3,289 research outputs found

    Event-driven grammars: Relating abstract and concrete levels of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-007-0051-2In this work we introduce event-driven grammars, a kind of graph grammars that are especially suited for visual modelling environments generated by meta-modelling. Rules in these grammars may be triggered by user actions (such as creating, editing or connecting elements) and in their turn may trigger other user-interface events. Their combination with triple graph transformation systems allows constructing and checking the consistency of the abstract syntax graph while the user is building the concrete syntax model, as well as managing the layout of the concrete syntax representation. As an example of these concepts, we show the definition of a modelling environment for UML sequence diagrams. A discussion is also presented of methodological aspects for the generation of environments for visual languages with multiple views, its connection with triple graph grammars, the formalization of the latter in the double pushout approach and its extension with an inheritance concept.This work has been partially sponsored by the Spanish Ministry of Education and Science with projects MOSAIC (TSI2005-08225-C07-06) and MODUWEB (TIN 2006-09678)

    Towards the uniform manipulation of visual and textual languages in AToM3

    Full text link
    This is an electronic version of the paper presented at the III Jornadas de Programación y Lenguajes, held in Alicante on 2003This paper presents the approach taken in the multi-paradigm tool AToM3 for the integration of textual and visual languages in a uniform framework. The tool is used for the modelling, analysis and simulation of complex (physical or software) systems, where each system component may have to be described using a different formalism. The different visual or textual formalisms can be described in the form of meta-models using graphical, high-level notations such as Entity Relationship or UML class diagrams. From these descriptions, AToM3 is able to generate a customized modelling tool for the specified formalism. Models at any meta-level are stored as attributed, typed graphs and thus can be manipulated (simulated, transformed, optimized, etc.) by attributed graph grammars. In the case of a textual notation, from the meta-model description a front-end parser is semi-automatically generated that transforms the textual models into abstract syntax graphs (instances of the meta-model), and thus can be manipulated in a uniform way with the other visual notations. To illustrate these concepts, we present an example in which we define a meta-model for Computational Tree Logic and generate visual and textual parsers for the formalism.We would like to aknowledge the Spanish Ministry of Science and Technology (project TIC2002-01948) for partially supporting this work

    Automating the transformation-based analysis of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-009-0114-yWe present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language in the form of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets. We also tackle the description of timing aspects in graph transformation rules, and its analysis through their automatic translation into Time Petri netsWork sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-02081/TIN) and by the Canadian Natural Sciences and Engineering Research Council (NSERC)

    Meta-modelling hybrid formalisms

    Full text link
    Proceedigns of 2004 IEEE International Symposium on Computer Aided Control Systems DesignPersonal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. S. Lacoste-Julien, H. Vangheluwe J. de Lara, and P. J. Mosterman, "Meta-modelling hybrid formalisms", 2004 IEEE International Symposium on Computer Aided Control Systems Design, Taipei, China, 2004, pp. 65-70This article demonstrates how meta-modelling can simplify the construction of domain-and formalism-specific modelling environments. Using AToM3 (a tool for multi-formalism and meta-modelling developed at McGill University), a model is constructed of a hybrid formalism, HS, that combines event scheduling constructs with ordinary differential equations. From this specification, an HS-specific visual modelling environment is synthesized. For the purpose of this demonstration, a simple hybrid model of a bouncing ball is modelled in this environment. It is envisioned that the future of modelling and simulation in general, and more specifically in hybrid dynamic systems design lies in domain-specific computer automated multi-paradigm modelling (CAMPaM) which combines multi-abstraction, multi-formalism, and meta-modelling. The small example presented in this article demonstrates the feasibility of this approac

    A UML/OCL framework for the analysis of fraph transformation rules

    Get PDF
    In this paper we present an approach for the analysis of graph transformation rules based on an intermediate OCL representation. We translate different rule semantics into OCL, together with the properties of interest (like rule applicability, conflicts or independence). The intermediate representation serves three purposes: (i) it allows the seamless integration of graph transformation rules with the MOF and OCL standards, and enables taking the meta-model and its OCL constraints (i.e. well-formedness rules) into account when verifying the correctness of the rules; (ii) it permits the interoperability of graph transformation concepts with a number of standards-based model-driven development tools; and (iii) it makes available a plethora of OCL tools to actually perform the rule analysis. This approach is especially useful to analyse the operational semantics of Domain Specific Visual Languages. We have automated these ideas by providing designers with tools for the graphical specification and analysis of graph transformation rules, including a backannotation mechanism that presents the analysis results in terms of the original language notation

    Triple patterns: Compact specifications for the generation of operational triple graph grammar rules

    Get PDF
    Proceedings of the Sixth International Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT 2007)Triple Graph Grammars (TGGs) allow the specification of high-level rules modelling the synchronized creation of elements in two graphs related through a correspondence graph. Low-level operational rules are then derived to manipulate concrete graphs. However, TGG rules may become unnecessarily verbose when elements have to be replicated from one graph to the other, and their actual derivation cannot exploit the presence of reoccurring patterns. Moreover they do not take advantage from situations in which a normal creation grammar for one of the graphs exists, from which TGG operational rules can be derived to build the other graph. We present an approach to generating TGG operational rules from normal ones, reducing the information needed to derive them, through the definition of Triple Patterns, a high-level, compact, declarative, and visual notation for the description of admissible structures in a triple graph. Patterns can be expressed with respect to classes defined in a meta-model, and instantiated with derived classes at the model level, thus exploiting the inheritance hierarchies. The application of the generated rules results into the (synchronized or batch) creation of the structures specified in the patterns. We illustrate these concepts by showing their application to the synchronized incremental construction of visual models and of their semantics.This work has been partially sponsored by the Spanish Ministry of Education and Science with projects MOSAIC (TSI2005-08225-C07-06) and MODUWEB (TIN 2006-09678), and the EC’s Human Potential Programme under contract HPRN-CT-2002-00275, SegraVis. The authors gratefully thank the referees for their useful suggestion

    Computer automated multi-paradigm modelling for analysis and design of traffic networks

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. H. Vangheluwe, and J. de Lara, "Computer automated multi-paradigm modelling for analysis and design of traffic networks", Proceedings of the 2004 Winter Simulation Conference, 2004, Volumen 1, Heidelberg, Germany, 2004Computer automated multiparadigm modelling (CAMPaM) is an enabler for domain-specific analysis and design. Traffic, a new untimed visual formalism for vehicle traffic networks, is introduced. The syntax of traffic models is meta-modelled in the entity-relationship diagrams formalism. From this, augmented with concrete syntax information, a visual modelling environment is synthesized using our CAMPaM tool AToM3, a tool for multiformalism and meta-modelling. The semantics of the traffic formalism is subsequently modelled by mapping traffic models onto Petri net models. As models' abstract syntax is graph-like, graph rewriting can be used to transform models. The advantages of a domain-specific formalism such as traffic as opposed to a generic formalism such as Petri nets are presented. We demonstrate how mapping onto Petri nets allows one to employ the vast array of Petri net analysis techniques. A coverability graph is generated and conservation analysis is automated by transforming this graph into an integer linear programming specificationJuan de Lara’s work has been partially sponsored by the Spanish Interdepartmental Commission of Science and Technology (CICYT), project number TIC2002-01948. Hans Vangheluwe gratefully acknowledges partial support for this work by a National Sciences and Engineering Research Council of Canada (NSERC) Individual Research Grant. The authors wish to thank Ms. Sokhom Pheng for her work on the Petri Net conservation analysis during her “Modelling and Simulation Based Design” project at McGill Universit

    Model transformation by graph transformation: A comparative study

    Full text link
    This is an electronic version of the paper presented at the Model Transformation in Practice, held in Montego Bay on 2005Graph transformation has been widely used for expressing model transformations. Especially transformations of visual models can be naturally formulated by graph transformations, since graphs are well suited to describe the underlying structures of models. Based on a common sample model transformation, four different model transformation approaches are presented which all perform graph transformations. At first, a basic solution is presented and crucial points of model transformations are indicated. Subsequent solutions focus mainly on the indicated problems. Finally, a first comparison of the chosen approaches to model transformation is presented where the main ingredients of each approach are summarized
    corecore