; however, our approach will not assume a particular
feature set. In the following experimental chapters, we will give fuller descriptions of
the feature sets we use.

The top row of Table 3.4 is simply an index into the underlying phone sequence;
it will be needed in the discussion of asynchrony. This is not to be confused with the
frame number, as in Table 3.3: The index says nothing about the amount of time
spent in a particular feature configuration. Note that it is assumed that all features go
through the same sequence of indices (and therefore have the same number of targets)
in a given word. For example, lips is assumed to have four targets, although they are
all identical. This means that, for each phone in the baseform, and for each feature,
there must be a span of time in the production of the word during which the feature
is “producing” that phone. This is a basic assumption that, in practice, amounts to a
duration constraint and makes it particularly easy to talk about feature asynchrony
by referring to index differences. Alternatively, we could have a single index value for
identical successive targets, and a different way of measuring asynchrony (see below).

2Here we are abusing terminology slightly, as the underlying features do not necessarily corre-
spond to an underlying (phonemic) pronunciation.
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index 1 12 13 [4

voicing off on on off
nasality off off on off
lips wide wide wide wide
tongue body || mid/uvular mid/palatal | mid/uvular .5 | mid/uvular
mid/velar .5 mid/uvular
tongue tip critical /alveolar | mid/alveolar | closed/alveolar | critical/alveolar
[ phone s [ eh In s ]

Table 3.4: A possible baseform and target feature distributions for the word sense.
Ezpressions of the form “f; p1” give the probabilities of different feature values; for
example, the target value for the feature tongue body for an [n/ is mid/velar or
mid/uvular with probability 0.5 each. When no probability is given for a feature
value, it is assumed to be 1.

This is an issue that warrants future re-examination.
The baseform table does not tell us anything about the amount of time each
feature spends in each state; this is our next task.

3.2.1 Asynchrony

We assume that in the first time frame of speech, all of the features begin in index 1,
ind, = 1Vi. In subsequent frames, each feature can either stay in the same state or
transition to the next one with some transition probability. The transition probability
may depend on the phone corresponding to the feature’s current index: Phones with
longer intrinsic durations will tend to have higher transition probabilities. Features
may transition at different times. This is what we refer to as feature asynchrony. We
define the degree of asynchrony between two features F* and F? in a given time frame
t as the absolute difference between their indices in that frame:

async,” = |ind: — indj|. (3.1)

Similarly, we define the degree of asynchrony between two sets of features F'4 and F2
as the difference between the means of their indices, rounded to the nearest integer:

asynct® = round ( |mean (z’nd{‘) — mean (indf3 ) |) , (3.2)

where A and B are subsets of {1,..., N} and Flivi2} = {F Fi2 )} For example,
Tables 3.5 and 3.6 show two possible sets of trajectories for the feature indices in sense,
assuming a 10-frame utterance.

The degree of asynchrony may be constrained: More “synchronous” configurations
may be more probable (soft constraints), and there may be an upper bound on the
degree of asynchrony (hard constraints). For example, the sequence of asynchrony
values in Table 3.5 may be preferable to the one in Table 3.6. We express this by
imposing a distribution over the degree of asynchrony between features in each frame,
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Fame 1 ]2 [3 1[4 [5 [6 [7 [8 [9 [10 ]
4 4

voi. index [ 1 1 2 3 3 3 4 4

voi. phone | s s eh n n n S S S s

voicing off off on on on on off off off off

nas. index ff 1 1 2 3 3 3 4 4

nas. phone | s s eh n n n s S s S

nasality oft off off on on on off off off off

t.b. index |1 1 2 2 2 3 3 4 4 4

t.b. phone {j s s eh eh eh n n S s s

t. body m/u | m/u [ m/u | m/p { m/p | m/u | m/u | m/u | m/u| m/u

t.t. index 1 1 2 2 2 3 3 4 4 4

t.t. phone | s S eh eh eh n n S S S

t. tip cr/a | cr/a | cr/a [ m/a | m/a | cl/a | cl/a | cr/a | cr/a | cr/a

asyncA'B 0 0 0 1 1 0 1 0 0 0 —l
[ phone Is Is eh [ehn|ehn|[n t s s s |

Table 3.5: Frame-by-frame sequences of indez values, corresponding phones, underly-
ing feature values, and degrees of asynchrony between {voicing, nasality} and {tongue
body, tongue tip}, for a 10-frame production of sense. Where the underlying fea-
ture value is non-deterministic, only one of the values is shown for ease of viewing.
The lips feature has been left off, as its index sequence does not make a difference to
the surface pronunciation. The bottom row shows the resulting phone transcription
corresponding to these feature values, assuming they are produced canonically.

plasyncy?), or feature sets, p(async*®). One of the design choices in using such a
model is which features or sets of features will have such explicit constraints.?

3.2.2 Substitution

Given the index sequence for each feature, the corresponding frame-by-frame sequence
of underlying feature values, ui,1 <t < T, is drawn according to the feature distri-
butions in the baseform table (Table 3.4). However, a feature may fail to reach its
target value, instead substituting another value. This may happen, for example, if
the speaker fails to make a constriction as extreme as intended, or if a given feature
value assimilates to neighboring values. One example of substitution is sense — |s
ih.n t s]; a frame-by-frame representation is shown in Table 3.7. Table 3.8 shows
what might happen if the alveolar closure of the [n] is not made, i.e. if the tongue
tip value of closed/alveolar is substituted with mid/alveolar. The result will be a sur-
face pronunciation with a nasalized vowel but no closure, which might be transcribed
phonetically as [s eh_n s]. This is also a common effect in words with post-vocalic
nasals [Lad01].

We model substitution phenomena with a distribution over each surface feature
value in a given frame given its corresponding underlying value, p(si|ui). For the

3There may also be some implicit constraints, e.g. the combination of a constraint on async,’

and another constraint on async{ * will result in an implicit constraint on features ¢ and k.
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frame [T _[2 [3 [4 [5 [6 [7 [8 [9 [i0 ]

voi. index 1 2 3 3 3 4 4 4 4 4

voi. phone || s eh n n n s 8 s S s

voicing off on on on on off off off off off

nas. index || 1 2 3 3 3 4 4 4 4 4

nas. phone || s eh n n n S 8 S s S

nasality off off off on on off off oft oft off

t.b. index 1 1 1 2 2 3 3 4 4 4

t.b. phone | s S S eh eh n n S s S

t. body m/u | m/u ! m/u | m/p | m/p | m/u | m/u| m/u| m/u| m/u

t.t. index 1 1 1 2 2 3 3 4 4 4

t.t. phone | s S S eh eh n n 8 s s

t. tip cr/a | cr/a | cr/a | m/a | m/a | cl/a | cl/a | cr/a | cr/a | cr/a
[[async®™® T 0 1 ]2 1 1 1 1 0 0 0 ]
[ phone [s [z Jzn [ehmJehnm[t Tt s s [|s ]

Table 3.6: Another possible set of frame-by-frame sequences for sense.

time being we model substitutions context-independently: Each surface feature value
depends only on the corresponding underlying value in the same frame. However, it
would be fairly straightforward to extend the model with substitutions that depend
on such factors as preceding and following feature values, stress, or syllable position.

3.2.3 Summary

To summarize the generative recipe, we can generate all possible surface pronuncia-
tions of a given word in the following way:

1. List the baseforms in terms of underlying features.

2. For each baseform, generate all possible combinations of index sequences, with
probabilities given by the transition and asynchrony probabilities.

3. For each such generated index sequence, generate all possible underlying feature
values by drawing from the feature distributions at each index.

4. For each underlying feature value, generate the possible surface feature values
according to p(s}|u}).

3.3 Implementation using dynamic Bayesian net-
works

A natural framework for such a model is provided by dynamic Bayesian networks
(DBNs), because of their ability to efficiently implement factored state representa-

tions. Figure 3-1 shows one frame of the type of DBN used in our model. For our
purposes, we will assume an isolated-word setup; i.e. we will only be recognizing one
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| frame i T2 |3 | 4 | 5 [6 |7 [8 J9 J10 |
voi. index 1 1 2 3 3 3 4 4 4 4
voi. phone s S eh n n n s s s s
voicing (U) || off |[off | on on on on off [off |off |off
[ voicing (8) [[off [off [on on |on on [off Joff [off [off |
nas. index 1 1 2 3 3 3 4 4 4
nas. phone s s eh n n n S S s s
nasality (U) || off | off | off on on on |off Joff |off |off |
| nasality (S) ]| off | off [ off on on on [off Joff Joff Joff |
t.b. index 1 1 2 2 2 3 3 4 4 4
t.b. phone s s eh eh eh n n s s s
t. body (U) || m/u | m/u | m/p m/p m/p m/u | m/u | m/u | m/u | m/u
t. body (S) | m/u [ m/u [ mn/p [ m-n/p| mn/p [ m/u|m/u{m/ulm/ulm/ul]
t.t. index 1 1 2 2 2 3 3 4 4 4
t.t. phone S S eh eh eh n n S S s
t. tip (U) cr/a | cr/a | m/a m/a m/a cl/a | cl/a [cr/fa | cr/a | cr/a
[ t. tip (S) cr/a | cr/a | m-n/a | m-n/a | m-n/a [ cl/a [cl/a Jer/a]er/a]cr/a

asynctB 0 0 0 1 1 0 1 0 0 0
[asy
[ phone s s Jih Jihn Jihn Jn Jt s s s ]

Table 3.7: Frame-by-frame sequences of index values, corresponding phones, underly-
ing (U) and surface (S) feature values, and degrees of asynchrony between {wvoicing,
nasality} and {tongue body, tongue tip}, for a 10-frame production of sense. Where
the underlying feature value is non-deterministic, only one of the values is shown
for ease of viewing. The lips feature has been left off and is assumed to be “wide”
throughout. The bottom row shows the resulting phone transcription corresponding to
these feature values, assuming they are produced canonically.

word at a time. However, similar processes occur at word boundaries as do word-
internally so that the same type of model could be used for multi-word sequences.

This example assumes a feature set with three features, and a separate DBN for
each word. The variables at time frame ¢ are as follows:

baseform; — The current baseform at time t. For ¢ = 1, its distribution is given
by the probability of each variant in the baseform dictionary; in subsequent
frames, its value is copied from the previous frame.

ind — index of feature j at time f. mo‘() = 0 Vj; in subsequent frames ind is
conditioned on ind_,, and phTr]_, (defined below).

phl — canonical phone corresponding to position ind of the current word and base-
form. Deterministic.

phTr! - binary variable indicating whether this is the last frame of the current
phone.

V% — underlying value of feature j. Has a (typically) sparse distribution given ph?.

S — surface value of feature j. p(S7|U7) encodes allowed feature substitutions.
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[ frame [1 2 T3 4 5 [ 6 7 [8 9 10 |
voi. index 1 1 2 3 3 3 3

voi. phone S S eh n n n n S s s

voicing (U) || off | off | on on on on on off |off | off
[ voicing (S) [[of Jof [on [on on on off [off |off |off

nas. index 1 1 2 3 3 3 3

nas. phone | s 8 eh n n n n s S S

nasality (U) || off [off |off | on on on on off | off | off
nasality (S) f[ off |[off |off |on on on off [off [off [off
t.b. index 1 1 2 2 2 3 3 4 4 4
t.b. phone S S eh eh eh n n s s S

t. body (U) | m/u | m/u | m/p | m/p | m/p | m/u | m/u { m/u [ m/u | m/u
[t body (S) [ m/u [ m/u|m/p[m/p [m/p [ m/p|m/p|m/um/ul m/u]
t.t. index 1 1 2 2 2 3 3 4 4 4
t.t. phone S S eh eh eh n n S s s

t. tip (U) cr/a | cr/a | m/a | m/a | m/a | cl/a | cl/fa | cr/a | cr/a | cr/a
['t. tip (S) cr/a]cr/a | m/a[m/a [m/a[m/a]m/a]cr/a]cr/a]cr/a
rasyncA:B o [0 [0 [1 [1 0 [1 [0 [0 0
| phone [s Js Jeh [ehn]ehn[ehn|[ehn|[s [s [s |

Table 3.8: Another possible set of frame-by-frame sequences for sense, resulting in
sense — [s eh-n s/ (using the convention that [eh_-n] refers to either a completely or
a partially nasalized vowel).

wdTr; — binary variable indicating whether this is the last frame of the word. De-
terministic and equal to one if all ind’ are at the maximum for the current
baseform and all phTr] = 1.

asynctA;B and checkSynctA;B are responsible for implementing the asynchrony con-
straints. async;"® is drawn from an (unconditional) distribution over the inte-
gers, while checkSync{‘ B checks that the degree of asynchrony between A and
B is in fact equal to asynctA;B. To enforce this constraint, checkSynctA;B is always
observed with value 1 and is given deterministically by its parents’ values, via
the distribution?

I
.

P(checkSync?;B =1 Iasyncf;B Jindf ,indtB)

1l

= rmmd( |mean (ind;4 ) —mean(indtB ) |) asyncf;B ,

or, equivalently,

checkSync® =1 < round (]mean (indf‘) — mean (z’ndf ) |) =async®  (3.3)

4We note that the asynchrony constraints could also be represented more concisely as undirected
edges among the corresponding ind variables. We represent them in this way to show how these
constraints can be implemented and their probabilities learned within the framework of DBNs.
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Figure 3-1: DBN implementing a feature-based pronunciation model with three fea-
tures and two asynchrony constraints. Edges without parents/children point from/to
variables in adjacent frames (see text).

Once we have expressed the model as a DBN, we can use standard DBN inference
algorithms to answer such questions as:

e Decoding: Given a set of surface feature value sequences, what is the most
likely word that generated them?

e Parameter learning: Given a database of words and corresponding surface
feature values, what are the best settings of the conditional probability tables
(CPT) in the DBN?

e Alignment: Given a word and a corresponding surface pronunciation, what
is the most likely way the surface pronunciation came about, i.e. what are the
most likely sequences of ind; and U;?

There are many interesting issues in inference and learning for DBNs. Perhaps the
most important is the choice of optimization criterion in parameter learning. These
are, however, general questions equally applicable to any probabilistic model one
might use for ASR, and are an active area of research both within ASR [McD00, DB03]
and in the graphical models area in general [GGS97, LMP01, GD04]. These questions
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are outside the scope of this thesis. For all experiments in this thesis, we will assume
a maximum-likelihood learning criterion and will use the Expectation-Maximization
algorithm [DLR77] for parameter learning. The observed variables during training
can be either the surface feature values, if a transcribed training set is available,
or the acoustic observations themselves (see Section 3.4). One issue that would be
particularly useful to pursue in the context of our model is that of learning aspects
of the DBN structure, such as the groupings of features for asynchrony constraints
and possible additional dependencies between features. This, too, is a topic for future
work.

3.4 Integrating with observations

The model as stated in the previous section makes no assumptions about the relation-
ship between the discrete surface feature values and the (generally continuous-valued)
acoustics, and therefore is not a complete recognizer. We now describe a number of
ways in which the DBN of Figure 3-1 can be combined with acoustic models of various
types to perform end-to-end recognition. Our goal is not to delve deeply into these
methods or endorse one over the others; we merely point out that there are a number
of choices available for using this pronunciation model in a complete recognizer.

We assume that the acoustic observations are frame-based as in most conventional
ASR systems; that is, they consist of a list of vector of acoustic measurements corre-
sponding to contiguous, typically equal-sized, segments of the speech signal. We do
not address the integration of this model into segment-based recognizers such as the
MIT SUMMIT system [Gla03], in which the acoustic observations are defined as a
graph, rather than a list, of vectors.

The integration method most closely related to traditional HMM-based ASR
would be to add a single additional variable corresponding to the acoustic obser-
vations (say, Mel-frequency cepstral coefficients (MFCCs)) in each frame, as a child
of the surface feature values, with a Gaussian mixture distribution conditioned on the
feature values. This is depicted in Figure 3-2. This is similar in spirit to the models
of [DRS97, RBD00], except that we factor the state into multiple streams for explicit
modeling of asynchrony and substitution. In addition, we allow for asynchrony be-
tween features throughout the course of a word, while [DRS97, RBD0O0| require that
features synchronize at the target value for each sub-word unit (phone or bi-phone).

It is likely that different features affect different aspects of the acoustic signal; for
example, features related to degrees of constriction may be closely associated with
the amplitude and degree of noise throughout the signal, whereas nasality may affect
mainly the lower frequencies. For this reason, it may be useful to extract different
acoustic measurements for different features, as in Figure 3-3.

Figure 3-3 also describes a related scenario in which separate classifiers are inde-
pendently trained for the various features, whose outputs are then converted (perhaps
heuristically) to scaled likelihoods, o p(obsi|s®), for use in a generative ASR system.
As mentioned in Chapter 1, this has been suggested as a promising approach for
feature-based ASR because of the more efficient use of training data and apparent
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Figure 3-2: One way of integrating the pronunciation model with acoustic observa-
tions.

robustness to noise [KFS00]. One of our goals is to provide a means to combine
the information from the feature classifier outputs in such a system without mak-
ing overly strong assumptions about the faithful production of baseform pronunci-
ations. Scaled likelihoods can be incorporated via the mechanism of soft or virtual
evidence [Pea88, Bil04]. In the language of DBNs, this can be represented by letting
each obs be a binary variable observed with constant value (say 1), and setting the
CPT of obs; to .

plobs; = 1s{) = Cp(obsi|s"), (3.4)

where C is any scaling constant. This is identical to the mechanism used in hybrid
hidden Markov model/artificial neural network (HMM/ANN) ASR systems [BM94],
in which a neural network is trained to classify phones, and its output is converted to
a scaled likelihood for use in an HMM-based recognizer. We give examples of systems
using such an approach in Chapters 5 and 6.
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Figure 3-3: One way of integrating the pronunciation model with acoustic observa-
tions.

Finally, we consider the case where we wish to use a set of feature classifiers or
feature-specific observations for a different set of features than is used in the pronun-
ciation model. We have not placed any constraints on the choice of feature set used
in our model, and in fact for various reasons we may wish to use features that are not
necessarily the most acoustically salient. On the other hand, for the feature-acoustics
interface, we may prefer a more acoustically salient feature set. As long as there is
a mapping from the feature set of the pronunciation model to that of the acoustic
model, we can construct such a system as shown in Figure 3-4. We give an example
of this type of system in Chapter 5.
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3.5 Relation to previous work

As mentioned previously, the idea of predicting the allowed realizations of a word by
modeling the evolution of feature streams (whether articulatory or more abstract) is
not new. Dynamic Bayesian networks and their use in ASR are also not new, although
the particular class of DBN we propose is. To our knowledge, however, this is the
first computationally implemented feature-based approach to pronunciation modeling
suitable for use in an ASR system. We now briefly describe the relation of this
approach to some of the previous work mentioned in Chapter 2.

3.5.1 Linguistics and speech science

The class of models presented in this chapter are inspired by, and share some charac-
teristics with, previous work in linguistics and speech science. Most closely related is
the articulatory phonology of Browman and Goldstein [BG92]: Our use of asynchrony
is analogous to their gestural overlap, and feature substitution is a generalization of
gestural reduction. Although substitutions can, in principle, include not only reduc-
tions but also increases in gesture magnitude, we will usually constrain substitutions
to those that correspond to reductions (see Chapter 4.

The current approach differs from work in linguistics and speech science in its aim:
Although we are motivated by an understanding of the human mechanisms of speech
production and perception, our immediate goal is the applicability of the approach to
the problem of automatic speech recognition. Our models, therefore, are not tuned
to match human perception in terms of such measures as types of errors made and
relative processing time for different utterances. We may also choose to omit certain
details of speech production when they are deemed not to produce a difference in
recognition performance.

Because of this difference in goals, the current work also differs from previous
linguistic and speech science proposals in that it must (a) provide a complete repre-
sentation of the lexicon, and (b) have a computational implementation. For example,
we draw heavily on ideas from articulatory phonology (AP) [BG92|. However, to our
knowledge, there has to date been no reasonably-sized lexicon represented in terms
of articulatory gestures in the literature on articulatory phonology, nor is there a
description of a mechanism for generating such a lexicon from existing lexica. We are
also not aware of a description of the set of articulatory gestures necessary for a com-
plete articulatory phonology, nor a computational implementation of AP allowing for
the recognition of words from their surface forms. For our purposes, we must generate
an explicit, complete feature set and lexicon, and a testable implementation of the
model. In some cases, we must make design choices for which there is little support
in the scientific literature, but which are necessary for a complete working model. A
particular feature set and phone-to-feature mapping that we have developed for use
in experiments are described in Chapter 4 and Appendix B. It is hoped that the
model, feature sets, and phone-to-feature mappings can be refined as additional data
and theoretical understandings become available.

There are also similarities between our approach and Fant’s microsegments model [Fan73],
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in which features may change values asynchronously and a new segment is defined
each time a feature changes value. Our vectors of surface feature values can be viewed
as microsegments. The key innovation is, again, the introduction of a framework for
performing computations and taking advantage of inter-feature independencies.

3.5.2 Automatic speech recognition

In the field of automatic speech recognition, a fair amount of research has been de-
voted to the classification of sub-phonetic features from the acoustic signal, or to
the modeling of the signal in terms of features; in other words, to the problem of
feature-based acoustic observation modeling. This has been done both in isolation,
as a problem in its own right (e.g., [WFKO04]), and as part of complete ASR sys-
tems [KFS00, Eid01, MWO02]. However, the problem of feature-based pronunciation
modeling has largely been ignored. In complete ASR systems using feature-based
acoustic models, the typical approach is to assume that the lexicon is represented
in terms of phonemes, and that features will evolve synchronously and take on the
canonical values corresponding to those phonemes.

A natural comparison is to the work of Deng and colleagues [DRS97], Richardson
and Bilmes [RBDO00], and Kirchhoff [Kir96]. In [DRS97] and [RBDO00], multiple fea-
ture streams are “compiled” into a single HMM with a much larger state space. This
results in data sparseness issues, as many states are seen very rarely in training data.
These approaches, therefore, do not take advantage of the (conditional) independence
properties between features. In addition, as previously mentioned, both [DRS97]
and [RBD00] assume that features synchronize at the target configuration for each
sub-word unit. This is quite a strong assumption, as common pronunciation phe-
nomena often involve asynchrony across a larger span. In [Kir96], on the other hand,
features are allowed to desynchronize arbitrarily within syllables, and must synchro-
nize at syllable boundaries. This approach takes greater advantage of the independent
nature of the features, but assumes that all degrees of asynchrony within a syllable
are equivalent. In addition, there are many circumstances in which features do not
synchronize at syllable boundaries.

3.5.3 Related computational models

Graphical model structures with multiple hidden streams have been used in vari-
ous settings. Ghahramani and Jordan introduced factorial HMMs and used speech
recognition as a sample application [GJ97]. Logan and Moreno [LM98] used factorial
HMMs for acoustic modeling. Nock and Young [NYO02] developed a general archi-
tecture for modeling multiple asynchronous state streams with coupled HMMs and
applied it to the fusion of multiple acoustic observation vectors. Factorial HMMs,
and related multistream HMM-type models, have received particularly widespread
application in the literature on multi-band HMMs [DFA03, ZDH*03], as well as in
audio-visual speech recognition [NLP*02, GSBB04]. Our approach is most similar to
coupled HMMSs; the main differences are the more explicit modeling of asynchrony
between streams and the addition of substitutions.
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3.6 Summary and discussion

This chapter has presented a general and flexible model of the evolution of multiple
feature streams for use in modeling pronunciation variation for ASR. Some points
bear repeating, and some bear further examination:

e The only processes generating pronunciation variants in our approach are inter-
feature asynchrony and per-feature substitution. In particular, we have not
included deletions or insertions of feature values. This is in keeping with articu-
latory phonology, the linguistic theory most closely related to our approach. It
would be straightforward to incorporate deletions and insertions into the model.
However, this would increase the complexity (i.e., the number of parameters)
in the model, and based on our experiments thus far (see Chapter 4), there is
no clear evidence that insertions or deletions are needed.

e Our approach does not assume a particular feature set, although certain feature
sets may be more or less suitable in such a model. In particular, the features
should obey the properties of conditional independence assumed by the DBN.
For example, our model would not be appropriate for binary feature systems
of the kind used by Stevens [Ste02] or Eide [Eid01]. Such feature sets are
characterized by a great deal of dependence between feature values; in many
cases, one feature value is given deterministically by other feature values. While
it may be worthwhile to add some feature dependencies into our model, the level
that would be required for this type of feature set suggests that they would be
better modeled in a different way.

e We do not require that the features used in the pronunciation model be used
in the acoustic observation model as well, as long as there is an information-
preserving mapping between the feature sets (see the discussion of Figure 3-4).
This is important in the context of previous work on feature classification, which
has typically concentrated on more acoustically-motivated features which may
not be the best choice for pronunciation modeling. We are therefore free to use
whatever feature sets best account for the pronunciation variation seen in data.

e We do not claim that all pronunciation variation is covered by the model. We
leave open the possibility that some phenomena may be related directly to the
underlying phoneme string, and may not be the result of asynchrony between
features or substitutions of individual feature values. For now we assume that
any such variation is represented in the baseform dictionary.

e So far, we have only dealt with words one at a time, and assumed that features
synchronize at word boundaries. We know that this assumption does not hold,
for example, in green beans — [griy m b iy n z|. This is a simplifying assumption
from a computational perspective, and one that should be re-examined in future
work.

In the following chapter, we implement a specific model using an articulatory
feature set and investigate its behavior on a corpus of manually transcribed data.
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Figure 3-4: One way of integrating the pronunciation model with acoustic observa-
tions, using different feature sets for pronunciation modeling (S*) and acoustic obser-
vation modeling (A’). In this example, A is a function of S' and A? is a function
of S', 8%, and S3. As this example shows, the two feature sets are not constrained to
have the same numbers of features.
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Chapter 4

Lexical Access Experiments Using
Manual Transcriptions

The previous chapter introduced the main ideas of feature-based pronunciation mod-
eling and the class of DBNs that we propose for implementing such models. In
order to use such a model, design decisions need to be made regarding the baseform
dictionary, feature set, and synchrony constraints. In this chapter, we present an im-
plemented model, propose a particular feature set, and study its behavior on a lexical
access task. We describe experiments performed to test the model in isolation. In
order to avoid confounding pronunciation modeling successes and failures with those
of the acoustic or language models, we test the model on an isolated-word recognition
task in which the surface feature values are given. This gives us an opportunity to
experiment with varying model settings in a controlled environment.

4.1 Feature sets

In Chapter 2 we discussed several types of sub-phonetic feature sets used in previous
research. There is no standard feature set used in feature-based ASR research of
which we are aware. The most common features used in research on feature-based
acoustic observation modeling or acoustics-to-feature classification are based on the
categories used in the International Phonetic Alphabet [Alb58] to distinguish phones.
Table 4.1 shows such a feature set. Nil values are used when a feature does not
apply; for example, front /back and height are used only for vowels (i.e., only when
manner = vowel), while place is used only for consonants. The value sil is typically
included for use in silence portions of the signal (a category that does not appear
in the IPA). The state space of this feature set-the total number of combinations of
feature values-is 7560 (although note that many combinations are disallowed, since
some feature values preclude others).

Our first instinct might be to use this type of feature set in our model, so as to
ensure a good match with work in acoustic observation modeling. Using this feature
set with our model, it is easy to account for such effects as vowel nasalization, as
in don’t — [d ow.n n t}], and devoicing, as in from — [f r_vl ah m]|, by allowing for
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| feature [ values

front/back (F) || nil, front, back, mid, sil

height (H) nil, high, mid, low, sil

manner (M) vowel, stop release, stop, fricative, approximant, lateral, nasal, sil
nasalization (N) (| non-nasal, nasal, sil

place (P) nil, labial/labiodental, dental/alveolar, post-alveolar, velar, glottal, sil
rounding (R) non-round, round, nil

voicing (V) voiced, voiceless, sil

Table 4.1: A feature set based on IPA categories.

asynchronous onset of nasality or voicing with respect to other features. However, for
many types of pronunciation variation, this feature set seems ill-suited to the task.
We now re-examine a few examples that demonstrate this point.

One type of effect that does not seem to have a good explanation in terms of
asynchrony and substitutions of IPA-style features is stop insertion, as in sense —
[s eh n t s]. Part of the explanation would be that the place feature lags behind
voicing and nasalization, resulting in a segment with the place of an [n] but the
voicing/nasality of an [s]. However, in order to account for the manner of the [t], we
would need to assume that either (i) part of the /n/ has had its manner substituted
from a nasal to a stop, or (ii) part of the /s/ has had its manner substituted from a
fricative to a stop. Alternatively, we could explicitly allow insertions in the model. In
contrast, we saw in Chapter 1 that such examples can be handled using asynchrony
alone.

Another type of effect is the reduction of consonants to glides or vowel-like sounds.
For example, a /b/ with an incomplete closure may surface as an apparent [w]. In-
tuitively, however, there is only one dimension of change, the reduction of the con-
striction at the lips. In terms of IPA-based features, however, this would involve a
large number of substitutions: The manner would change from stop to approzimant,
but in addition, the features front/back and height would change from nil to the
appropriate values.

Motivated by such examples, we propose a feature set based on the vocal tract
variables of Browman and Goldstein’s articulatory phonology (AP) [BG92]. We have
informally used this type of features in examples in Chapters 1 and 3. We formalize
the feature set in Table 4.2. These features refer to the locations and degrees of
constriction of the major articulators in the vocal tract, discussed in Chapter 2 and
shown in Figure 4-1. The meanings of the feature values are given in Table B.1 of
Appendix B, and the mapping from phones to features in Table B.2. The state space
of this feature set consists of 41,472 combinations of feature values.

This feature set was developed with articulatory phonology as a starting point.
However, since neither the entire feature space nor a complete mapping from a phone
set to feature values are available in the literature, we have filled in gaps as necessary,
using the guideline that the number of feature values should be kept as low as possible,
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Figure 4-1: A midsagittal section showing the major articulators of the vocal tract,
reproduced from Chapter 2.

while differentiating between as many phones as possible. In constructing phone-to-
feature mappings, we have consulted the articulatory phonology literature (in par-
ticular, [BG86, BG89, BG90a, BG90b, BG92]), phonetics literature ([Lad01, Ste98]),
and X-ray tracings of speech articulation [Per69].

4.2 Models

4.2.1 Articulatory phonology-based models

Figure 4-2 shows the structure of the articulatory phonology-based model used in
our experiments. The structure of synchrony constraints is based on linguistic con-
siderations. First, we make the assumption that the pairs TT-LOC, TT-OPEN;
TB-LOC, TB-OPEN; and VELUM, GLOTTIS are always synchronized; for this
reason we use single variables for the tongue tip index ind!”, tongue body index
ind'B, and glottis/velum index ind®Y. We base this decision on the lack of evidence
of which we are aware for pronunciation variation that can be explained by asyn-
chrony among these pairs. We impose a soft synchrony constraint on TT and TB,
implemented using asynctTT;TB . Another constraint is placed on the lips vs. tongue,
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feature values |
LIP-LOC (LL) protruded, labial, dental

LIP-OPEN (LO) | closed, critical, narrow, wide

TT-LOC (TTL) inter-dental, alveolar, palato-alveolar, retroflex
TT-OPEN (TTO) | closed, critical, narrow, mid-narrow, mid, wide
TB-LOC (TBL) palatal, velar, uvular, pharyngeal

TB-OPEN (TBO) || closed, critical, narrow, mid-narrow, mid, wide
VELUM (V) closed, open

GLOTTIS (G) closed, critical, wide

Table 4.2: A feature set based on the vocal tract variables of articulatory phonology.

using asynctLO;TT’TB . Asynchrony between these features is intended to account for
such effects as vowel rounding before a labial consonant. We are not using LIP-
LOC in these experiments. This helps to reduce computational requirements, and
should not have a large impact on performance since there are very few words in
our vocabulary distinguished solely by LIP-LOC; this reduces the number of feature
value combinations to 13,824. The last soft synchrony constraint is between the lips
and tongue on the one hand and the glottis and velum on the other, controlled by
asynclOTTTBY:G - Agynchrony between these two sets of features is intended to allow
for effects such as vowel nasalization, stop insertion in a nasal context, and some nasal
deletions. The checkSync variables are therefore given as follows (refer to Eq. 3.3):

checkSyncI T'TB=1 <= |indTT —indT B|=asyncl 7T B

indd L 44 iI'B
cnec y"),ct vq]e —1 <=:> TOU nd(h ltlo mn +21n |) 5 H )

inglLO . JTT . TB . V., . .G
.V, ind d +ind d; +ind %
CheckS’yncf’o’TT’TB" 'GZI s round(| ndy +1n3t indy 7 indy zzn ¢ l) =async{40,TT,TB,V,G

Figure 4-2: An articulatory phonology-based model.
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4.2.2 Phone-based baselines

A phone-based model can be considered a special case of a feature-based one, where
the features are constrained to be completely synchronized and no substitutions are
allowed.! We consider two baselines, one using the same baseform dictionary as the
feature-based models and one using a much larger set of baseforms, generated by
applying to the baseforms a phonological rule set developed for the MIT SUMMIT
recognition system [HHSLO5].

4.3 Data

The data sets for these experiments are drawn from the Switchboard corpus of conver-
sational speech [GHM92]. This corpus consists of 5-10 minute telephone conversations
between randomly matched pairs of adult speakers of American English of various
geographic origins within the United States. Each conversation revolves around an
assigned topic, such as television shows or professional dress codes.

A small portion of this database was manually transcribed at a detailed pho-
netic level at the International Computer Science Institute, UC Berkeley [GHE96].
This portion consists of 72 minutes of speech, including 1741 utterances (sentences
or phrases) spoken by 370 speakers drawn from 618 conversations.? The speakers
are fairly balanced across age group and dialect region. The transcriptions were
done using a version of the ARPABET phonetic alphabet [Sho80], modified to in-
clude diacritics indicating nasalization, frication (of a normally un-fricated segment),
creaky voice, and several other phenomena. Appendix A describes the label set more
fully. Greenberg et al. report an inter-transcriber agreement rate between 72% and
80% [Gre99], and Saraglar reports the rate at 75.3% after mapping the labels to a
smaller standard phone set [Sar00]. We acknowledge this disadvantage of using these
transcriptions as ground truth but nevertheless find them useful as a source of in-
formation on the types of variation seen in real speech. The examples in Chapter 1
were drawn from these transcriptions, which we will henceforth refer to as the ICSI
transcriptions.

For the experiments in this chapter, we use a 3328-word vocabulary, consisting of
the 3500 most likely words in the “Switchboard I” training set [GHM92], excluding
partial words, non-speech, and words for which we did not have baseform pronun-
ciations. This is much smaller than the full Switchboard vocabulary (of roughly
20,000-30,000 words), but facilitates quick experimentation. All of our experiments
have been done on the “train-ws96-i” subset of the ICSI transcriptions. We use the
transcribed words in subsets 24-49 as training data; subset 20 as a held-out develop-

IThere are two slight differences between this and a conventional phone-based model: (i) The
multiple transition variables mean that we are counting the same transition probability multiple
times, and (ii) when the U} are not deterministic, there can be some added variability on a frame-by-
frame basis. Our phone-to-feature mapping (see Table B.2 in Appendix B) is mostly deterministic.
In any case, as the results will show, these details make little difference to the baseline performance.

2About three additional hours of speech were also phonetically transcribed and manually aligned
at the syllable level, but the phonetic alignments were done by machine.
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ment set; and subsets 21-22 as a final test set. The development set is used for tuning
aspects of the model, whereas the test set is never looked at (neither the transcrip-
tions nor the correct words). In addition, we manually corrected several errors in the
development set transcriptions due to misalignments with the word transcriptions.
For all three sets, we exclude partial words, words whose transcriptions contain non-
speech noise, and words whose baseforms are four phones or shorter (where stops,
affricates, and diphthongs are considered two phones each).® The length restriction is
intended to exclude words that are so short that most of their pronunciation variation
is caused by neighboring words. The resulting training set contains 2942 words, the
development set contains 165, and the test set contains 236.

We prepared the data as follows. Each utterance comes with time-aligned word
and phone transcriptions. For each transcribed word, we extracted the portion of
the phonetic transcription corresponding to it by aligning the word and phone time
stamps. The marked word boundaries sometimes fall between phone boundaries. In
such cases, we considered a phone to be part of a word’s transcription if at least 10ms
of the phone is within the word boundaries. In addition, we collapsed the phone
labels down to a simpler phone set, eliminating diacritics other than nasalization.*
Finally, we split stops, affricates, and diphthongs into two segments each, assigning
2/3 of the original segment’s duration to the first segment and the latter 1/3 to the
second.

4.4 Experiments

The setup for the lexical access experiments is shown in Figure 4-3. The question
being addressed is: Supposing we had knowledge of the true sequences of surface
feature values SiVi, ¢ for a word, how well could we guess the identity of the word?
In this case, the “true” surface feature values are derived from the ICSI phonetic
transcriptions, by assuming a deterministic mapping from surface phones to surface
features values. ® Recognition then consists of introducing these surface feature
values as observations of S = SiVi,t in the DBN for each word, and computing the
posterior probability of the word,

p(wd;|S),1 <j <V, (4.1)

where V' is the vocabulary size. Figure 4-3 shows the few most likely words hypothe-
sized for cents transcribed as s ah_n n t s, along with their log probabilities, in rank
order. The recognized word is the one that maximizes this posterior probability, in

3This means that, of the four example words considered in Chapter 1, sense is excluded while
the remaining three are included.

4This was done for two reasons: First, we felt that there was somewhat less consistency in the
labeling of some of the more unusual phones; and second, this allows us to use the same transcriptions
in testing the baseline and proposed systems. In the future, we would like to return to this point
and attempt to take better advantage of the details in the transcriptions.

5This mapping is similar, but not identical, to the one used for p(U}|phi) in the DBN; it is
deterministic and contains some extra phones found in the transcriptions but not in the baseforms.
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this case cents. In general, depending on the model, many of the words in the vocab-
ulary may have zero posterior probability for a given S, i.e. the model considers S to
not be an allowed realization of those words.

Maximum likelihood parameter learning is done using the EM algorithm, given
the training set of observed word/S pairs. All DBN inference and parameter learning
is done using the Graphical Models Toolkit (GMTK) [BZ02, GMT]. For these exper-
iments, we use exact inference; this is feasible as long as the probability tables in the
DBN are sparse (as we assume them to be), and it avoids the question of whether
differences in performance are caused by the models themselves or by approximations
in the inference.

We will mainly report two measures of performance. The coverage measures how
well a model predicts the allowable realizations of a word; it is measured as the
proportion of a test set for which a model gives non-zero probability to the correct
word. The accuracy is simply the classification rate on a given test set. We say
that a given surface pronunciation is covered by a model if the model gives non-zero
probability to that pronunciation for the correct word. The coverage of a model on a
given set is an upper bound on the accuracy: A word cannot be recognized correctly
if the observed feature values are not an allowed realization of the word. Arbitrarily
high coverage can trivially be obtained by giving some positive probability to all
possible S for every word. However, this is expected to come at a cost of reduced
accuracy due to the added confusability between words.

For a more detailed look, it is also informative to consider the ranks and probabili-
ties themselves. The correct word may not be top-ranked because of true confusability
with other words; it is then instructive to compare different systems as to their rel-
ative rankings of the correct word. In a real-world recognition scenario, confusable
words may be disambiguated based on the linguistic and phonetic context (in the
case of connected speech recognition). The role of the pronunciation model is to give
as good an estimate as possible of the goodness of fit of each word to the observed
signal.

As the first two lines of Table 4.3 show, this task is not trivial: The baseforms-only
model (line (1)), which has on average 1.7 pronunciations per word, has a coverage
of only 49.7% on the development set and 40.7% on the test set. All of the words
that are covered by the baseline model are recognized correctly; that is, the coverage
and accuracy are identical. This is not surprising: The canonical pronunciations of
words rarely appear in this database. A somewhat more surprising result is that
expanding the baseforms with a large bank of phonological rules, giving a dictionary
with up to 96 pronunciations per word (3.6 on average), increases the coverage to only
52.1%/44.5% (line (2)). The phonological rules improve both coverage and accuracy,
but they do not capture many of the types of variation seen in this conversational
data set.

We next ask how much we could improve performance by tailoring the dictionary
to the task. If we create a dictionary combining the baseline dictionary with all
pronunciations in the training set (subsets 24-29 of the transcriptions), we obtain the
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sssahnahnahnnnnttsss

GLOTTIS Op Op Op Cr Cr Cr CrI ...
VELUM cl ¢l cl opopopop...
TT-LOC al al al pa papaal..
TT-OPEN crcr cr wi wiwicl...

1 | cents -143.24
2 | sent -159.95
3 | tents -186.18
4 | saint -197.46

Figure 4-3: Ezperimental setup.

much-improved performance shown in line (3) of Table 4.3%. If we could include the
pronunciations in the test set (line (4)), we would obtain almost perfect coverage’
and accuracy of 89.7%/83.9%. This is a “cheating” experiment in that we do not in
general have access to the pronunciations in the test set.

We next trained and tested an AP feature-based model, with the following hard
constraints on asynchrony:

5The baseline and training dictionaries were combined, rather than using the training pronunci-
ations alone, to account for test words that do not appear in the training data.

"On the development set, one token (namely, number pronounced [n ah_n m b er]) is not covered,
although the phonetic pronunciation does (by definition) appear in the dictionary. This is because
the duration of the transcribed [b] segment, after chunking into frames, is only one frame. Since the
dictionary requires both a closure and a burst for stops, each of which must be at least one frame
long, this transcription cannot be aligned with the dictionary. This could be solved by making the
dictionary sensitive to duration information, including both a closure and a burst only when a stop
is sufficiently long.
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dev set test set
model coverage | accuracy || coverage [ accuracy
(1) baseforms only 49.7 49.7 40.7 40.7
(2) 4+ phonological rules 52.1 52.1 44.5 43.6
(3) all training pronunciations 72.7 64.8 66.1 53.8
(4) + test pronunciations 99.4 89.7 100.0 83.9
(“cheating dictionary”)
(5) AP feat-based, init 1 83.0 73.3 75.4 60.6
(knowledge-based)
(6) + EM 83.0 73.0 754 61.0
(7) AP feat-based, init 2 83.0 27.9 75.4 23.7
(“sparse flat”)
(8) + EM 83.0 73.9 754 614
(9) async only 49.7 49.1 42.4 41.5
(10) subs only 758 67.3 69.9 57.2
(11) IPA feat-based 63.0 56.4 56.8 49.2
(12) + EM 62.4 57.6 55.9 50.0

Table 4.3: Results of Switchboard ranking experiment. Coverage and accuracy are

percentages.

1. All four tongue features are completely synchronized,

async; T8 =0 (4.2)

2. The lips can desynchronize from the tongue by up to one index value,

plasynct® T8 > 1) =0 (4.3)

This is intended to account for effects such as vowel rounding in the context
of a labial consonant. We ignore for now longer-distance lip-tongue asynchrony
effects, such as the rounding of [s] in strawberry.

. The glottis/velum index must be within 2 of the mean index of the tongue and
lips,
pasyncr@TITBCY 5 9) =0 (4.4)

This accounts for the typically longer-distance effects of nasalization, as in trying

— [t r ayn n].

In addition, we set many of the substitution probabilities to zero, based on the as-
sumption that location features will not stray too far from their intended values, and
that constriction degrees may be reduced from more constricted to less constricted
but generally not vice versa. These synchrony and substitution constraints are based
on both articulatory considerations and trial-and-error testing on the development

set.
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In order to get a sense of whether the model is behaving reasonably, we can
look at the most likely settings for the hidden variables given a word and its surface
realization S, which we refer to as an alignment. This is the multi-stream analogue of
a phonetic alignment, and is the model’s best guess for how the surface pronunciation
“came about”. Figures 4-4 and 4-5 show spectrograms and the most likely sequences
of a subset of the DBN variables for two example words from the development set,
everybody — [eh r uw ay] and instruments — [ih_n s tcl ch em ihn n s], computed
using the model described above.? Multiple frames with identical variable values have
been merged for ease of viewing.

Considering first the analysis of everybody, it suggests that (i) the deletion of the
[v] is caused by the substitution critical — wide in the LIP-OPEN feature, and
(ii) the [uw] comes about through a combination of asynchrony and substitution: The
lips begin to form the closure for the [b] while the tongue is still in position for the
liy], and the lips do not fully close but reach only a narrow constriction. Lacking
access to the speaker’s intentions, we cannot be sure of the correct analysis; however,
this analysis seems like a reasonable one given the phonetic transcription.

Turning to the example of instruments, the apparent deletion of the first [n] and
nasalization of both [ih]s is, as expected from the discussion in Chapter 1, explained
by asynchrony between the velum and other features. The replacement of /t r/ with
[ch] is described as a substitution of a palato-alveolar TT-LOC for the underlying
alveolar and retroflex values.

In setting initial parameter values for EM training, we assumed that values closer
to canonical-lower values of the async variables and values of S} similar to Uj-are
preferable, and set the initial parameters accordingly. We refer to this initialization
as the “knowledge-based” initialization. Tables 4.4-4.6 show some of the conditional
probability tables (CPTs) used for initializing EM training, and Tables 4.7-4.9 show
the learned CPTs for the same variables. We note that some of the training examples
necessarily received zero probability (due to the zeros in the CPTs) and therefore
were not used in training. Of the 2942 training words, 688 received zero probability.

r Jrclosedlcriticaﬂ narrow [ wide |
closed | 0.95 0.04 0.01 0
critical || O 0.95 0.04 0.01
narrow | 0 0 0.95 0.05
wide 0 0 0 1

Table 4.4: Initial CPT for LIP-OPEN substitutions, p(S*C|UC). SO values cor-
respond to columns, U*C values to rows.

8In looking at the spectrograms, we might argue that these are not the best phonetic transcrip-
tions for these examples: The [uw] in everybody might be more [w]-like, and the [ch] of instruments
might be labeled as a retroflexed [t] in a finer-grained transcription. However, we still have intuitions
about what constitutes a good analysis of these transcriptions, so that it is instructive to consider
the analyses produced by the model.
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ph. trans.
" ind LIP-OPEN

U LIP-OPEN

S LIP-OPEN

|nd TT-LOC
U TT-LOC

S TT-LOC

Figure 4-4: Spectrogram, phonetic transcription, and partial alignment, including the
variables corresponding to LIP-OPEN and TT-LOC, for the example everybody
— [eh r uw ay/. Indices are relative to the underlying pronunciation /eh v r iy bel b
ah dx 1y/. Adjacent frames with identical variable values have been merged for easier
viewing. Abbreviations used are: WI = wide; NA = narrow; CR = critical; CL =
closed; ALV = alveolar; P-A = palato-alveolar; RET = retroflex.

Lines (5) and (6) of Table 4.3 show the coverage and accuracy of this model using
both the initial and the trained parameters. We first note that coverage greatly in-
creases relative to the baseline models as expected, since we are allowing vastly more
pronunciations per word. As we previously noted, however, increased coverage comes
with the danger of increased confusability and therefore lower accuracy. Encourag-
ingly, the accuracy also increases relative to the baseline models. Furthermore, all
of the development set words correctly recognized by the baseforms-only baseline are
also correctly recognized by the feature-based model. Compared to the baseforms +
rules model, however, two words are no longer correctly recognized: twenty — [t w
eh n iy] and favorite — [f ey v er t]. These examples point out shortcomings of our
current model and feature set; we will return to them in Section 4.5.

It is interesting to note that the accuracy does not change appreciably after train-
ing; the difference in accuracy is not significant according to McNemar’s test [Die98].
(Note that coverage cannot increase as a result of training, since it is determined
entirely by the locations of zeros in the CPTs.) This might make us wonder whether
the magnitudes of the probabilities in the CPTs make any difference; perhaps it is the
case that for this task, it is possible to capture the transcribed pronunciations simply
by adding some “pronunciation noise” to each word, without increasing confusability.
In other words, perhaps the only factor of importance is the locations of zeros in the
CPTs (i.e. what is possible vs. impossible). To test this hypothesis, we tested the
model with a different set of initial CPTs, this time having the same zero/non-zero
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Y . o = Tl W
I!l n s l[v Iii g n P n
oP cL op
oP cL oP
ih n s tel llrg m I ax l n H_- s
ALV REf ALV
ALV Tra] aLv

Figure 4-5: Spectrogram, phonetic transcription, and partial alignment, including the
variables corresponding to VELUM and TT-LOC, for the example instruments —
[ih-n s tcl ch em ih-n n s/.

[ interdental | alveolar ] palato-alveolar | retroflex |
interdental 0.95 0.05 0 0
alveolar 0.025 0.95 0.025 0
palato-alveolar || 0 0.05 0.95 0
retroflex 0 0.01 0.04 0.95

Table 4.5: Initial CPT for TT-LOC substitutions, p(STTL|UTTL). STTL yalues cor-
respond to columns, UTTL values to rows.

structure as the knowledge-based initialization, but with uniform probabilities over
the non-zero values. We refer to this as the “sparse flat” initialization. In addition, to
test the sensitivity of the parameter learning to initial conditions, we also re-trained
the model using this new initialization. The results are shown in lines (7) and (8) of
Table 4.3.

The coverage is again trivially the same as before. The accuracies, however,
are quite poor when using the initial model, indicating that the magnitudes of the
probabilities are indeed important. After training, the performance is the same as or
better than when using the knowledge-based initialization, indicating that we need
not be as careful with the initialization.

The coverage and accuracy do not give the full picture, however. In an end-to-end
recognizer, the model’s scores would be combined with the language and observation
model scores. Therefore, it is important that, if the correct word is not top-ranked,
its rank is as high as possible, and that the correct word scores as well as possible
relative to competing words. Figure 4-6 shows the empirical cumulative distribution
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[ async degree 0 1 2 |3+

TT, B 1 [0 [0 JoO
LO;TT,TB 0.67]033[0 |0
LO,TT,TB;G,V || 06 |03 |0.1[0

Table 4.6: Initial CPTs for the asynchrony variables.

closed | critical narrow wide ]
closed ][ 0.999 [8.2 x10~4[2.7 x107%4 0
critical || 0 0.77 0 2.3 x1071
narrow || 0 0 0.98 1.9 x10~%
wide 0 0 0 1

Table 4.7: Learned CPT for LIP-OPEN substitutions, p(S*C|UC). SO walues
correspond to columns, ULC values to rows.

functions of the correct word’s rank for the test set, using the frame-based model
with both initializations, before and after training. Figure 4-7 shows the cumulative
distributions of the score margin-the difference in log probability between the correct
word and its highest-scoring competitor—in the same conditions. The score margin
is positive when a word is correctly recognized and negative otherwise. Since the
correct word’s score should be as far as possible from its competitors, we would like
this curve to be as flat as possible. These plots show that, although the accuracy
does not change after training when using the knowledge-based initialization, the
ranks and score margins do improve. The difference in both the rank distributions
and score margin distributions is statistically significant on the test set (according
to a paired t-test [Die98]). On the development set, however, only the score margin
differences are significant.

Next, we ask what the separate effects of asynchrony and substitutions are. Lines
(9) and (10) of Table 4.3 show the results of using only substitutions (setting the
asynchrony probabilities to zero) and only asynchrony (setting the off-diagonal values
in the substitution CPTs to zero). In both cases, the results correspond to the models
after EM training using the knowledge-based initialization, except for the additional
zero probabilities. The asynchrony-only results are identical to the phone baseline,
while the substitution-only performance is much better. This indicates that virtually
all non-baseform productions in this set include some substitutions, or else that more
asynchrony is needed. Anecdotally, looking at examples in the development set,
we believe the former to be the case: Most examples contain some small amount
of substitution, such as /ah/ — [ax]. However, asynchrony is certainly needed, as
evidenced by the improvement from the substitution-only case to the asynchrony +
substitution case; the improvement in accuracy is significant according to McNemar’s
test (p = .003/.008 for the dev/test set). Looking more closely at the performance
on the development set, many of the tokens on which the synchronous models failed
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interdental | alveolar palato-alveolar | retroflex
interdental 0.98 2.1 x107%2]0 0
alveolar 9.7 x10~* | 0.99 1.1 x10~2 0
palato-alveolar || 0 1.5 x1072 ] 0.98 0
retroflex 0 1.1 x1072 [ 4.0 x10~° 0.99
Table 4.8: Learned CPT for TT-LOC substitutions, p(STT|UTTL). STTL yalues

UTTL

correspond to columns, values to Tows.

[ async degree 0 1 2 13+ ]
TT,TB 1 0 0 0
LO;TT,TB 0.996 [ 4.0 x10~°> [ 0 0
LO,TT,TB;G,V [ 0.985 [ 1.5 x107% [ 5.3 x10~° [ 0

Table 4.9: Learned CPTs for the asynchrony variables.

but the asynchronous models succeeded were in fact the kinds of pronunciations that
we expect to arise from feature asynchrony, such as nasals replaced by nasalization
on a preceding vowel.

Finally, we may wonder how a model using IPA-style features would fare on this
task. We implemented an IPA-based model with synchrony constraints chosen so as to
mirror those of the AP-based model to the extent possible. For example, voicing and
nasality share an index variable, analogously to GLOTTIS and VELUM in the
AP-based model, and the front /back-height soft synchrony constraint is analogous
to the one on TT-TB. The remaining synchrony constraints are on the pairs height—
place, place-mann, mann-round, and round-voi/nas. We imposed the following
hard constraints on asynchrony, also chosen to match as much as possible those of
the AP-based model:

plasynct

H:P
p(async

p(async;

plasync™®

p(asyncf '

o O O O O

V.N

Lines (11) and (12) of Table 4.3 show the performance of this model in terms of
coverage and accuracy, before and after training. Both measures are intermediate to
those of the baseline and AP-based models. This might be expected considering our
argument that IPA features can capture some but not all pronunciation phenomena in
which we are interested. In addition, the IPA model committed eight errors on words
correctly recognized by the baseforms-only model. However, we note that this model
was not tuned as carefully as the AP-based one, and requires further experimentation
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Figure 4-6: Empirical cumulative distribution functions of the correct word’s rank,
before and after training.

before firm conclusions can be drawn.

4.5 Discussion

We look to problematic examples to guide us toward future improvements. We have
noted that the feature-based model failed to recognize the examples favorite — [fey v
er t] and twenty — [t w eh n iy]. In the first example, our current model does not allow
the transformation /ax r ih/ — [er]. In order to properly model this, we may need
to either consider retroflexion as a separate feature capable of desynchronizing from
others, or else allow for context-dependent substitutions of tongue feature values.

In the second example, this is because although the model allows stops to be
nasalized, it still expects them to have a burst; however, when a stop is nasalized,
there is no longer enough pressure built up behind the constriction to cause a burst
when the constriction is released. This may indicate a general problem with our
modeling of stops. One possible modification would be to consider a stop to be
a closure only, with the burst occurring as a function of surrounding context. We
note that this is an example for which allowing deletions might seem to be a natural
solution. However, since the underlying phenomenon is not one of deletion but rather
an acoustic consequence of asynchrony, we prefer to improve our modeling of stops
to account for this.

We can gain insight not only from misrecognized words, but also from words whose
ranks are inappropriate. For example, in Figure 4-5 we analyzed the realization
of instruments as [ih.n s tcl ch em ih.n n s|. While this example was correctly
recognized, we may be surprised that the second-ranked word for this transcription
was investment. Figure 4-8 shows part of the model’s analysis of this “realization” of
investment. The most disturbing aspect is the realization of the underlying critical
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Figure 4-7: Empirical cumulative distribution functions of the score margin, before
and after training.

lip closure for /v/ as a wide lip opening. We cannot disallow such a substitution in
principle, as it is needed to explain such pronunciations as probably — [p r aa 1 iy].
However, this is again a case of context-dependence: While a labial consonant can
greatly reduce in an unstressed syllable, it is much less likely to do so in a stressed
syllable as in investment. As long as the model does not account for the context-
dependency of substitutions, such anomalous pronunciations are assigned unnaturally

high probability.

These types of examples indicate that adding context-dependency to our model
of substitutions is an important next step. We hypothesize that, in the constrained
setting of lexical access experiments using manual transcriptions, recognition perfor-
mance is not significantly impaired by the “over-permissiveness” of the substitution
modeling because most of the more aberrant pronunciations are not seen in the data.
In end-to-end recognition experiments, however, we are not given the surface form
but must instead rely on noisy observation models, and therefore expect that context-
independent substitution modeling is inadequate. For this reason, when we turn to
end-to-end recognition in Chapters 5 and 6, we allow asynchrony but, for the most
part, disallow substitutions.

There are more general issues to be considered as well. There is a large space
of synchrony structures and parameter initializations to be explored. Linguistic con-
siderations have biased us toward the ones we have chosen. However, our linguistic
knowledge is incomplete, so that it may be helpful to learn the synchrony constraints

from data.
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Figure 4-8: Spectrogram, phonetic transcription, and partial alignment, including the
variables corresponding to LIP-OPEN and TT-LOC, for investment — [ih_n s tcl
ch em th-n n s/. Indices are relative to the underlying pronunciation /ih n's tcl t r
ax m ax n tcl t s/.

4.6 Summary

In this chapter we have investigated the performance of a particular feature-based
pronunciation model. We have developed a feature set and phone-to-feature mappings
based on the vocal tract variables of articulatory phonology, and have argued that
this is a more natural fit to a feature-based pronunciation model than the IPA-style
features that prevail in acoustic observation modeling work. As noted in Chapter 3,
the use of one feature set in the pronunciation model does not preclude the use of a
different one in the observation model. In Chapter 5, we will describe such a system.
In fact, since these experiments were based on phonetic transcriptions, they suggest
that we may see a benefit from a feature-based pronunciation model even when using
conventional phone-based observation models. We believe, however, that this would
be a handicap, as much detail is lost in the phone-based representation.
The main results from this chapter’s experiments are that

1. A phone-based model, even when augmented with a large set of phonological
rules, fails to allow for most of the variation seen in a set of manual phonetic
transcriptions of conversational speech.

2. The proposed feature-based model has greatly increased coverage, while also
recognizing words with higher accuracy. This is not simply due to the addition
of “pronunciation noise” in combination with a constrained task: When we
change the non-zero probabilities in the model to uniform values, accuracy
drops far below the baseline level.
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3. When learning the parameters of the feature-based model using EM, the same
coverage and accuracy are obtained for both a careful knowledge-based param-
eter initialization and one in which only the structure of zero/non-zero CPT
elements is determined in a knowledge-based way, while the non-zero probabil-
ities are uniform.

4. For this data set, a model with asynchrony alone does not outperform the base-
line; one with substitutions alone performs much better; and the combination of
both significantly outperforms the substitution-only case. We hypothesize that
this is because there are very frequent minor deviations from baseform phones
in the transcriptions, such as [ah] — [ax].

82



83



84



Chapter 5

Integration with the speech signal:
Acoustic speech recognition
experiments

As described in Chapter 3, there is a number of options for combining feature-based
pronunciation models with observation models:

1. Analogously to HMM-based recognition, using Gaussian mixture models over
acoustic observations, conditioned on the current vector of surface feature val-
ues.

2. Using feature-specific observations obs:, and factoring

N
p(obs;, ..., 0bsy |sq,. .., st) =[] p(obsisi) (5.1)

i=1

3. Using feature classifiers, with probabilistic outputs used as soft evidence in the
DBN.

In the latter two cases, there is also the option of using a feature set for observation
modeling that differs from the lexical features, as long as there is a mapping from the
lexical features to the acoustic ones.

Comparison of these approaches is outside the scope of this thesis. However,
we have built several systems to demonstrate the use of feature-based pronunciation
models using different observation modeling strategies. In this chapter, we describe
two systems applied to different tasks, one using Gaussian mixture-based observation
models and one using distinctive features classified at various (non-uniformly spaced)
points in the signal. For all experiments, the Graphical Models Toolkit [BZ02, GMT)
was used for DBN training and testing.
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| set || # utterances [ # one-word utterances | # non-silence words [ length (hours) |
train (A-C) | 8352 4506 16360 4.25
dev (D) 3063 1707 5990 1.58
test (E) 3204 1730 6294 1.65

Table 5.1: Sizes of sets used for SVitchboard experiments.

5.1 Small-vocabulary conversational speech recog-
nition with Gaussian mixture observation mod-
els!

We first describe an experiment using a simple Gaussian mixture-based end-to-end
recognizer for a small-vocabulary conversational domain. The goal of this experiment
is simply to determine how an end-to-end system using a feature-based pronunciation
model would compare with a conventional HMM-based recognizer using the same
type of observation model and acoustic observation vectors. Although we believe
that feature-based systems will benefit from feature-specific acoustic measurements,
it is reasonable to ask how they would fare without them.

5.1.1 Data

The data set for these experiments is a portion of the beta version of SVitchboard, a
Small Vocabulary subset of Switchboard [KBB05].2 SVitchboard consists of several
“tasks”, corresponding to different subsets of Switchboard with different vocabulary
sizes, ranging from 10 to 500 words (plus a silence word). Starting with a vocab-
ulary of the five most frequent words in Switchboard, new words are added to the
vocabulary one at a time, such that each new word maximizes the size of the result-
ing data set containing only the current vocabulary. We use the 100-word task from
the SVitchboard beta version, as a compromise between computation and variety of
words. Most of the words are common function words (I, and, the, you, and so on),
but some are longer content words (ezactly, interesting, wonderful). In addition, more
than half of the utterances consist of only one word.

Each SVitchboard task is subdivided into five sets, A-E, corresponding to disjoint
sets of speakers. We use sets A—C for training, D as a held-out development set, and
E for final testing. Table 5.1 gives some descriptive statistics for these sets.

I This section describes work done in collaboration with Jeff Bilmes. We gratefully acknowledge
the assistance of Chris Bartels and Simon King.

2[KBBO05] describes the released version of SVitchboard, rather than the beta version. The
experiments in this section were done before the official release of SVitchboard, so the data sets are
slightly different from the published description.

86



5.1.2 Model

To minimize computation, we used a simplified version of the model presented in
Section 4.2.1, shown in Figure 5-1. We allowed asynchrony but no substitutions, and
assumed that the following sets of features are always completely synchronous:

1. LIP-LOC, LIP-OPEN
2. TT-LOC, TT-OPEN, TB-LOC, TB-OPEN
3. GLOTTIS, VELUM

Effectively, then, we have three features consisting of these combinations of features,
which we will refer to as L, T, and G, respectively. Since we allow no substitutions or
asynchrony within these subsets, the number of possible combinations of feature val-
ues is also greatly reduced: six values for L, nineteen for T and three for G, resulting
in a total of 342 possible states. Table B.3 of Appendix B lists the allowed values for
each feature. We used the hard synchrony constraints, similarly to Section 4.4, that
L and T must be within one state of each other and G must be within one state of
either L or T. As in Chapter 4, we assumed that all features synchronize at the end
of each word. Given these constraints and our vocabulary, 130 out of the possible 342
states are actually used in the model.

The observation model, p(obs;|uX, ul', u€), is implemented as a mixture of Gaus-
sians. We imposed a three-frame minimum duration for each segment in each feature
stream.

Figure 5-1: DBN used for experiments on the SVitchboard database.

We compare this model to a baseline three-state context-independent monophone
HMM-based recognizer. The acoustic observations for both recognizers consisted of
the first 13 Mel-frequency cepstral coefficients and their first and second differences,
resulting in a 39-dimensional observation vector. This is a commonly used observation
vector in ASR systems [RJ93].
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Lsystem jL# mix.i # Gauss. S I DT WER rSER I
phone, ph. 5, dev 126 9803 | 42.5 ( 15.7 | 13.3 71.6 | 65.0
phone, ph. 6, dev 7 14311 | 41.8 ] 159 | 12.0 69.7 | 63.9
phone, ph. 7, dev 7 20693 | 43.5 | 16.0 | 11.7| 71.2| 65.0
phone, ph. 6 + converge, test 7 14311 | 41.2 { 16.6 | 11.3 | 69.1 | 63.9
feat, ph. 6, dev 130 7092 | 40.5 9.0 22.3 71.8 | 674
feat, ph. 7, dev ” 9819 | 39.8 86| 22,5 70.9 | 66.9
feat, ph. 8, dev v 13527 | 39.5| 86| 232| 7.3 66.9
feat, ph. 7 4+ converge, test " 0819  38.8| 7.0 | 23.3 | 69.165.9

Table 5.2: SVitchboard experiment results. = word substitution rate; I = word

insertion rate; D = word deletion rate;, WER = word error rate; SER = sentence
error rate. All error rates are percentages.

5.1.3 Experiments

For both the baseline and feature-based models, we used diagonal Gaussian mixtures
as the observation model. Each Gaussian mixture was initialized with a single Gaus-
sian with random near-zero mean and equal variances for all 39 dimensions. EM
training was done in several phases. In the first few EM iterations of each phase,
mixture components with high weights are each split into two components (with
identical covariances and slightly offset means) and, optionally, ones with low weights
are removed. EM iterations then continue until convergence, defined as a < 2% rel-
ative difference in the log likelihood between successive iterations. The recognizer
is tested on the development set after each phase, and training is stopped after the
first phase in which the word error rate does not decrease. The number of Gaussians
for the baseline and feature-based systems may therefore differ, but each is chosen
to optimize that system’s performance for a fair comparison (up to the limits of this
training procedure). Once the number of Gaussians has been chosen, additional EM
iterations are done on the combined training + development sets (i.e., sets A-D),
with no splitting or vanishing of Gaussians, until convergence with a < 0.2% relative
log likelihood difference.

Table 5.2 shows the performance of the baseline and feature-based systems, in the
latter phases of training on the development set and on the final test set, in terms of
both word and sentence error rates. The difference in sentence error rates on the test
set is significant according to McNemar’s test (p = 0.008). The language model is an
unsmoothed bigram trained on the utterances in sets A-C.> As is common in ASR
systems, an insertion penalty was imposed for each hypothesized word to account for
the recognizers’ preference for deletions; the size of the penalty was manually tuned
on the development set.

3In preliminary experiments not reported here, a smoothed bigram was found to produce higher
word error rates.
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5.1.4 Discussion

The results of this experiment show that a very simple feature-based model has com-
parable performance to a context-independent monophone HMM-based system. A
more extensive study is needed to determine whether additional asynchrony or substi-
tutions would improve this performance further. The constraint that features synchro-
nize at word boundaries is also an artificial one that should be relaxed in future work.
To be competitive with state-of-the-art systems with highly context-dependent ob-
servation models, a version of context-dependent modeling will be needed for feature-
based models as well. Analogously with triphone-type systems, the context may be
the neighboring feature values or any combination thereof. An interesting direction
for further work would be to study the relative benefits of using different combinations
of feature contexts, as well as to automatically learn the most informative contexts.
Finally, the use of context-dependent observation distributions would greatly increase
the number of distributions. This could be addressed using the commonly applied
strategy of state clustering; the most useful contexts for clustering would also be an
interesting direction for future work.

5.2 Landmark-based speech recognition*

Stevens [Ste02] has proposed a method for speech recognition based on the acoustic
analysis of important points in the signal, referred to as landmarks. Stevens’ land-
marks correspond to points of closure and release for consonants, vowel steady states,
and energy dips at syllable boundaries. The first step of landmark-based recognition
is to locate the landmarks using various acoustic cues, which may differ for different
types of landmarks. At each detected landmark, a bank of classifiers hypothesize val-
ues for a number of binary distinctive features. Distinctive features are acoustically
and articulatorily motivated features intended to be sufficient for word classification.
Different features are classified at different landmarks, depending on the type of land-
mark. The detected feature values are then matched against the lexicon, which is also
represented in terms of distinctive features.

Juneja and Espy-Wilson [JEW04] have implemented phonetic and small-vocabulary
recognizers based on these principles. They use support vector machine (SVM) classi-
fiers to detect both landmarks and features. Figure 5-2 shows an example of detected
landmarks. At each type of landmark, different features are classified; for example,
there are separate vowel-related and consonant-related feature classifiers for the corre-
sponding landmarks. In addition, when a certain feature applies to multiple types of
landmarks, different SVMs are trained for the same feature at different landmarks. In
general, there is a hierarchical structure determining which classifiers are used in each
context, and each SVM is trained only on data from the corresponding context. This

4This section describes work done at the 2004 Summer Workshop of the Johns Hopkins Univer-
sity Center for Language and Speech Processing, as part of the project “Landmark-Based Speech
Recognition” led by Mark Hasegawa-Johnson. Jeff Bilmes provided assistance with GMTK for this
project. Parts of this section have appeared in the workshop project final report [ea04] and in [ea05].
All material appearing here, however, has been written by the author unless otherwise indicated.
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results in a situation where the feature classifier outputs are not all “interpretable”
in every frame; we return to this point later.

The SVM outputs are converted to posterior probabilities using a learned his-
togram method [JEWO04], and the final phone or word hypotheses are determined
using a dynamic programming algorithm over the graph of possible landmark/feature
values. In this work, a deterministic mapping is assumed between a phonetic lexicon
and detected feature values.

Figure 5-2: Ezample of detected landmarks, reproduced from [ea04]. VOP = voice
onset point; P = syllabic peak; F1 = fricative onset; SIL = silence onset; Son =
sonorant onset; D = syllabic dip; B = stop burst.

One issue with this approach is that the surface feature values and landmark
locations may not neatly correspond to phonetic segments. Different features may
evolve at different rates and may not reach their target values, resulting in segments
of speech that do not correspond to any phone in the English phonetic inventory
and in which boundaries between segments are not clearly defined. In order to relax
this assumption, we have developed a recognizer based on combining SVM classifiers
of landmarks and distinctive features with an articulatory feature-based pronuncia-
tion model allowing for asynchrony and (limited) substitution of feature values. In
particular, we use the AP-based pronunciation model described in Chapter 4.

This work was carried out in the context of a larger project using an isolated-word
landmark-based recognizer to rescore word lattices produced by an HMM-based base-
line recognizer [ea05]. The landmark and distinctive feature classification is described
in detail in [ea04]. Here we describe only the integration of the pronunciation model
with the feature classifiers and give an example analysis of a difficult phrase. The
goal is to show that it is possible to combine a feature-based pronunciation model of
the type we have proposed with an observation modeling approach that may at first
seem incompatible.

5.2.1 From words to landmarks and distinctive features

Combining an AP-based pronunciation model with distinctive feature classifier out-
puts involves two tasks: (1) conversion between articulatory features (AFs) and dis-
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tinctive features (DFs), and (2) incorporation of likelihoods computed from SVM
outputs. Our solutions for both of these are depicted in Figure 5-3.

Figure 5-3: Ezxample of a DBN combining a feature-based pronunciation model with
landmark-based classifiers of a different feature set. The actual model used in exper-
iments is not shown, as it uses more than 70 additional variables to represent the
context-specific distinctive features. However, for completeness, the mapping from
articulatory to distinctive features is given in appendix Tables B.4-B.5.

For the first task, we simply used a deterministic mapping from articulatory to
distinctive features, implemented by adding to the DBN a variable corresponding to
each DF and its associated dependencies; e.g., sonorant = 1 whenever the glottis
is in the voiced state and either the lip and tongue openings are narrow or wider
(a vowel, glide, or liquid) or there is a complete lip/tongue closure along with an
open velum (a nasal consonant). The AF-to-DF mapping can be complicated, but
it need only be specified once for a given set of AFs and a given set of DFs. In this
way, pronunciations and acoustics can be modeled using completely different feature
sets, as long as there is a deterministic mapping between the pronunciation model’s
feature set and the one used to model the acoustics. In the case of our feature sets,
the mapping is almost deterministic; the main exceptions include the silence DF (for
which there is no analogue in terms of articulatory features) and, possibly, the lateral
DF (since the horizontal dimension of the tongue is not represented in the AF set).
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In order to incorporate the outputs of the SVMs, we used the Bayesian network
construct of virtual (or soft) evidence [Bil04, Pea88]. This is used when a variable is
not observed, i.e. there is no hard evidence about it, but we have some information
about it that causes us to favor some values over others; this is exactly what the SVM
outputs tell us about the values of the DFs. This is done by adding, for each DF, a
“dummy” variable Dpp, whose value is always 1 and whose distribution is constructed
so that P(Dpr = 1|DF = f) is proportional to the likelihood for DF = f. This
“hybrid DBN/SVM?” is the final DBN used for recognition.

The hierarchical organization of the SVMs gives rise to an interesting problem,
however. Since each SVM is trained only in a certain context (e.g. separate Labial
classifiers are trained for stop-vowel, vowel-stop, fricative-vowel, and vowel-fricative
boundaries), only those SVM outputs relevant to the hypothesis being considered in
a given frame are used. For example, the output of the “dental fricative” classifier
is only meaningful in frames that correspond to fricatives. Which SVMs will be
used in a given frame can be determined by the values of certain variables in the
DBN. For example, if the current frame corresponds to a closure and the previous
frame corresponds to a vowel (both of which can be determined by examining the
values of LIP-OPEN, TT-OPEN, and TB-OPEN), the vowel-stop SVMs will
be used. This is implemented using the mechanism of switching dependencies (see,
e.g., [BZR*02, Bil00, GH96)); e.g., LIP-OPEN, TT-OPEN, and TB-OPEN are
switching parents of the Labial SVM soft evidence “dummy” variables. Appendix B,
Tables B.4-B.5, show the complete articulatory-to-distinctive feature mapping, along
with the context (i.e. the values of the switching parents) in which each SVM is
licensed. Such mapping tables were used to automatically generate a DBN structure
for a given set of articulatory and distinctive features.

The problem with this mechanism is that different hypotheses that are being com-
pared during decoding may have different numbers of relevant SVMs, and therefore
different numbers of probabilities being multiplied to form the overall probability of
each hypothesis. For example, the first and last frames of a fricative with an adja-
cent vowel will license both the isolated Strident classifier and the Strident classifier
specific to a vowel-fricative or fricative-vowel landmark. For this reason, hypotheses
that license fewer SVMs will be preferred; e.g. we can imagine a situation where a
hypothesis containing one long fricative will be preferred over one containing two
fricatives with a short intervening vowel.

Our solution to this, for the time being, has been to score words in two passes:
The manner SVMs silence, sonorant, continuant, and stop, which are interpretable in
all frames, are used to obtain a manner segmentation, using either the Juneja/Espy-
Wilson alignment system referred to above, or else the DBN itself with only the
manner DF variables; the full DBN is then used along with the remaining SVM
outputs to compute a score conditioned on the manner segmentation, using each
SVM only in the context in which it is licensed. This issue, however, merits further
study.

The DBN parameters (i.e., the entries in the various conditional probability tables)
were estimated via EM, using as training data either a subset of the Switchboard
ICSI transcriptions, as in Chapter 4, or the SVM outputs themselves. We used three
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training conditions: (a) a 1233-word subset of the phonetic transcriptions, consisting
of all words in the training set of Chapter 4 except for the ones to which the model
assigns zero probability; (b) the SVM outputs computed on this same 1233-word set;
and (c) the SVM outputs for the entire training set of ICSI transcriptions, consisting
of 2942 words. While these sets are small, the DBN has only several hundred trainable
parameters.

For all experiments, all of the AFs besides LIP-LOC were used. LIP-LOC was
excluded in order to limit the required computation, and because there is only one
pair of phones ([aa] and [ao]) that are distinguished only by their LIP-LOC values.
We imposed the same synchronization constraints as in Chapter 4, reproduced here:

1. All four tongue features are completely synchronized,

asyncl TTE =0 (5.2)

2. The lips can desynchronize from the tongue by up to one index value,

plasyncF®TTTB 5 1) =0 (5.3)

3. The glottis/velum index must be within 2 of the mean index of the tongue and
lips,
pasynct@TTTBCY 5 9) = (5.4)

These constraints result in 3 free synchronization parameters to be learned:

P(asynct@TTTE = 1) 5.5)
P(asynclOTTTBCGY —q 5.6)
P(asyncFOTTTBCY _ 9) (5.7)

the remaining asynchrony probabilities either are set to zero or can be computed
from these three probabilities. This may seem like a very small amount of variation;
however, this limited degree of asynchrony accounts for the majority of phenomena
we are aware of. The types of asynchrony phenomena that are not allowed under
these constraints are extreme spreading, as can sometimes happen with nasality (e.g.,
problem — [p r aa_n m]|) or rounding (e.g., of the [s] in strawberry). When the DBN
was trained on the phonetic transcriptions, the learned asynchrony probabilities were
found to be: P(asynct OTTTB _ 1) = 1.05 x 1073, P(asynctLO’TT’TB;GV =1) =
7.20 x 10~4; and P(asyncr®TTTBCY — 9) = 3.00 x 107",

For most experiments, the only feature whose surface value was allowed to differ
from the underlying value was LIP-OPEN. This constraint was again intended to
reduce computational requirements. LIP-OPEN was chosen because of the high
frequency of (anecdotally observed) reductions such as probably — [p r aw 1 iy].
We allowed LIP-OPEN to reduce from CL to CR or NA, and from CR to NA
or WI; all other values were assumed to remain canonical. The learned reduction
probabilities, when training from either phonetic transcriptions or SVM outputs, are
shown in Table 5.3.
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| | S=CL S=CR | S=NA S=WI |
U=CL [9.996 x 10~T [ 2.555 x 10~ | 4.098 x 104 0
U=CR 0 7.933 x 10T [ 1.619 x 10~ | 2.067 x 107!
U=NA 0 0 1 0
U= 0 0 0 1
| S=CL S=CR S=NA S=WI
U=CL [ 8350 x 1071 [ 1.102 x 1072 | 1.540 x 1071 0
U=CR 0 3.014 x 1071 [ 3.030 x 10T | 3.955 x 10~ T
U=NA 0 0 1 0
U=WI 0 0 0 1

Table 5.3: Learned reduction probabilities for the LIP-OPEN feature, P(S'° =
s|ULC = ), trained from either the ICSI transcriptions (top) or actual SVM feature
classifier outputs (bottom,).

A final time-saving measure for these experiments was the use of relatively low
frame rates: All experiments used either 20ms or 15ms frames. Since the SVMs were
applied every dHms, their outputs were downsampled to match the frame rate of the
DBN.

As a way of qualitatively examining the model’s behavior, we can compute a
Viterbi “forced alignment” for a given waveform, i.e. the most probable values of
all of the DBN variables given the word identities and the SVM outputs. Figure 5-
4 shows an alignment for the phrase “I don’t know”. ® In this example, both the
/d/ and the /n t n/ sequence have been produced essentially as glides. In addition,
the final /ow/ has been nasalized, which is accounted for by asynchrony between
VEL and the remaining AFs. The fact that we can obtain reasonable alignments for
such reduced pronunciations is an encouraging sign. Furthermore, this example sug-
gests one reason for choosing an acoustically-motivated representation for observation
modeling and an articulatory one for pronunciation modeling: There is arguably little
hope of determining the locations and opening degrees of the various articulators in
this extremely reduced phrase; and there is also arguably little hope of predicting
the observed distinctive feature values based on transformations from an underlying
distinctive feature-based lexical representation.

5.2.2 Discussion

We have only scratched the surface of the issues that need to be explored in a system
using an articulatory pronunciation model with a landmark-based observation model.
We are continuing to examine the proper way to account for the distinctive feature
hierarchy. Additional issues to be investigated are:

5This figure was generated using an xwaves-based display tool developed at the JHU 04 workshop
by Emily Coogan.
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The weighting of the soft evidence relative to other probabilities in the DBN. This
is analogous to the weighting of Gaussian mixture likelihoods and transition
probabilities in a conventional HMM.

Iterative training of the DBN and SVMs. As currently implemented, there is a
mismatch between the DBN and SVMs, which are trained on phonetic tran-
scriptions that do not contain the “non-phonetic” feature value combinations
that are allowed in the DBN. Given the initial set of SVMs trained on pho-
netic transcriptions, the DBN could be used to re-transcribe the training data
in terms of feature values, and to use this re-transcribed data to retrain the
SVMs. This process can be iterated, akin to Viterbi training in conventional
systems.

Finally, there are some more general questions that this research brings up. For
example, how does one choose the feature set and ranges of feature values? This
project has taken the position that articulatory features (rather than, e.g., distinctive
features) are natural units for modeling pronunciation variation, whereas distinctive
features are more natural for modeling the acoustic signal. It may be argued that the
particular choice of feature values is an arbitrary one, making for an inelegant model.
However, phonetic units are arguably more arbitrary, as they have little justification
from a linguistic point of view and are a poor fit to highly reduced speech of the
type we have discussed. There is room, nevertheless, for research into the most
appropriate linguistic feature space for speech recognition, as this issue has not been
widely studied to date.

5.3 Summary

In this chapter we have presented two possible scenarios for the integration of acoustic
observations with a feature-based pronunciation model. We have presented a simple
mixture Gaussian-based system using features rather than phones, which performs
similarly to a baseline monophone system. We have also shown that we can combine a
feature-based pronunciation model with acoustically-motivated landmark-based clas-
sifiers, and we have seen an example that shows the benefits of using the two different
representations in different parts of the recognizer.

Much work is required to make such systems competitive with state-of-the-art rec-
ognizers. In Gaussian mixture-based systems, context dependency, state clustering,
and the word synchronization constraint will need to be dealt with. For landmark-
based recognition, there are more fundamental issues such as the problem of different
numbers of feature classifiers for different hypotheses. However, a similar system in
which all SVMs are trained on all frames would not have the same problem.
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Figure 5-4: Waveform, spectrogram, and some of the variables in an alignment of the phrase “I
don’t know”. The notation in this figure differs slightly from the previously used variable names:
The < feature>Position variables correspond to the ind variables in Figure 5-3; <feature>Phone
correspond to the ph variables; <feature> is the underlying feature value U; actual<feature> is
the surface value S; and Light<DF> is the value of the distinctive feature DF (“Light” in front
of a DF name simply refers to the fact that the SVMLight package was used to train the SVM,
as opposed to the other packages used in this project). While the underlying value for the tongue
tip opening (TT-OPEN) is “closed” (CL) during the underlying /dcl/ and /n t n/, the surface
value (actualTT-OPEN) is “narrow” (NA). The effect of asynchrony can be seen, e.g., during
the initial portion of the /ow/: This segment is nasalized, which is hypothesized to be the result of
asynchrony between the velum and remaining features.
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Chapter 6

Lipreading with feature-based
models

Until now we have been treating speech as an acoustic signal. However, speech is
communicated through both the acoustic and visual modalities, and similar models
can be applied to both acoustic and visual speech recognition. In fact, in the visual
modality, there is a closer connection between the signal and the articulatory features
we have discussed, because some of the features are directly measurable. In this
chapter, we apply the ideas of feature-based modeling to visual speech recognition, or
lipreading. Lipreading can be used in combination with acoustic speech recognition,
for example to improve performance in noise [NLP*02]. We can also imagine scenarios
where lipreading may be useful by itself, for example if there is sufficient acoustic
noise, if the acoustic signal has been corrupted or lost, or if the acoustic environment
is highly variable and there is insufficient matched acoustic training data.

The sub-word unit of choice in most lipreading systems (or the lipreading com-
ponents of audio-visual recognition systems) is the viseme, the visual analogue of
the phoneme, defined as a set of visually indistinguishable phonemes (or, sometimes,
phones). For example, in a lipreading lexicon, the words pan, ban, man, pad, bad,
mad, pat, bat, and mat may all have the same pronunciation, e.g., [labial-closure low-
front-vowel alveolar-consonant]. Different viseme sets have been defined for different
systems, and they are often defined automatically through clustering [Haz]. In this
chapter, we consider whether the single stream of states in visual recognition may
also benefit from factoring into multiple semi-independent feature streams. In the
following sections we discuss two types of lipreading tasks: medium-vocabulary word
ranking, which we can imagine using to enhance an acoustic speech recognizer in
difficult acoustic conditions; and small-vocabulary isolated phrase recognition, which
could be used as a stand-alone system, for example in a noisy car or kiosk environ-
ment.
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6.1 Articulatory features for lipreading

Our first task is to define a feature set. We make the simplifying assumption that the
only visible features are those associated with the lips. In general, the tongue and
teeth may also be visible at times, but their frequent occlusion by the lips presents a
complication that we prefer not to introduce for the time being. We take as a starting
point the articulatory phonology-based feature set defined in Chapter 4. The only
two relevant features are LIP-LOC and LIP-OPEN, whose values are listed again
in Table 6.1 for convenience.

feature | values

LIP-LOC (LL) protruded, labial, dental
LIP-OPEN (LO) | closed, critical, narrow, wide

Table 6.1: The lip-related subset of the AP-based feature set.

Until now we have always constrained these features to be synchronous. Figure 6-1
shows a situation in which they can be asynchronous. In this example, a labial closure
is followed by a rounded (i.e., protruded) vowel, and the early onset of rounding affects
the shape of the mouth during the closure.

Figure 6-1: Ezample of lip opening/rounding asynchrony. Compare the shape of the
mouth during the latter part of the [m] lip closure (i.e. the second image) in the
words milk (top) and morning (bottom) from the sentence “Greg buys fresh milk each
weekday morning.”

One drawback of these features is that they do not allow for independent control
of labio-dental articulation and rounding. It is possible to produce a labio-dental ([f]
or [v]) while protruding the lips, and in fact this happens in rounded contexts, as
shown in Figure 6-2. This can be explained as asynchrony between the labio-dental
and rounded articulations, but is not allowed as long as labio-dental and protruded
are values of the same feature. For this reason, we have modified the feature set
to separate these into two binary features, LAB-DENT (LD) and LIP-ROUND
(LR).

Finally, we slightly modify the definition of LIP-OPEN, collapsing critical and
narrow into a single value and adding a medium opening value. The former is mo-
tivated by the practical concern that the available image resolution is often too low
to distinguish between critical and narrow lip constrictions; the latter allows us to
distinguish among a larger number of configurations (which, in the acoustic experi-
ments, were distinguished using other features). Our final feature set for lipreading
experiments is shown in Table 6.2.
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Figure 6-2: Ezample of rounding/labio-dental asynchrony. Compare the shape of the
mouth during the [f] in the words breakfast (top) and four (bottom) from the sentence
“He had four extra eggs for breakfast.” (For example, frame 10 in the top and frame
4 in the bottom.)

| feature values
LAB-DENT (LD) | yes, no
LIP-ROUND (LR) | yes, no
LIP-OPEN (LO) closed, narrow, medium, wide

Table 6.2: Feature set used in lipreading experiments.

6.2 Experiment 1: Medium-vocabulary isolated word

ranking!

In this section we experiment with a medium-vocabulary, isolated-word lipreading
system of the type that might be used in combination with an acoustic speech recog-
nizer. For anything but a small, carefully-constructed vocabulary, recognizing words
from lip images alone is impossible. However, the word scores provided by a lipread-
ing system may still be useful in combination with an acoustic recognizer, even if the
lipreading system alone is very poor. We therefore do not measure performance by
error rate but by the rank given to the correct word. The task is, therefore, given a
sequence of mouth images corresponding to a spoken word, to rank all of the words
in the lexicon according to their posterior probabilities given the image sequence.

6.2.1 Model

We use a model architecture combining a feature-based DBN with the outputs of
SVM feature classifiers converted to soft evidence, as described in Section 3.4. For
each feature, an SVM is trained to classify among the feature’s values. The output of
each SVM is converted to a posterior using a sigmoidal mapping. so that, for each lip
image z and each feature F', we have P(F; = f|X; = z). The posterior is converted
to a scaled likelihood by dividing by the feature priors: P(X; = z|F; = f) «x P(F; =
fIX: = z)/P(F; = f). This scaled likelihood is then used as soft evidence in the
DBN shown in Figure 6.2.1. P(obsf" = 1|S}' = f) is proportional to the likelihood

This section describes joint work with Kate Saenko and Trevor Darrell [SLGD05]. The visual
processing and SVM training are described in [SLGDO05]; here we focus on the modeling of the hidden
feature dynamics.
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P(X; = z|SF' = f) computed from the SVM outputs. In these experiments, we
concentrate only on the effects of asynchrony between the features; in other words,
we allow asynchrony but no feature changes (i.e. async} can vary, but S}’ = UF). For
this reason, the S/ variables have been dropped in Figure 6.2.1.

SEme
— (wimy)

o

Figure 6-3: One frame of a DBN used for lipreading.

6.2.2 Data

For these experiments, we used 21 utterances taken from a single speaker in AV-
TIMIT [Haz|, a corpus of audio-visual recordings of subjects reading phonetically
balanced sentences. Of these, 10 utterances were used for training and 11 for test-
ing. To simulate the isolated-word task, utterances were split into words, resulting
in a 70-word test set. Each visual frame was also manually transcribed with 3 AF
values. The vocabulary contains 1793 words, and up to three baseforms are allowed
per words.

6.2.3 Experiments

We have conducted experiments to investigate several questions that arise in using
the proposed feature-based system. First, we would like to compare the effects of
using feature-based versus viseme-based classifiers, as well as of using a feature-based
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viseme || LO LR LD |
1 closed any no

2 any any yes

3 narrow | rounded no

4 medium | unrounded | any
5 medium | rounded any
6 wide any any

Table 6.3: The mapping from visemes to articulatory features.

versus viseme-based pronunciation model. A viseme-based pronunciation model is a
special case of our DBN in which the features are constrained to be completely syn-
chronous (i.e. async] is identically 0). Using viseme classifiers with a viseme-based
pronunciation model is similar to the conventional viseme-based HMM that is used
in most visual speech recognition systems, with the exception that the likelihoods
are converted from classifier outputs. In order to use a feature-based pronunciation
model with viseme classifiers, we use a (many-to-one) mapping from surface features
(SF) to visemes. Also, since we do not have ground truth articulatory feature labels,
we investigate how sensitive the system is to the quality of the training labels and
classifiers using manual transcriptions of the data.? In order to facilitate quick experi-
mentation, these experiments focus on an isolated-word recognition task and use only
a small data set, with manual settings for the (small number of) DBN parameters.

The mapping between the six visemes and the feature values they correspond to
is shown in Table 6.3. Although there are more than six possible combinations of
feature values, only these six are represented in the manually labeled training data.

The details of SVM training and performance can be found in [SLGDO05|. Here
we concentrate on the word ranking experiments. For each spoken word in the test
set, we compute the Viterbi path for each word in the vocabulary and rank the words
based on the relative probabilities of their Viterbi paths. Our goal is to obtain as high
a rank as possible for the correct word. Performance is evaluated both by the mean
rank of the correct word over the test set and by examining the entire distribution of
the correct word ranks.

In the models with asynchrony, LIP-ROUND and LIP-OPEN were allowed to
desynchronize by up to one index, as were LIP-OPEN and LAB-DENT. Table 6.4
summarizes the mean rank of the correct word in a number of experimental conditions,
and Figure 6.2.3 shows the empirical cumulative distribution functions (CDFs) of the
correct word ranks in several of these conditions. In the CDF plots, the closer the
distribution is to the top left corner, the better the performance. We consider the
baseline system to be the viseme-based HMM, i.e. the synchronous pronunciation
model using the viseme SVM.

Table 6.4 also gives the significance (p-value) of the mean rank differences between
each model and the baseline, as given by a one-tailed paired t-test [Die98]. The

2Thanks to Kate Saenko for these transcriptions.
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Mean rank, Mean rank,
Classifier unit sync model async model
Viseme 281.6 262.7 (.1)
Feature, forced train | 216.9 (.03) 209.6 (.02)
Feature, manual train | 165.4 (.0005) 149.4 (.0001)
Feature, oracle 113.0 (2 x 107°) [ 109.7 (3 x 10~°) |

Table 6.4: Mean rank of the correct word in several conditions. The significance of
the difference between each system and the baseline, according to a one-tailed paired
t-test [Die98], is given in parentheses.

models using multiple feature-dependent classifiers always significantly outperform
the ones using viseme classifiers. For each type of classifier and training condition,
the asynchronous pronunciation model outperforms the synchronous one, although
these differences are not significant on this test set. It may seem counterintuitive that
asynchrony should make a difference when viseme classifiers are used; however, it is
possible for certain apparently visemic changes to be caused by feature asynchrony;
e.g., a [k| followed by an [uw] may look like an [ao] because of LIP-OPEN /LIP-
ROUND asynchrony.

Next, the forced train vs. manual train comparison suggests that we could expect
a sizable improvement in performance if we had more accurate training labels. While
it may not be feasible to manually transcribe a large training set, we may be able to
improve the accuracy of the training labels using an iterative training procedure, in
which we alternate training the model and using it to re-transcribe the training set.

To show how well the system could be expected to perform if we had ideal clas-
sifiers, we replaced the SVM soft evidence with likelihoods derived from our manual
transcriptions. In this “oracle” test, we simulated soft evidence by assigning a very
high likelihood (=0.95) to feature values matching the transcriptions and very low
likelihood to the incorrect feature values.

6.3 Experiment 2: Small-vocabulary phrase recog-
nition?®

We now describe experiments with a small-vocabulary, isolated-phrase visual speech
recognition system. In these experiments the phrase vocabulary has been designed
to be, in principle at least, visually distinguishable given our feature set. With these
constraints, it is feasible to have a stand-alone lipreading system whose performance
can be judged by error rate rather than by word ranks. The system described here
is part of a larger project on end-to-end visual detection and recognition of spoken
phrases [SLS*05]; here we will concentrate on the task of recognizing a phrase given

3This section describes joint work with Kate Saenko, Michael Siracusa, Kevin Wilson, and Trevor
Darrell, described in [SLS*05].
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Figure 6-4: CDF of the correct word’s rank, using the visemic baseline and the pro-
posed feature-based model. The rank r ranges from 1 (highest) to the vocabulary size
(1793).

a sequence of mouth images.
Here we experiment with a model that differs from the others we have considered

in two main ways:

1. Rather than using either per-feature classifiers (as in Sections 5.2 and 6.2) or
observation distributions conditioned on all feature values (as in Section 5.1),
here we use per-feature observation vectors. These observations happen to be
the outputs of SVM feature classifiers, but they are used as observations and
modeled with Gaussian distributions.

2. It is a whole-phrase model, meaning that there are no explicit underlying phones
or feature values, only several streams of phrase-specific states. Whole-word
models typically outperform sub-word-based models on small-vocabulary tasks
(e.g., [ZBR*01]). However, we will compare the whole-phrase model to sub-
word models, including the one of Section 6.2.

6.3.1 Model

Figure 6-5 shows the DBN used in our experiments. The model essentially consists
of three parallel HMMs per phrase, one per articulatory feature, where the joint
evolution of the HMM states is constrained by synchrony requirements. For compar-
ison, Figure 6-6 shows a conventional single-stream viseme HMM, which we use as a
baseline in our experiments.

For each feature stream, the observations obs® consist of the continuous SVM
outputs for that feature (or for visemes, in the case of the baseline model). There
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Figure 6-5: DBN for feature-based lipreading. ind! is an indez into the state sequence
of feature F', where F is one of {LO,LR,LD}.

—=o)

Figure 6-6: DBN corresponding to a single-stream viseme HMM-based model.

is a separate DBN for each phrase in the vocabulary, with ind® ranging from 1 to
the maximum number of states. Recognition is done by finding, for each DBN, the
Viterbi path, or the most likely settings of all variables given the observations, and
choosing the phrase whose DBN has the highest Viterbi score.

6.3.2 Data

We evaluated this recognizer on the task of isolated short phrase recognition. In
particular, we used a set of 20 commands that could be used to control an in-car stereo
system (see Table 6.5). The data consists of video of two speakers saying these twenty
stereo control commands three times each. To test the hypothesis that coarticulation
increases in fast, sloppy speech, and that a DBN that allows articulator asynchrony
will better account for co-articulation in faster test conditions, the three repetitions
were done at different speaking rates. During the first repetition, the speaker clearly
enunciated the phrases (slow condition), then spoke successively faster during the
second and third repetitions (medium and fast conditions.)

SVM classifiers for both articulatory features and visemes were trained on a
separate data set, consisting of three speakers reading sentences from the TIMIT
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1 | “begin scanning” 11 | “shuffle play”

2 | “browse country” 12 | “station one”

3 | “browse jazz” 13 | “station two”

4 | “browse pop” 14 | “station four”

5 | “CD player off” 15 | “station five”

6 | “CD player on” 16 | “stop scanning”

7 | “mute the volume” | 17 | “turn down the volume”

8 | “next station” 18 | “turn off the radio”

9 | “normal play” 19 | “turn on the radio”

10 | “pause play” 20 | “turn up the volume”

Table 6.5: Stereo control commands.
train,/test . dictionary-based . whole-phrase
viseme+GM | feature+SE | feature+GM || viseme+GM | feature+GM | async feature+GM

slow-med/fast || 10 7 13 16 23 (p=0.118) | 25 (p=0.049)
slow-fast/med | 13 13 21 19 29 (p=0.030) | 30 (p=0.019)
med-fast/slow || 14 21 18 27 25 24
average 12.3 13.7 17.3 20.7 25.7 26.3
average % 30.8 34.2 43.3 51.6 64.1 65.8

Table 6.6: Number of phrases, out of 40, recognized correctly by various models. The
first column lists the speed conditions used to train and test the model. The next three
columns show results for dictionary-based models. The last three columns show results
for whole-phrase models.

database [GLF*93]. Each frame in this set was manually annotated with values of
the three features.

6.3.3 Experiments

The SVMs in these experiments use the one-vs.-all multi-class formulation, so that
there are six classifiers for the three features: four for LO, one for LR, and one
for LD. To evaluate the viseme-based baseline, we use a six-viseme SVM classifier
trained on the same data, with feature labels converted to viseme labels. The mapping
between visemes and features is the same as in Table 6.3. Again, only these six feature
combinations are represented in the manually labeled training data. For additional
information regarding the training and performance of these SVMs, as well as the
data preprocessing, see [SLS*05].

6.3.4 Phrase recognition

In this section, we evaluate various phrase recognizers on the stereo control command
task. The experimental setup is as follows. Recall that the two speakers spoke
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each stereo control command at slow, medium and fast speeds. We repeat each
experiment three times, training the system on two speed conditions and testing it
on the remaining condition, and average the accuracies over the three trials.

The rightmost three columns of Table 6.6 (labeled whole-phrase) compare the
feature-based model of Figure 6-5 to the viseme-based HMM model of Figure 6-6,
referred to as viseme+GM. We evaluate two versions of the feature-based model:
one with strict synchrony enforced between the feature streams, i.e. asyncg4 B =
OVA, B (feature+GM), and one with some asynchrony allowed between the streams
(async feature+GM.) In the model with asynchrony, LR and LO are allowed to
de-synchronize by up to one index value (one state), as are LO and LD. The two
asynchrony probabilities, p(asynctL BLO — 1) and p(asynct OiLD 1), are learned from
the training data. All three of the above systems use whole-phrase units and Gaus-
sian models (GMs) of observations (in this case, single Gaussians with tied diagonal
covariance matrices.) On average, the models using feature classifiers outperform
the ones using viseme classifiers, and the asynchronous feature-based systems slightly
outperform the synchronous ones.

Looking at each of the train and test conditions in more detail, we see that,
when the training set includes the slow condition, the asynchronous feature model
outperforms the synchronous one, which, in turn, outperforms the viseme baseline.
(The McNemar significance levels p [Die98] for these differences are shown in the
table.) However, when the models are trained on faster speech and tested on slow
speech, the baseline slightly outperforms the feature-based models.

For comparison, the leftmost three columns of the table correspond to three
dictionary-based models with the structure of Figure 6.2.1, using either soft evidence-
based observation models (labeled SE) or Gaussians. In particular, the dictionary-
based feature+SE model is the model of Section 6.2. The whole-phrase models out-
perform the feature+SE model by a large margin on this task. To evaluate the
relative importance of the differences between the models, we modify the feature+SE
baseline to use single Gaussians with diagonal covariance over SVM outputs; this is
the feature+GM dictionary-based model. We can see that, while this improves per-
formance over using soft evidence, it is still preferable to use whole-phrase models
for this task. Finally, we evaluate a dictionary-based version of the viseme HMM
baseline, viseme+GM. As was the case for whole-phrase models, the dictionary-based
model using feature classifiers outperforms the one using viseme classifiers.

6.4 Summary

In both experiments presented in this chapter, we have found that lipreading models
using feature classifiers outperform viseme-based ones. We have also found that, in
a real-world command recognition task, whole-phrase models outperform dictionary-
based ones, and observation models consisting of Gaussians over SVM outputs out-
perform soft evidence-based ones.

For the purpose of fast evaluation, this work has used a limited feature set con-
sisting only of features pertaining to the lips, ignoring other visible features such as
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tongue positions. Incorporating these additional features will require some care, as
they are often occluded, but may improve performance enough to make a system such
as the one of Section 6.3 practical to use.

As mentioned at the beginning of this chapter, lipreading is often intended not for
stand-alone applications but for combination with acoustic speech recognition. We
believe a promising area for further work is the application of feature-based models to
audio-visual recognition, where they can be used to address the well-known problem
of audio-visual asynchrony [NLP*02]. We return to this idea when we consider future
work in greater depth in Chapter 7.
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Chapter 7

Discussion and conclusions

In this thesis we have argued for a new class of models of pronunciation variation for
use in automatic speech recognition. The main distinguishing aspects of the proposed
class of models are

e A representation of words using multiple streams of linguistic features rather
than a single stream of phones. Many common pronunciation effects can be
described in terms of small amounts of asynchrony and changes in individual
feature values. This is not a new idea; however, the use of this idea in a
pronunciation model is new.

e The direct modeling of the time course of sub-word units. Previous pronun-
ciation models have always assumed that it is their job to produce the list of
sub-word units, but not their time alignment, leaving the modeling of sub-word
unit durations up to a separate duration model. We have argued that this is
an artificial separation, and that sub-word units and time alignments should be
modeled jointly.

e A unified probabilistic description in terms of a graphical model. This allows us
to (i) naturally represent the factorization of the state space defined by feature
value combinations, leading to a parsimonious model; (ii) perform recognition
in a single pass, as opposed to the two-pass approaches used by some previous
efforts at using multiple feature streams in recognition; and (iii) explore a poten-
tially huge set of related models relatively quickly, using a unified computational
framework.

In this chapter we describe several possible directions for future work, including
refinements and extensions to the basic model and applications to new tasks, and
close with our main conclusions.

7.1 Model refinements

In Chapter 3, we presented a very basic class of models incorporating the ideas of
feature asynchrony and feature substitutions, and in Chapter 4 we instantiated a
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particular model using a feature set based on articulatory phonology. In these models,
we have assumed that the distributions for both substitutions and asynchrony are
context-independent: The asyncf B variables have no parents in the graph, and each
surface feature value S{ depends only on the corresponding underlying target U}. It is
clear from linguistic considerations that this is a very large assumption, and it would
be useful to study the use of additional dependencies, such as between surface feature
values and neighboring underlying or surface values.

Studies of pronunciation variation in the ASR literature suggest some useful con-
textual factors. For example, Greenberg et al. have studied pronunciation variation as
a function of the position of a phone within a syllable, and found that the ends (codas)
of syllables are far more likely to be realized non-canonically [Gre99]. Ostendorf et
al. [OBB*96] have shown that pronunciation variation depends on a “hidden mode”
or speaking style, which may vary during the course of an utterance. Finally, Bell
et al. [BJFL*03] have shown that pronunciation variants depend on contextual fac-
tors such as nearby disfluencies (e.g., hesitations), word predictability, and utterance
position. These studies are based on phone-based measurements of pronunciation
variation, so that we cannot extract specific implications for feature substitution or
asynchrony modeling from them. However, it is clear that there are some effects of
many contextual factors on pronunciation variation.

We have also assumed that the distribution of asynchrony is symmetrical: The
probability of feature ¢ being ahead of feature j by a certain amount is the same as
that of j being ahead of i. There are common examples of variation that cause us to
doubt this assumption. For example, pre-nasalization of vowels appears to be more
common than post-nasalization [BG92]. The existence of attested phenomena such
as football — [f uh b ao 1] [GHE96] but not, as far as we know, of haptic — [h ae p ih
k] implies that tongue-lip asynchrony may also be asymmetric.

Browman and Goldstein use evidence from linguistic and articulatory data to
devise specific ordering constraints among their vocal tract variables [BG92]. We
have thus far also used such considerations in deciding on the constraints used in our
experiments. However, in the absence of conclusive data on all variables of interest, it
would be useful to investigate the automatic learning of certain aspects of the model,
such as the asynchrony structure. In addition, since this model is, after all, intended
not only to model pronunciation but to be part of a system that performs a specific
task—namely, automatic recognition of speech—it may be the case that the optimal
structure of the model for ASR purposes may differ from the “correct” linguistic
interpretation.

Finally, we have implemented the model within the standard approach to speech
recognition using a generative statistical model trained under the maximum likelihood
criterion. This allows us to make immediate comparisons with existing baselines.
However, recent work suggests that discriminative approaches may be preferable in
many contexts [McD00, DB03, LMPO01, Bil99, BZR*02, GMAPO05]. It should in prin-
ciple be straightforward to adapt the proposed model to a discriminative framework.
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7.2 Additional applications

7.2.1 A new account of asynchrony in audio-visual speech
recognition

One promising application for feature-based models is audio-visual speech recognition
(AVSR). The modeling of audio-visual asynchrony has long been used in AVSR sys-
tems to account for such effects as anticipatory lip rounding. The prevailing approach
to audio-visual asynchrony modeling is to use two-stream HMMs, in which one state
stream corresponds to the visual “state” while the other corresponds to the audio
“state” [NLP*02]. This implicitly assumes that there are two separate hidden pro-
cesses, one generating the acoustics and another generating the visual signal. This is
demonstrated in Figure 7-1, which shows a Viterbi alignment produced by this type
of AVSR system. The hidden acoustic state is the current phoneme, while the visual
state is the viseme. The word in this example is “housewives”, and asynchrony can be
seen in both the initial [h] and the medial [s]. The interpretation that this recognizer
gives to this example is that the visual “process” is “ahead” of the acoustic one at
the beginning of the word, giving the visual impression of an [ae] but the acoustic
impression of an [h]. Similarly, in the middle of the word, the visual “process” is
already producing a [w] while the acoustic one is still in the [s] state.

However, since both signals are produced by the same speech articulators, this
is a rather artificial analysis. A more satisfying explanation can be given through
feature-based considerations, as shown in the alignment of Figure 7-2 produced by a
feature-based model. The system used here is similar to the one used in Section 5.1,
with the addition of a visual observation variable depending on the visible articulators
S} and ST. This alignment is more informative of the underlying processes: At the
beginning of the word, the lips and tongue are in position for the [ae] while the voicing
state is still [hh]; and in the middle of the word, the lips proceed ahead of the other
articulators, giving rise to the rounded [s|.

This analysis not only provides a more intuitive explanation, but, we believe,
may also help to improve recognition performance. The phoneme-viseme approach
does not take into account the fact that when the [s] is rounded, the acoustics are
also affected, as evidenced in the spectrogram by the lower cutoff frequency of the
medial [s] than of the final (z]. Similarly, the spectrum of the initial [hh] also shows
formant values appropriate for [ae]. While phoneme-viseme models can take some of
this variation into account using context-dependent observation models, this requires
more training data and, for typical training set sizes, cannot account for longer-
distance effects such as the rounding of [s] in strawberry.

7.2.2 Application to speech analysis

More speculatively, we can imagine the type of model we have proposed having ap-
plications in speech analysis, for both scientific exploration and more immediate ap-
plications.
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Figure 7-1: A Viterbi alignment and posteriors of the async variables for an instance
of the word housewives, using a phoneme-viseme system. From top to bottom, the
panels are: spectrogram,; lip images; values of phfh and ph?* in the best path; and
posterior probability of asyncd™*.

One possible use of the model would be to make automatic articulatory transcrip-
tions of large amounts of recorded speech, with some bootstrapping from existing
articulatory measurement data. The resulting larger transcribed set can be used to
study articulation phenomena on a larger scale than is possible with existing corpora.
In addition, the newly transcribed data could be recorded in a less invasive envi-
ronment than is typical for articulatory measurement settings. Of course, we could
only hope to measure phenomena allowed by the model. However, within the scope
of effects included in the model, we could learn new aspects those phenomena, for
example the relative timing of articulatory gestures or the probabilities of various re-
ductions. Rather than building models of pronunciation phenomena from the ground
up, by making measurements and devising a model that explains them, we may be
able to use a bit of a priori knowledge to analyze much more data at once. Finally,
the results of such analysis could be used to refine the model itself for ASR or other
purposes.

As a more immediate application, we can imagine building a pronunciation anal-
ysis tool, for example for correction of non-native pronunciations. This would involve
using a more detailed feature set in the model, including features that exist in both
the speaker’s native tongue and the target language. In an articulatory measurement
study, (BG92| show that speakers of different languages use different relative timings
in their articulatory movements. If successful, we can imagine such a system produc-
ing advice, say for Italian learner of English, such as “When you make a [t] or a [d],
try moving the tip of your tongue farther back. You should not be able to feel your
teeth with your tongue when you do this.” This could provide a more time effective
and comfortable language learning environment.
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Figure 7-2: A Viterbi alignment and posteriors of the async variables for an instance
of the word housewives, using a feature-based recognizer with the “LTG” feature set.
From top to bottom, the panels are: spectrogram; lip images; values of phC, phl, and
phE in the best path; and posterior probabilities of async” and asynct™C.

7.3 Conclusions
The main contributions of this thesis are:

e Introduction of a flexible class of feature-based models for pronunciation varia-
tion, with a unified computational implementation allowing for explicit model-
ing of independencies in feature streams.

e Investigation of this model, along with a feature set based on articulatory
phonology, in a lexical access task using manual transcriptions of conversa-
tional speech. In these experiments, we have shown that the proposed model
outperforms a phone-based one in terms of coverage of observed pronunciations
and ability to retrieve the correct word.

e Demonstration of the model’s use in complete recognition systems for (i) landmark-
based ASR and (ii) lipreading applications.

Perhaps the most important of these is the unified computational implementation.
While there have been previous efforts at using feature streams for similar purposes,
they have typically been forced to make rigid assumptions, have not been able to
take advantage of the parsimony of the factored state space, or have used multi-pass
approaches for recognition. We have, of course, made some rather strong assumptions
in our initial experiments with the proposed class of models. However, it is straight-
forward to refine or extend the model with additional variables and dependencies as
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the need arises. The graphical model implementation means that, to a large extent,
we need not write new algorithms for new model varieties, greatly facilitating exper-
imentation. We have not attempted to provide a new state of the art in automatic
speech recognition, and it is likely that model refinements will be needed before sig-
nificant ASR improvements on standard, well-studied tasks can be achieved. It is our
hope that the framework we have proposed will facilitate such future investigation.
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Appendix A

Phonetic alphabet
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label || description example [ transcription ]
iy high front tense sweet s w iy t]

ih high front lax Bill b ih ]

ey| middle front tense ate ey t|

eh] middle front lax head h eh d]

ae| low front lax after ae f t er]

er] high central lax r-colored (stressed) bird b er d]

axr] | high central lax r-colored (unstressed) | creature | [k r iy ch axr]
uh] middle central lax (stressed) butter b uh dx axr]
ax middle central lax (unstressed) about ax b aw t]
ay] low central tense diphthong kite k ay t]

aw| |{ low central lax flower f1aw er|

aal low back lax hot h aa t|

ow] | middle back tense rounded goat g ow t]

oy middle back tense rounded diphthong | toy t oy]

ao middle back lax rounded bought b ao t]

[uw] | high back tense rounded smooth s m uw dh]
[uh] | high back lax rounded wood [w uh d]

Table A.1: The vowels of the ARPABET phonetic alphabet, with descriptions and

ezamples. Based on http://www.billnet.org/phon/arpabet.php
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| label | description example transcription‘l
p| voiceless bilabial stop put p uh t|
t] voiceless alveolar stop top t aa p]
k]| voiceless velar stop crazy k rey z iy]
b voiced bilabial stop buy b ay]
d voiced alveolar stop dull d uh ]
g voiced velar stop bug b uh g
m| voiced bilabial nasal mouth m aw th]
n| voised alveolar nasal night n ay t|
ng| voiced velar nasal sing s ih ng]
f] voiceless labiao dental fricative | find fay n d]
v] voiced labio dental fricative vine v ay n]
th) voiceless dental fricative cloth k 1 aa th]
dh] || voiced dental fricative clothe k 1 ow dh]
s] voiceless alveolar fricative see s iy]
z voiced alveolar fricative Z00 z uw|
sh] voiceless palato-alveolar fricative | cash k ae sh]
zh voiced palato-alveolar fricative leisure 1 iy zh axr]
ch voiceless palato-alveolar affricate | chicken ch ih k ih n]
jh] voiced palato-a;veolar affricate | judge jh uh jh]
1] voiced alveolar lateral liquid 1ih k w ih d]
w] voiced bilabial approximant water w ah dx axr]
r] voiced alveolar approximate round r aw n d]
y] voiced velar approximant year y iy 1
h voiceless glottal fricative happy h ae p iy|
q voiceless glottal stop kitten k ih q n]
dx] | voiceless tap (allophone of /t/) | latter 1 ae dx er]

Table A.2: The consonants of the ARPABET phonetic alphabet, with descriptions
and examples. Based on http://www.billnet.org/phon/arpabet.php.
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Appendix B

Feature sets and phone-to-feature
mappings
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[ Feature name || Description

# values |

value = meaning

LIP-LOC

position (roughly, horizontal
displacement) of the lips

PRO = protruded (rounded)
LAB = labial (default/neutral position)
DEN = dental (labio-dental position)

LIP-OPEN

degree of opening of the lips

CL = closed

CR = critical (labial/labio-dental fricative)
NA = narrow (e.g., [w], [uw])

WI = wide (all other sounds)

TT-LOC

location of the tongue tip

DEN = inter-dental (e.g., [th], [dh])
ALV = alveolar (e.g., [t], [n])

P-A = palato-alveolar (e.g., [sh])
RET = retroflex (e.g., [r])

TT-OPEN

degree of opening of the
tongue tip

CL = closed (stop consonant)

CR = critical (fricative, e.g. [s])

NA = narrow (e.g. [r] or alveolar glide)
M-N = medium-narrow

MID = medium

WI = wide

TB-LOC

location of the tongue body

PAL = palatal (e.g. [sh], [y])

VEL = velar (e.g., [k], [ng])

UVU = uvular (default/neutral position)
PHA = pharyngeal (e.g. [aa])

TB-OPEN

degree of opening of the
tongue body

CL = closed (stop consonant)

CR = critical (e.g. fricated [g] in “legal”)
NA = narrow (e.g. [y])

M-N = medium-narrow

MID = medium

WI = wide

VEL

state of the velum

CL = closed (non-nasal)
OP = open (nasal)

GLOT

state of the glottis

CL = closed (glottal stop)
CR = critical (voiced)
OP = open (voiceless)

Table B.1: Definition of the articulatory phonology-based feature set.
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phone ]| LIP-LOC_| LIP-OPEN | TT-LOC TT-OPEN TB-LOC TB-OPEN VEL GLOT
aa TAE | W __ ALV W PHA M-N CL(.9),0P(.1 C
ae LAB A\ ALV W VEL W CL(.9),0P(1 CR
ah TAB W ALV ™M LAAY M CY.(.9),0P(1 CR
a0 PRO W ALV W PHA M-N CL(.9),0P(.1 CR
awl TAB W ALV W VEL W CL{(9),0P(.1 CR
aw2 PRO N P-A W LA4Y) M-N CL(9),0P(.1 CR
ax TAB W ALV M UVU M CL(.9),0P(.1 CR
axr TAB W RET CR(1),N(.8), | VEL(.1),0VU(.8), CL(.1),CR(-2), CL(.9),0P(.1 CR
M-N(.1) PHA(.1) M-N(.1),M(.1),W(.5)
ayl TAB A ALV A4 PHA M-N CL(9),0P(.1) CR
ay2 CAB \a ALV M-N PAL M-N CL(9),0P(.1) CR
b LAB CR ALV M TUVU W CL CR
C TAB CL ALV M LAY W CL TR
c LAB W P-A CR PAL M-N CL W
LAB W ALV CR VEL _ M CL CR
cl LAB W ALV CL VEL M CL CR
\ LAB W DEN _ CR LAY M CL CR
X TAB W ALV N VEL M CL CR
e LAB W ALV M PAL M CL(.9),0P(.1) CR
ol TAB W ALV CL LAAY N CL(.9),0P(.1) CR
em LAB CL ALV M LA4Y ™M OP CR
en TAB A ALV CL LA ™M OP CR
er LAB W R OR(.1),N(.8), | VEL(.1),UVU(.8), CL(.1),CR(.2), CL(.9),0P(.1) CR
M-N(.1) PHA(.1) M-N(.1),M(.1), W(.5)
eyl LAB W ALV M PAL M CL{.9),0P(.1) CR
ey2 TAB W ALV M-N PAL M-N CL(:9),0P(.1) TR
T DEN CR ALV M VEL M CL W
3 LAB W P-A W VEL CR CL CR
gl TAB W T-A W VEL CL CL CR
h TAB W ALV M UVU M CL
T TAB W ALV M-N PAL M-N CL(.9),0P(.1) CR
Ty TAB W ALV M-N PAL N CTL(9),0P(.1) CR
Th LAB W P-A CR PAL M CL CR
k TAB W P-A W VEL CR CL W
cl LAB W P-A W VEL CL CL W
LAB \A ALV CL VU N CL{.9),0P(.1) CR
'm LAB CL ALV M LeA%4Y M OP CR
n TAB W ALV CL UVU M OP CR
ng TAB W P-A W VEL CL OP CR
ow1l PRO W P-A W LAY M-N CL(.9),0P(.1) CR
ow2 PRO N P-A W VEL N CL(:9),0P(.1) CR
oyl PRO W ALV W UVO M-N CL(.9),0P(.1) CR
oy2 LAB W ALV M-N PAL M-N CL(.9),0P(.1) CR
p LAB CR ALV M LAY W CL A
pcl LAB CL ALV M TVU W CL W
3 LAB W RET CR(.1),N(-8), | VEL(1),0VU(8), CL(.1),CR(.2), CL(.9),0P(.1) CR
-N(.1) PHA(.1) M-N(.1),M(.1),W(.5)
s TAB W ALV CR ovo M CL W
sh TAB W P-A CR PAL M-N CL W
T LAB W ALV CR VEL M CL W
[ LAB \ ALV CL VEL M CL W
th TAB W DEN_ CR TVU ™M CL W
u PRO W P-A W TVU M-N CL(.9),0P(.1) CR
uw PRO N P-A W VEL N CL(.9),0P(.1) TR
v D CR ALV M VEL M CL CR
W PRO N P-A W VO N CL{(:5),0P(.1) CR
y TAB W ALV M-N PAL N CL(-9),0P(.1) CR
z TAB W ALV CR LAY M CL CR
“Zh TAB A P-A TR PAL M CL CR
opi PRO CL DEN CL PAL N CL CL
sil DE| CL DEN CL PAL CL CL CL
n LAB A ALV CR VEL M CL{9),0P(.1) TR
cIn LAB W ALV CL VEL M CL(:9),0P(.1 CR
tn LAB W ALV CR VEL M CL(.9),0P(.1 W
tcln TAB W ALV CL VEL M CL(.9),0P(1 W

Table B.2: Mapping from phones to underlying (target) articulatory feature values.
Entries of the form “z(p1),y(p2), ...” indicate that the feature’s value is x with proba-
bility py, y with probability pa, and so on. Diphthongs have been split into two phones
each (e.g. [ayl] and [ay2]), corresponding to the starting and ending articulatory con-
figurations of the diphthong. [dcln], [dn], [tcln], and [tn] refer to post-nasal stops;

they are included to account for effects such as finding — [f ay n th ng/.
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feature || values

subset

L 0=P-N, 1=P-W, 2=L-CL, 3=L-CR, 4=L-W, 5=D-CR

T 0=D-CR-U-M, 1=A-CL-U-N, 2=A-CL-U-M, 3=A-CR-U-M, 4=A-N-U-M, 5=A-MN-PA-N,
6=A-MN-PA-MN, 7=A-M-PA-M, 8=A-M-U-M, 9=A-W-V-M, 10=P-CR-PA-MN,
11=P-M-U-MN, 12=P-W-V-CL, 13=P-W-V-CR, 14=P-W-V-N, 15=P-W-U-N,
16=P-W-U-MN, 17=P-W-PH-MN, 18=R-N-U-M

G 0=C-CR, 1=C-0, 2=0-CR

Table B.3: Definition of feature values used in SVitchboard experiments, in terms of
abbreviated feature value labels from Table B.1 in the following orders: L = LL-LO; T
= TTL-TTO-TBL-TBO; G = V-G. For example, L=0 corresponds to protruded lips
with a narrow opening (as for a [w]); T=D-CR-U-M corresponds to an interdental
tongue tip with a critical opening, and tongue body in the wvular location with a
medium opening (as for a [th]).
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[ SE? [ variable context | definition
0 clo nil TactualVEL(0) && ( actualLIP-OPEN(0)=0 || ( actual T I-OPEN(0)=0
&4& (TTPhone(0)=L actual TB-OPEN(0)=0
0 hh nil actual LIP-OPEN(0)>2 actual - 0)>2 actua/ - 0)>2
&& actualGLOT(0)=2
0 voi “nil actual GLOT(0)=1
0 stri Fr(0) actual T T-OPEN(0)=1 && ( actual T T-LOC(0)=1 && actual I T-LOC(0)=2 )
1 ilence nil clo(0) T TBPhone(0)=SIL
1 Sonor TSilence(0) hh(0) T (actual GLOT(0)=1 && (( actualLIP-OPEN(0)>1 &&
( actualTT-OPEN(0)>1 || TTPhone(0)=L || TTPhone(0)=EL )
&& actualTB-OPEN(0)>1 ) || ( actualVEL(0)=1 && ( actualLIP-OPEN(0)=0
|| actualTT-OPEN(0)=0 || actualTB-OPEN(0)=0 ))))
1 ST Sonor(0) ({actualLTP-OPEN(0) <3 T one(0)= one(0)=
&8 !(LIPPhone(0)=0W2)) || (actual TT-OPEN(0)<3 && !(TTPhone(0)=EN)
&& !(TTPhone(0)=ER) && !(TTPhone(0)=AXR) && !(TTPhone(0)=EL))
Il (actual TB-OPEN(0)<3 && !(TBPhone(0)=AXR) && !(TBPhone(0)=EL)
&& |(TBPhone(0)=1Y) && !(TBPhone(0)=UW) && !(TBPhone(0)=0W2))) || hh(0)
0 syl Sonor(0) 1SC(0)
0 NG 3C(0) actual VEL{(0)=1 && ( actualLIP-OPEN(0)=0 || actual TT-OPEN{0)=0
| actualTB-OPEN(0)=0 )
0 LG SC(0) INC(0)  hh(0)
1 Stops {Sonor(0) clo(0) && Iclo(1)
0 123 TSTlence(0) TStops(0) ]| hh(0)
&& Sonor(0)
0 StriFy Fr(0) TT-LOC(0)=1
0 actualAALAY1.AO syl(0 TT-LOC(0)=1 && TT-OPEN(0)=5 && TB-LOC(0)=3 && TB-OPEN(0)=3
0 actualAE_AW1 syl(0 TT-LOC(0)=1 && TT-OPEN(0)=5 && TB-LOC(0)=1 && TB-OPEN(0)=5
0 actual AH.AX syl(0 TT-LOC(0)=1 && TT-OPEN(0)=4 && TB-LOC(0)=2 && TB-OPEN(0)=4
0 actual AW2_OW1.UH syl(0 TT-LOC(0)=2 && TT-OPEN(0)=5 && TB-LOC(0)=2 && TB-OPEN(0)=3
0 actual AXR syl(0 TT-LOC(0)=3
0 actualAY2JH_EY2.0Y2 | syl(0) TT-LOC(0)=1 && TT-OPEN(0)=3 && TB-LOC(0)=0 && TB-OPEN(0)=3
0 actual KH_-EY1 syl(0 TT-LOC(0)=1 && TT-OPEN(0)=4 && TB-LOC(0)=0 && TB-OPEN(0)=4
0 actuallY syl(0 TT-LOC(0)=1 && TT-OPEN(0)=3 && TB-LOC(0)=0 && TB-OPEN(0)=2
0 actualOW2_UW sy1(0 TT-LOC(0)=2 && TT-OPEN(0)=5 && TB-LOC(0)=1 && TB-OPEN(0)=2
0 actualOY1 syl(0 TT-LOC(0)=1 && TT—OPEN(E)=5 & & TB-LOC(0)=2 && TB-OPEN(0)=3
0 actualDX SC(0 TT-LOC(0)=TT.ALV && TT-OPEN(0)=2
0 "FrVBoundary nil Fr(0) && syl(1)
0 VFsBoundary il TY(0) && syl(-1)
0 StriFr VBoundary FrVBoundary(0) stri(0)
0 VStriFrBoundary VIrBoundary(0) stri(0)
0 SCVBoundary nil SC(0) && syl(1)
0 “V3SCTBoundary nil” S5C(0) && syl(-1)
0 NCVBoundary nil NC(0) && syl(1)
0 VNCBoundary nil NC(0) && syl(-1)
0 LGVBoundary nil LG(0) && syl(1)
0 VLGBoundary nil LG(0) && syl{-1)
0 VStBoundary nil clo(0) && syl(-1)
1 AspirationPreVocalic FrVBoundary(0) hh{0)
1 Stop VoicingPrevocalic Stops(0) voi(0)
1 ~StopVelarPrevocalic tops{0) actualTB-LOC(0)=TB_VEL &% actualTB-OPEN(0)=0
1 StopAlveolarPrevocalic Stops(0) actual TT-LOC(0)=TT.ALV && actualTT-OPEN(0)=0
1 StopLabialPrevocalic Stops{0) actualLIP-OPEN(0)=0
1 TricVoicingPrevocalic FrVBoundary(0) voi(0)
1 _FricStridentPrevocalic TFrVBoundary(0)_ stri(0
1 ~FricAnteriorPrevocalic StriFrVBoundary(0) | “actualTT-LOC(0)=TT.ALV

Table B.4: Mapping from articulatory features to distinctive features. Each row rep-
resents a variable. The first column indicates whether or not we have soft evidence for
the variable (in the form of likelihoods computed from SVM discriminant values). The
second column gives the name of the variable. The third column describes the context
in which the variable is relevant, expressed as a reqular expression over time-indexed
variables. Finally, the fourth column contains a regular expression giving the value of
the variable in terms of other previously-defined variables. For example, the variable
“VStBoundary” is one for which we do not have soft evidence, it is relevant in all
contezts (indicated by “nil” in the context column), and its value is 1 when “clo” is 1
in the current frame and “syl” is 1 in the previous frame; and “FricLabialPostvocalic”
is a variable for which we do have a classifier, it is relevant in frames corresponding
to vowel-fricative boundaries, and its value is 1 if “actualLIP-OPEN” is 1 (critical) in
the current frame. The variables for which we do not have SVMs are simply “helper”
variables, used to more concisely define reqular expressions for other variables.
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[CSE? [ variable context [ definition |
1 VowelHigh syl(0) actuallY(0) || actualOW2_UW{0)
1 LateralPrevocalic LGVBoundary(0) actual TT-LOC(0)=1 && actualTT-OPEN(0)=0 && actual TB-LOC(0)=2
&& actualTB-OPEN(0)=2
1 “RhoticPrevocalic LGVBoundary(0) actual 'T-LOC(0)=TT.RET
1 RoundPrevocalic LGVBoundary(0) actualLIP-OPEN(0)=2
1 YPrevocalic LGVBoundary(0 actual TB-LOC(0)=TB.PAL && actualTB-OPEN(0)=2
1 LateralPostvocalic VLGBoundary(0) actual 1 T-LOC(0)=1 && actualT T-OPEN(0)=0 && actualTB-LOC(0)=2
&& actualTB-OPEN(0)=2
1 “RhoticPostvocalic VLGBoundary(0) actualT T-LOC(0)=TT_RET
1 RoundPostvocalic VLGBoundary(0) actualLIP-OPEN(0)=2
1 “YPostvocalic VLGBoundary(0) actual TB-LOC(0)=TB_PAL && actualTB-OPEN(0)=2
1 StridentIsolated Fr(0) stri(0)
1 TricLabialPostvocalic VErBoundary(0) actual LIP-OPEN(0)=1
1 FricLabialPrevocalic FrVBoundary(0) actual LIP-OPEN(0)=1
1 Rhotic LG(0) actual 'T-LOC(0)=TT-RET_
1 Lateral LG(0) actualTT-LOC(0)=1 && actualTT-OPEN(0)=0 && actualTB-LOC(0)=2
&& actualTB-OPEN(0)=2
1 Round LG(0) actual LIP-OPEN(0)=2
1 Body LG(0) actual 1 B-LOC(0)=TB-PAL &% actualTB-OPEN(0)=2
1 VowelNasal syI(0) actual VEL(0)=1 && ( actual LTP-OPE actu
|| actual TB-OPEN(0)=0 )
1 VowelRhotic syl(0) actual ' T-LOC(0)=T1T_-RET _
1 VowelLateral syl(0) actual T T-LOC(0)=1 && actualT T-OPEN(0)=0 && actualTB-LOC(0)=2
&& actualTB-OPEN(0)=2
1 VowelRound syI(0) actualLIP-OPEN(0)=2
1 VowelBody syI(0) actualTB-LOC(0)=TB_PAL
1 VowelTenseHigh syl(0) actuallY(0) || actualEH_EY1(0) || actualOW2_UW(0) ][ actual AW2_OWI_UH(0)
1 VowelTenseLow syI(0)_ actual AA_AY1_AO(0) [| actualOY1(0) [ actualAE_AW1(0)
1 GlideAspiration “LG(0) voi(0)
1 Stop VoicingPostvocalic StBoundary(0) voi (0
1 FricPalatal ~Fr(0) actualTB-OPEN(0)=1 && actualTB-LOC(0)=TB._PAL
1 FricDental Fr(0) actualT T-OPEN(0)=1 actual - 0)=TT_DEN
1 FlapPrevocalic SCVBoundary(0) actualDX{0)
1 FlapPostvocalic ~VSCBoundary(0) actualDX(0)
1 FlapFrame SC(0) actualDX(0)
1 aaNasalization syI(0) actualVEL({0)=1
&& actual AA_AY1_AO(0)
1 aeNasalization syl(0) actualVEL{0)=1
&& actual AE_AW1(0)
1 axNasalization sylI(0) actual VEL(0)=1
& & actual AH_AX(0)
1 chNasalization syl(0) actualVEL(0)=1
&& actual EH_EY1(0)
1 ihNasalization syl(0) actual VEL(0)=1
&& actual AY2_TH_EY2.0Y2(0)
1 iyNasalization syl(0) actual VEL(0)=1
&& actuallY(0)
1 owNasalization 8yl(0) actual VEL(0)=1
&& actual AW2_.OW1_UH(0)
|| actualOW2_.UW(0)
1 oyNasalization syI(0) && actualOY1(0) actual VEL(0)=1
| actual AY2_IH_EY2.0Y2(0)
1 uwNasalization 8yl(0) && actualOW2_.UW(0) actual VEL(0)=1
1 "NasalPrevocalic SCVBoundary(0) NC(0)
1 NasalPostvocalic "VSCBoundary(0) NC(0)
1 NasalLabialPrevocalic NCVBoundary(0) actualLTP-OPEN(0)=0
1 NasalAlveolarPrevocalic NCVBoundary(0) actualT T-OPEN(0)=0 && actualTT-LOC(0)=TT-ALV
1 Nasal VelarPrevocalic NCVBoundary(0) actualTB-OPEN(0)=0 && actualTB-LOC(0)=TB_VEL
1 NasalLabialPostvocalic VNCBoundary(0) actualLIP-OPEN(0)=0
1 asalAlveolarPostvocalic | VNCBoundary(0) actual I'T-OPEN(0)=0 && actual T T-LOC(0)=TT-ALV _
1 NasalVelarPostvocalic VNCBoundary(0) actual TB-OPEN(0)=0 &Z& actualTB-LOC(0)=TB_VEL
1 FricVoicingPostvocalic VFrBoundary(0) voi(0)
1 FricStridentPostvocalic VFrBoundary(0) stri(0)
1 FricAnteriorPostvocalic VStriFrBoundary (0) actualTT-LOC(0)=TT.ALV
1 StopVelarPostvocalic VStBoundary(0) actual IB-LOC(0)=TB_VEL &Z& actual TB-OPEN{0)=0
1 StopAlveolarPostvocalic VStBoundary(0) actualTT-LOC(0)=TT.ALV && actualTT-OPEN(0)=0
1 StopLabialPostvocalic VStBoundary(0) actualLTP-OPEN(0)=0

Table B.5: Mapping from articulatory features to distinctive features, continued.
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