2,660 research outputs found

    Multiobjective scheduling for semiconductor manufacturing plants

    Get PDF
    Scheduling of semiconductor wafer manufacturing system is identified as a complex problem, involving multiple and conflicting objectives (minimization of facility average utilization, minimization of waiting time and storage, for instance) to simultaneously satisfy. In this study, we propose an efficient approach based on an artificial neural network technique embedded into a multiobjective genetic algorithm for multi-decision scheduling problems in a semiconductor wafer fabrication environment

    Development of Neurofuzzy Architectures for Electricity Price Forecasting

    Get PDF
    In 20th century, many countries have liberalized their electricity market. This power markets liberalization has directed generation companies as well as wholesale buyers to undertake a greater intense risk exposure compared to the old centralized framework. In this framework, electricity price prediction has become crucial for any market player in their decision‐making process as well as strategic planning. In this study, a prototype asymmetric‐based neuro‐fuzzy network (AGFINN) architecture has been implemented for short‐term electricity prices forecasting for ISO New England market. AGFINN framework has been designed through two different defuzzification schemes. Fuzzy clustering has been explored as an initial step for defining the fuzzy rules while an asymmetric Gaussian membership function has been utilized in the fuzzification part of the model. Results related to the minimum and maximum electricity prices for ISO New England, emphasize the superiority of the proposed model over well‐established learning‐based models

    A novel technique for load frequency control of multi-area power systems

    Get PDF
    In this paper, an adaptive type-2 fuzzy controller is proposed to control the load frequency of a two-area power system based on descending gradient training and error back-propagation. The dynamics of the system are completely uncertain. The multilayer perceptron (MLP) artificial neural network structure is used to extract Jacobian and estimate the system model, and then, the estimated model is applied to the controller, online. A proportional–derivative (PD) controller is added to the type-2 fuzzy controller, which increases the stability and robustness of the system against disturbances. The adaptation, being real-time and independency of the system parameters are new features of the proposed controller. Carrying out simulations on New England 39-bus power system, the performance of the proposed controller is compared with the conventional PI, PID and internal model control based on PID (IMC-PID) controllers. Simulation results indicate that our proposed controller method outperforms the conventional controllers in terms of transient response and stability

    Reinforcement Learning on Job Shop Scheduling Problems Using Graph Networks

    Full text link
    This paper presents a novel approach for job shop scheduling problems using deep reinforcement learning. To account for the complexity of production environment, we employ graph neural networks to model the various relations within production environments. Furthermore, we cast the JSSP as a distributed optimization problem in which learning agents are individually assigned to resources which allows for higher flexibility with respect to changing production environments. The proposed distributed RL agents used to optimize production schedules for single resources are running together with a co-simulation framework of the production environment to obtain the required amount of data. The approach is applied to a multi-robot environment and a complex production scheduling benchmark environment. The initial results underline the applicability and performance of the proposed method.Comment: 8 pages, pre-prin

    The Estimation of Product Standard Time by Artificial Neural Networks in the Molding Industry

    Get PDF
    Determination of exact standard time with direct measurement procedures is particularly difficult in companies which do not have an adequate environment suitable for time measurement studies or which produce goods requiring complex production schedules. For these companies new and special measurement procedures need to be developed. In this study, a new time estimation method based on different robust algorithms of artificial neural networks (ANNs) is developed. For the proposed method, the products that have similar production processes were chosen from among the whole product range within the cleansing department of a molding company. While using ANNs, to train the network, some of the chosen products' standard time that had been previously measured is used to estimate the standard time of the remaining products. The different ANN algorithms are trained and four of them, which are converged the data, are stated and compared in different architectures. In this way, it is concluded that this estimation method could be applied accurately in many similar processes using the relevant algorithms
    • 

    corecore