2,769 research outputs found

    Biomarkers to Localize Seizure from Electrocorticography to Neurons Level

    Get PDF

    On mapping epilepsy : magneto- and electroencephalographic characterizations of epileptic activities

    Get PDF
    Epilepsy is one of the most common neurological disorder, affecting up to 10 individuals per 1000 persons. The disorder have been known for several thousand years, with the first clinical descriptions dating back to ancient times. Nonetheless, characterization of the dynamics underlying epilepsy remains largely unknown. Understanding these patophysiological processes requires unifying both a neurobiological perspective, as well as a technically advanced neuroimaging perspective. The incomplete insight into epilepsy dynamics is reflected by the insufficient treatment options. Approximately 30% of all patients do not respond to anti-epileptic drugs (AEDs) and thus suffers from recurrent seizures despite adequate pharmacological treatments. These pharmacoresistant patients often undergo epilepsy surgery evaluations. Epilepsy surgery aims to resect the part of the brain that generates the epileptic seizure activity (seizure onset zone, SOZ). Nonetheless, up to 50% of all patients relapse after surgery. This can be due to incomplete mapping of both the SOZ and of other structures that might be involved in seizure initiation and propagation. Such cortical and subcortical structures are collectively referred to as the epileptic network. Historically, epilepsy was considered to be either a generalized disorder involving the entire brain, or a highly localized, focal, disorder. The modern technological development of both structural and functional neuroimaging has drastically altered this view. This development has made significant contributions to the now prevailing view that both generalized and focal epilepsies arise from more or less widespread pathological network pathways. Visualization of these pathways play an important role in the presurgical planning. Thus, both improved characterization and understanding of such pathways are pivotal in improvement of epilepsy diagnostics and treatments. It is evident that epilepsy research needs to stand on two legs: Both improved understanding of pathological, neurobiological and neurophysiological process, and improved neuroimaging instrumentation. Epilepsy research do not only span from visualization to understanding of neurophysiological processes, but also from cellular, neuronal, microscopic processes, to dynamical, large-scale network processes. It is well known that neurons involved in epileptic activities exhibit specific, pathological firing patterns. Genetic mutations resulting in neuronal ion channel defects can cause severe, and even lethal, epileptic syndromes in children, clearly illustrating a role for neuron membrane properties in epilepsy. However, cellular processes themselves cannot explain how epileptic seizures can involve, and propagate across, large cortical areas and generate seizure-specific symptomatologies. A strict cellular perspective can neither explain epilepsy-associated pathological interactions between larger distant regions in between seizures. Instead, the dynamical effects of cellular synchronization across both mesoscopic and macroscopic scales also need to be considered. Today, the only means to study such effects in human subjects are by combinations of neuroimaging modalities. However, as all measurement techniques, these exhibit individual limitations that affect the kind of information that can be inferred from these. Thus, once more we reach the conclusion that epilepsy research needs to rest upon both a neurophysiological/neurobiological leg, and a technical/instrumentational leg. In accordance with this necessity of a dual approach to epilepsy, this thesis covers both neurophysiological aspects of epileptic activity development, as well as functional neuroimaging instrumentation development with focus on epileptic activity detection and localization. Part 1 (neurophysiological part) is concerned with the neurophysiological dynamical changes that underlie development of so called interictal epileptiform discharges (IEDs) with special focus on the role of low-frequency oscillations. To this aim, both conventional magnetoencephalography (MEG) and intracranial electroencephalography (iEEG) with neurostimulation is analyzed. Part 2 (instrumentation part) is concerned with development of cutting-edge, novel on-scalp magnetoencephalography (osMEG) within clinical epilepsy evaluations and research with special focus on IEDs. The theses cover both modeling of osMEG characteristics, as well as the first-ever osMEG recording of a temporal lobe epilepsy patient

    An electronic neuromorphic system for real-time detection of High Frequency Oscillations (HFOs) in intracranial EEG

    Full text link
    In this work, we present a neuromorphic system that combines for the first time a neural recording headstage with a signal-to-spike conversion circuit and a multi-core spiking neural network (SNN) architecture on the same die for recording, processing, and detecting High Frequency Oscillations (HFO), which are biomarkers for the epileptogenic zone. The device was fabricated using a standard 0.18μ\mum CMOS technology node and has a total area of 99mm2^{2}. We demonstrate its application to HFO detection in the iEEG recorded from 9 patients with temporal lobe epilepsy who subsequently underwent epilepsy surgery. The total average power consumption of the chip during the detection task was 614.3μ\muW. We show how the neuromorphic system can reliably detect HFOs: the system predicts postsurgical seizure outcome with state-of-the-art accuracy, specificity and sensitivity (78%, 100%, and 33% respectively). This is the first feasibility study towards identifying relevant features in intracranial human data in real-time, on-chip, using event-based processors and spiking neural networks. By providing "neuromorphic intelligence" to neural recording circuits the approach proposed will pave the way for the development of systems that can detect HFO areas directly in the operation room and improve the seizure outcome of epilepsy surgery.Comment: 16 pages. A short video describing the rationale underlying the study can be viewed on https://youtu.be/NuAA91fdma

    One-shot Learning for iEEG Seizure Detection Using End-to-end Binary Operations: Local Binary Patterns with Hyperdimensional Computing

    Full text link
    This paper presents an efficient binarized algorithm for both learning and classification of human epileptic seizures from intracranial electroencephalography (iEEG). The algorithm combines local binary patterns with brain-inspired hyperdimensional computing to enable end-to-end learning and inference with binary operations. The algorithm first transforms iEEG time series from each electrode into local binary pattern codes. Then atomic high-dimensional binary vectors are used to construct composite representations of seizures across all electrodes. For the majority of our patients (10 out of 16), the algorithm quickly learns from one or two seizures (i.e., one-/few-shot learning) and perfectly generalizes on 27 further seizures. For other patients, the algorithm requires three to six seizures for learning. Overall, our algorithm surpasses the state-of-the-art methods for detecting 65 novel seizures with higher specificity and sensitivity, and lower memory footprint.Comment: Published as a conference paper at the IEEE BioCAS 201

    Diagnostic value of combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) in epilepsy.

    Get PDF
    Purpose: The main aim of the project is to estimate the value of combined TMS-EEG responses and EEG to increase the sensitivity and/or specificity of the routine EEG in the diagnosis of newly onset epilepsies. Methods: The project is a combined cross-sectional and longitudinal study involving 60 patients recruited from the First Seizure Clinic at Guy's and St Thomas Hospital NHS Foundation Trust who have had their first presumed epileptic seizure. All the participants had a sleep-deprived EEG (baseline EEG) followed by a combined TMS and EEG study (TMS-EEG). The EEG responses to TMS were visually analysed, looking for two different types of TMS-evoked responses or late responses: The delayed responses were assessed in the unprocessed EEG and the repetitive responses (RRs) after averaging the EEG signals synchronized with the TMS pulse. The late responses were compared between epileptic and non-epileptic patients, looking for responses associated with epilepsy. In patients where the baseline EEG was normal, the additional diagnostic value provided by TMS-EEG was estimated by their ability to predict the final diagnosis based on the clinical history and other tests. A quantitative analysis was performed to compare the power ratio in different frequency bands between epilepsy and no epilepsy cohorts and to select epilepsy-associated variables to generate a machine learning-based classification model for epilepsy prediction. Results: In patients with normal baseline EEG, abnormal TMS-EEG evoked responses (late responses) had no statistically significant association with the presence of epilepsy (Fisher’s exact test, p=0.063), but the late responses correctly classified as epilepsy the 36% of patients with a false-negative baseline EEG. The combined presence of late responses and interictal epileptiform discharges (IEDs) in TMS-EEG records has a higher sensitivity (74%) but lower specificity (85%) than baseline EEG alone. The grand average power-ratio differences between epilepsy and no-epilepsy cohorts were not statistically significant. The epilepsy-associated variables selected for machine learning-based classification were predominantly in the alpha-theta and gamma frequency ranges when TMS activation was present and, in the beta-gamma range with Sham. The TMS support vector machine (SVM)-classifier’s disease prediction over an independent cohort had a sensitivity of 83%. Conclusions: The TMS-EEG significantly increased the sensitivity of the baseline EEG and correctly classified as epilepsy approximately one-third of the patients with a false negative baseline EEG and a final clinical diagnosis of epilepsy. TMS stimulation modified the spectral and topographic properties of the epilepsy-associated variables used for disease detection with machine learning linear regression algorithms. The performance of the TMS SVM-classifier in the training cohort has a high sensitivity, high specificity and low misclassification rate. The TMS SVM-classifier performed better than the Sham as an epilepsy disease prediction model in an independent TMS-EEG cohort. The TMS SVM-classifier has a promising value for disease prediction in TMS-EEG datasets

    UNSUPERVISED CLASSIFICATION OF HIGH-FREQUENCY OSCILLATIONS IN NEOCORTICAL EPILEPSY AND CONTROL PATIENTS

    Get PDF
    Quality of life for the more than 15 million people with drug-resistant epilepsy is tied to how precisely the brain areas responsible for generating their seizures can be localized. High-frequency (100-500 Hz) field-potential oscillations (HFOs) are emerging as a candidate biomarker for epileptogenic networks, but quantitative HFO studies are hampered by selection bias arising out of the need to reduce large volumes of data in the absence of capable automated processing methods. In this thesis, I introduce and evaluate an algorithm for the automatic detection and classification of HFOs that can be deployed without human intervention across long, continuous data records from large numbers of patients. I then use the algorithm in analyzing unique macro- and microelectrode intracranial electroencephalographic recordings from human neocortical epilepsy patients and controls. A central finding is that one class of HFOs discovered by the algorithm (median bandpassed spectral centroid ~140 Hz) is more prevalent in the seizure onset zone than outside. The outcomes of this work add to our understanding of epileptogenic networks and are suitable for near-term translation into improved surgical and device-based treatments

    Link Prediction Investigation of Dynamic Information Flow in Epilepsy

    Get PDF
    This work was supported partly by the National Natural Science Foundation of China (Grant No.81460206 and No.81660298), Scientific Research Foundation for Doctors of Guizhou Medical University (No.Yuan Bo He J [2014] 003) and by the 2011 Collaborative Innovation Program of Guizhou Province (No. 2015–04 to ZZ).Peer reviewedPublisher PD

    Machine Learning and Statistical Analysis of Complex Mathematical Models: An Application to Epilepsy

    Get PDF
    The electroencephalogram (EEG) is a commonly used tool for studying the emergent electrical rhythms of the brain. It has wide utility in psychology, as well as bringing a useful diagnostic aid for neurological conditions such as epilepsy. It is of growing importance to better understand the emergence of these electrical rhythms and, in the case of diagnosis of neurological conditions, to find mechanistic differences between healthy individuals and those with a disease. Mathematical models are an important tool that offer the potential to reveal these otherwise hidden mechanisms. In particular Neural Mass Models (NMMs), which describe the macroscopic activity of large populations of neurons, are increasingly used to uncover large-scale mechanisms of brain rhythms in both health and disease. The dynamics of these models is dependent upon the choice of parameters, and therefore it is crucial to be able to understand how dynamics change when parameters are varied. Despite they are considered low-dimensional in comparison to micro-scale neural network models, with regards to understanding the relationship between parameters and dynamics NMMs are still prohibitively high dimensional for classical approaches such as numerical continuation. We need alternative methods to characterise the dynamics of NMMs in high dimensional parameter spaces. The primary aim of this thesis is to develop a method to explore and analyse the high dimensional parameter space of these mathematical models. We develop an approach based on statistics and machine learning methods called decision tree mapping (DTM). This method is used to analyse the parameter space of a mathematical model by studying all the parameters simultaneously. With this approach, the parameter space can efficiently be mapped in high dimension. We have used measures linked with this method to determine which parameters play a key role in the output of the model. This approach recursively splits the parameter space into smaller subspaces with an increasing homogeneity of dynamics. The concepts of decision tree learning, random forest, measures of importance, statistical tests and visual tools are introduced to explore and analyse the parameter space. We introduce formally the theoretical background and the methods with examples. The DTM approach is used in three distinct studies to: • Identify the role of parameters on the dynamic model. For example, which parameters have a role in the emergence of seizure dynamics? • Constrain the parameter space, such that regions of the parameter space which give implausible dynamic are removed. • Compare the parameter sets to fit different groups. How does the thalamocortical connectivity of people with and without epilepsy differ? We demonstrate that classical studies have not taken into account the complexity of the parameter space. DTM can easily be extended to other fields using mathematical models. We advocate the use of this method in the future to constrain high dimensional parameter spaces in order to enable more efficient, person-specific model calibration
    corecore