3,048 research outputs found

    Multi-Paradigm Reasoning for Access to Heterogeneous GIS

    Get PDF
    Accessing and querying geographical data in a uniform way has become easier in recent years. Emerging standards like WFS turn the web into a geospatial web services enabled place. Mediation architectures like VirGIS overcome syntactical and semantical heterogeneity between several distributed sources. On mobile devices, however, this kind of solution is not suitable, due to limitations, mostly regarding bandwidth, computation power, and available storage space. The aim of this paper is to present a solution for providing powerful reasoning mechanisms accessible from mobile applications and involving data from several heterogeneous sources. By adapting contents to time and location, mobile web information systems can not only increase the value and suitability of the service itself, but can substantially reduce the amount of data delivered to users. Because many problems pertain to infrastructures and transportation in general and to way finding in particular, one cornerstone of the architecture is higher level reasoning on graph networks with the Multi-Paradigm Location Language MPLL. A mediation architecture is used as a “graph provider” in order to transfer the load of computation to the best suited component – graph construction and transformation for example being heavy on resources. Reasoning in general can be conducted either near the “source” or near the end user, depending on the specific use case. The concepts underlying the proposal described in this paper are illustrated by a typical and concrete scenario for web applications

    Phase Synchronization in Railway Timetables

    Full text link
    Timetable construction belongs to the most important optimization problems in public transport. Finding optimal or near-optimal timetables under the subsidiary conditions of minimizing travel times and other criteria is a targeted contribution to the functioning of public transport. In addition to efficiency (given, e.g., by minimal average travel times), a significant feature of a timetable is its robustness against delay propagation. Here we study the balance of efficiency and robustness in long-distance railway timetables (in particular the current long-distance railway timetable in Germany) from the perspective of synchronization, exploiting the fact that a major part of the trains run nearly periodically. We find that synchronization is highest at intermediate-sized stations. We argue that this synchronization perspective opens a new avenue towards an understanding of railway timetables by representing them as spatio-temporal phase patterns. Robustness and efficiency can then be viewed as properties of this phase pattern

    Operations research in passenger railway transportation

    Get PDF
    In this paper, we give an overview of state-of-the-art OperationsResearch models and techniques used in passenger railwaytransportation. For each planning phase (strategic, tactical andoperational), we describe the planning problems arising there anddiscuss some models and algorithms to solve them. We do not onlyconsider classical, well-known topics such as timetabling, rollingstock scheduling and crew scheduling, but we also discuss somerecently developed topics as shunting and reliability oftimetables.Finally, we focus on several practical aspects for each of theseproblems at the largest Dutch railway operator, NS Reizigers.passenger railway transportation;operation research;planning problems

    Trip-Based Public Transit Routing

    Get PDF
    We study the problem of computing all Pareto-optimal journeys in a public transit network regarding the two criteria of arrival time and number of transfers taken. We take a novel approach, focusing on trips and transfers between them, allowing fine-grained modeling. Our experiments on the metropolitan network of London show that the algorithm computes full 24-hour profiles in 70 ms after a preprocessing phase of 30 s, allowing fast queries in dynamic scenarios.Comment: Minor corrections, no substantial changes. To be presented at ESA 201

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Efficient Route Planning in Flight Networks

    Get PDF
    We present a set of three new time-dependent models with increasing flexibility for realistic route planning in flight networks. By these means, we obtain small graph sizes while modeling airport procedures in a realistic way. With these graphs, we are able to efficiently compute a set of best connections with multiple criteria over a full day. It even turns out that due to the very limited graph sizes it is feasible to precompute full distance tables between all airports. As a result, best connections can be retrieved in a few microseconds on real world data

    Complex railway systems: capacity and utilisation of interconnected networks

    Get PDF
    Introduction Worldwide the transport sector faces several issues related to the rising of traffic demand such as congestion, energy consumption, noise, pollution, safety, etc. Trying to stem the problem, the European Commission is encouraging a modal shift towards railway, considered as one of the key factors for the development of a more sustainable European transport system. The coveted increase in railway share of transport demand for the next decades and the attempt to open up the rail market (for freight, international and recently also local services) strengthen the attention to capacity usage of the system. This contribution proposes a synthetic methodology for the capacity and utilisation analysis of complex interconnected rail networks; the procedure has a dual scope since it allows both a theoretically robust examination of suburban rail systems and a solid approach to be applied, with few additional and consistent assumptions, for feasibility or strategic analysis of wide networks (by efficiently exploiting the use of Big Data and/or available Open Databases). Method In particular the approach proposes a schematization of typical elements of a rail network (stations and line segments) to be applied in case of lack of more detailed data; in the authors’ opinion the strength points of the presented procedure stem from the flexibility of the applied synthetic methods and from the joint analysis of nodes and lines. The article, after building a quasiautomatic model to carry out several analyses by changing the border conditions or assumptions, even presents some general abacuses showing the variability of capacity/utilization of the network’s elements in function of basic parameters. Results This has helped in both the presented case studies: one focuses on a detailed analysis of the Naples’ suburban node, while the other tries to broaden the horizon by examining the whole European rail network with a more specific zoom on the Belgium area. The first application shows how the procedure can be applied in case of availability of fine-grained data and for metropolitan/regional analysis, allowing a precise detection of possible bottlenecks in the system and the individuation of possible interventions to relieve the high usage rate of these elements. The second application represents an on-going attempt to provide a broad analysis of capacity and related parameters for the entire European railway system. It explores the potentiality of the approach and the possible exploitation of different ‘Open and Big Data’ sources, but the outcomes underline the necessity to rely on proper and adequate information; the accuracy of the results significantly depend on the design and precision of the input database. Conclusion In conclusion, the proposed methodology aims to evaluate capacity and utilisation rates of rail systems at different geographical scales and according to data availability; the outcomes might provide valuable information to allow efficient exploitation and deployment of railway infrastructure, better supporting policy (e.g. investment prioritization, rail infrastructure access charges) and helping to minimize costs for users.The presented case studies show that the method allows indicative evaluations on the use of the system and comparative analysis between different elementary components, providing a first identification of ‘weak’ links or nodes for which, then, specific and detailed analyses should be carried out, taking into account more in depth their actual configuration, the technical characteristics and the real composition of the traffic (i.e. other elements influencing the rail capacity, such as: the adopted operating systems, the station traffic/route control & safety system, the elastic release of routes, the overlap of block sections, etc.)

    04261 Abstracts Collection -- Algorithmic Methods for Railway Optimization

    Get PDF
    From 20.06.04 to 25.06.04, the Dagstuhl Seminar 04261 ``Algorithmic Methods for Railway Optimization\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    • …
    corecore