68,719 research outputs found

    Emerging cad and bim trends in the aec education: An analysis from students\u27 perspective

    Get PDF
    As the construction industry is moving towards collaborative design and construction practices globally, training the architecture, engineering, and construction (AEC) students professionally related to CAD and BIM became a necessity rather than an option. The advancement in the industry has led to collaborative modelling environments, such as building information modelling (BIM), as an alternative to computer-aided design (CAD) drafting. Educators have shown interest in integrating BIM into the AEC curriculum, where teaching CAD and BIM simultaneously became a challenge due to the differences of two systems. One of the major challenges was to find the appropriate teaching techniques, as educators were unaware of the AEC students’ learning path in CAD and BIM. In order to make sure students learn and benefit from both CAD and BIM, the learning path should be revealed from students’ perspective. This paper summarizes the background and differences of CAD and BIM education, and how the transition from CAD to BIM can be achieved for collaborative working practices. The analysis was performed on freshman and junior level courses to learn the perception of students about CAD and BIM education. A dual-track survey was used to collect responses from AEC students in four consecutive years. The results showed that students prefer BIM to CAD in terms of the friendliness of the user-interface, help functions, and self-detection of mistakes. The survey also revealed that most of the students believed in the need for a BIM specialty course with Construction Management (CM), Structure, and Mechanical-Electrical-Plumbing (MEP) areas. The benefits and challenges of both CAD and BIM-based software from students’ perspectives helps to improve the learning outcomes of CAD/BIM courses to better help students in their learning process, and works as a guideline for educators on how to design and teach CAD/BIM courses simultaneously by considering the learning process and perspectives of students. © 2018 The autho

    The mathematical components of engineering expertise: the relationship between doing and understanding mathematics

    Get PDF
    this paper are extracts from our interviews with engineers.) Where, then, is the complex mathematics that certainly exists in modern engineering? Throughout all aspects of engineering design, computer software has an overwhelming presence. Also, in the particular firm that we visited, there a small number of analytical specialists (a few per cent of the professional engineers employed) who act as consultants for the mathematical/analytical problems which the general design engineers cannot readily solve. (In general in structural engineering, such specialist work is often carried out by external consultants, eg. academic researchers

    Making the Co-operative School a Challenge Alternative: Social Reproduction Theory Revisited

    Get PDF
    While co-operative schools are different, there are different kinds of different schools. This essay examines the type of alternative co-operative schools are, using distinctions Philip A. Woods draws from Maori philosophy of education. While some may believe that co-operative schools are a challenge alternative — rather than a choice or assimilation alternative — because they promote co-operative values, I disagree. Given the structural link between schools and economy, the way we should determine whether co-operative schools are a challenge alternative to dominant mainstream schooling is by looking to the size and strength of the co-operative economy. Using the educational genesis of the Mondragon co-operatives as a paradigm case, and social reproduction theory as a lens, it is clear that the purpose of co-operative schools was and is to strengthen the co-operative economy. The co-operative economy right now is drastically smaller and weaker than the capitalist economy in England, and the number of co-operative schools emerging does not mean they are emerging as a challenge alternative to dominant schooling

    Overview of technologies for building robots in the classroom

    Get PDF
    This paper aims to give an overview of technologies that can be used to implement robotics within an educational context. We discuss complete robotics systems as well as projects that implement only certain elements of a robotics system, such as electronics, hardware, or software. We believe that Maker Movement and DIY trends offers many new opportunities for teaching and feel that they will become much more prominent in the future. Products and projects discussed in this paper are: Mindstorms, Vex, Arduino, Dwengo, Raspberry Pi, MakeBlock, OpenBeam, BitBeam, Scratch, Blockly and ArduBlock

    Teaching Construction in the Virtual University: the WINDS project

    No full text
    This paper introduces some of the Information Technology solutions adopted in Web based INtelligent Design Support (WINDS) to support education in A/E/C design. The WINDS project WINDS is an EC-funded project in the 5th Framework, Information Society Technologies programme, Flexible University key action. WINDS is divided into two actions: ·The research technology action is going to implement a learning environment integrating an intelligent tutoring system, a computer instruction management system and a set of co-operative supporting tools. ·The development action is going to build a large knowledge base supporting Architecture and Civil Engineering Design Courses and to experiment a comprehensive Virtual School of Architecture and Engineering Design. During the third year of the project, more than 400 students all over Europe will attend the Virtual School. During the next three years the WINDS project will span a total effort of about 150 man-years from 28 partners of 10 European countries. The missions of the WINDS project are: Advanced Methodologies in Design Education. WINDS drives a breakdown with conventional models in design education, i.e. classroom or distance education. WINDS implements a problem oriented knowledge transfer methodology following Roger Schank's Goal Based Scenario (GBS) pedagogical methodology. GBS encourages the learning of both skills and cases, and fosters creative problem solving. Multidisciplinary Design Education. Design requires creative synthesis and open-end problem definition at the intersection of several disciplines. WINDS experiments a valuable integration of multidisciplinary design knowledge and expertise to produce a high level standard of education. Innovative Representation, Delivery and Access to Construction Education. WINDS delivers individual education customisation by allowing the learner access through the Internet to a wide range of on-line courses and structured learning objects by means of personally tailored learning strategies. WINDS promotes the 3W paradigm: learn What you need, Where you want, When you require. Construction Practice. Construction industry is a repository of ""best practices"" and knowledge that the WINDS will profit. WINDS system benefits the ISO10303 and IFC standards to acquire knowledge of the construction process directly in digital format. On the other hand, WINDS reengineers the knowledge in up-to-date courses, educational services, which the industries can use to provide just-in-time rather than in-advance learning. WINDS IT Solutions The missions of the WINDS project state many challenging requirements both in knowledge and system architecture. Many of the solutions adopted in these fields are innovative; others are evolution of existing technologies. This paper focuses on the integration of this set of state-of-the-art technologies in an advanced and functionally sound Computer Aided Instruction system for A/E/C Design. In particular the paper deals with the following aspects: Standard Learning Technology Architecture The WINDS system relies on the in progress IEEE 1484.1 Learning Technology Standard Architecture. According to this standard the system consists of two data stores, the Knowledge Library and the Record Database, and four process: System Coach, Delivery, Evaluation and the Learner. WINDS implements the Knowledge Library into a three-tier architecture: 1.Learning Objects: ·Learning Units are collections of text and multimedia data. ·Models are represented in either IFC or STEP formats. ·Cases are sets of Learning Units and Models. Cases are noteworthy stories, which describes solutions, integrate technical detail, contain relevant design failures etc. 2.Indexes refer to the process in which the identification of relevant topics in design cases and learning units takes place. Indexing process creates structures of Learning Objects for course management, profile planning procedures and reasoning processes. 3.Courses are taxonomies of either Learning Units or a design task and Course Units. Knowledge Representation WINDS demonstrates that it is possible and valuable to integrate a widespread design expertise so that it can be effectively used to produce a high level standard of education. To this aim WINDS gathers area knowledge, design skills and expertise under the umbrellas of common knowledge representation structures and unambiguous semantics. Cases are one of the most valuable means for the representation of design expertise. A Case is a set of Learning Units and Product Models. Cases are noteworthy stories, which describe solutions, integrate technical details, contain relevant design failures, etc. Knowledge Integration Indexes are a medium among different kind of knowledge: they implement networks for navigation and access to disparate documents: HTML, video, images, CAD and product models (STEP or IFC). Concept indexes link learning topics to learning objects and group them into competencies. Index relationships are the base of the WINDS reasoning processes, and provide the foundation for system coaching functions, which proactively suggest strategies, solutions, examples and avoids students' design deadlock. Knowledge Distribution To support the data stores and the process among the partners in 10 countries efficiently, WINDS implements an object oriented client/server as COM objects. Behind the DCOM components there is the Dynamic Kernel, which dynamically embodies and maintains data stores and process. Components of the Knowledge Library can reside on several servers across the Internet. This provides for distributed transactions, e.g. a change in one Learning Object affects the Knowledge Library spread across several servers in different countries. Learning objects implemented as COM objects can wrap ownership data. Clear and univocal definition of ownerships rights enables Universities, in collaboration with telecommunication and publisher companies, to act as "education brokers". Brokerage in education and training is an innovative paradigm to provide just-in-time and personally customised value added learning knowledg

    Towards an Architecture for Semiautonomous Robot Telecontrol Systems.

    Get PDF
    The design and development of a computational system to support robot–operator collaboration is a challenging task, not only because of the overall system complexity, but furthermore because of the involvement of different technical and scientific disciplines, namely, Software Engineering, Psychology and Artificial Intelligence, among others. In our opinion the approach generally used to face this type of project is based on system architectures inherited from the development of autonomous robots and therefore fails to incorporate explicitly the role of the operator, i.e. these architectures lack a view that help the operator to see him/herself as an integral part of the system. The goal of this paper is to provide a human-centered paradigm that makes it possible to create this kind of view of the system architecture. This architectural description includes the definition of the role of operator and autonomous behaviour of the robot, it identifies the shared knowledge, and it helps the operator to see the robot as an intentional being as himself/herself
    • …
    corecore