9 research outputs found

    Straightening out planar poly-line drawings

    Full text link
    We show that any yy-monotone poly-line drawing can be straightened out while maintaining yy-coordinates and height. The width may increase much, but we also show that on some graphs exponential width is required if we do not want to increase the height. Likewise yy-monotonicity is required: there are poly-line drawings (not yy-monotone) that cannot be straightened out while maintaining the height. We give some applications of our result.Comment: The main result turns out to be known (Pach & Toth, J. Graph Theory 2004, http://onlinelibrary.wiley.com/doi/10.1002/jgt.10168/pdf

    Algorithms for Stable Matching and Clustering in a Grid

    Full text link
    We study a discrete version of a geometric stable marriage problem originally proposed in a continuous setting by Hoffman, Holroyd, and Peres, in which points in the plane are stably matched to cluster centers, as prioritized by their distances, so that each cluster center is apportioned a set of points of equal area. We show that, for a discretization of the problem to an n×nn\times n grid of pixels with kk centers, the problem can be solved in time O(n2log5n)O(n^2 \log^5 n), and we experiment with two slower but more practical algorithms and a hybrid method that switches from one of these algorithms to the other to gain greater efficiency than either algorithm alone. We also show how to combine geometric stable matchings with a kk-means clustering algorithm, so as to provide a geometric political-districting algorithm that views distance in economic terms, and we experiment with weighted versions of stable kk-means in order to improve the connectivity of the resulting clusters.Comment: 23 pages, 12 figures. To appear (without the appendices) at the 18th International Workshop on Combinatorial Image Analysis, June 19-21, 2017, Plovdiv, Bulgari

    Using ILP/SAT to Determine Pathwidth, Visibility Representations, and other Grid-Based Graph Drawings

    No full text
    We present a simple and versatile formulation of grid-based graph representation problems as an integer linear program (ILP) and a corresponding SAT instance. In a grid-based representation vertices and edges correspond to axis-parallel boxes on an underlying integer grid; boxes can be further constrained in their shapes and interactions by additional problem-specific constraints. We describe a general d-dimensional model for grid representation problems. This model can be used to solve a variety of NP-hard graph problems, including pathwidth, bandwidth, optimum \textit{st}-orientation, area-minimal (bar-\textit{k}) visibility representation, boxicity-k graphs and others. We implemented SAT-models for all of the above problems and evaluated them on the Rome graphs collection. The experiments show that our model successfully solves NP-hard problems within few minutes on small to medium-size Rome graphs

    Experimental Evaluation of a Branch and Bound Algorithm for computing Pathwidth

    Get PDF
    International audienceIt is well known that many NP-hard problems are tractable in the class of bounded pathwidth graphs. In particular, path-decompositions of graphs are an important ingredient of dynamic programming algorithms for solving such problems. Therefore, computing the pathwidth and associated path-decomposition of graphs has both a theoretical and practical interest. In this paper, we design a Branch and Bound algorithm that computes the exact pathwidth of graphs and a corresponding path-decomposition. Our main contribution consists of several non-trivial techniques to reduce the size of the input graph (pre-processing) and to cut the exploration space during the search phase of the algorithm. We evaluate experimentally our algorithm by comparing it to existing algorithms of the literature. It appears from the simulations that our algorithm offers a significative gain with respect to previous work. In particular, it is able to compute the exact pathwidth of any graph with less than 60 nodes in a reasonable running-time ( 10 min.). Moreover, our algorithm also achieves good performance when used as a heuristic (i.e., when returning best result found within bounded time-limit). Our algorithm is not restricted to undirected graphs since it actually computes the vertex-separation of digraphs (which coincides with the pathwidth in case of undirected graphs).Les décompositions en chemin de graphes sont très importants pour la conception d'algorithmes de programmation dynamique pour résoudre de nombreux problèmes NP-difficiles. Calculer la pathwidth et la décomposition en chemin correspondante sont donc d'un grand intérêt tant d'un point de vue théorique que pratique. Dans ce papier, nous proposons un algorithme de Branch and Bound qui calcule la pathwidth et une décomposition. Notre contribution principale réside dans les techniques que nous prouvons pour réduire la taille du graphe donné en entrée (prétraitement) et réduire la taille de l'espace d'exploration de la phase de recherche de l'algorithme. Nous évaluons expérimentalement notre algorithme en le comparant aux algorithmes proposés dans la littérature. Les simulations montrent que notre algorithme apporte un gain significatif par rapport aux algorithmes existants. Il est capable de calculer la valeur exacte de la pathwidth de tout graphe composé d'au plus 60 sommets en un temps raisonnable (moins de 10 minutes). De plus, notre algorithme montre de bonnes performances lorsqu'il est utilisé en heuristique (c'est-à-dire lorsqu'il retourne le meilleur résultat trouvé en un temps donné). Notre algorithme n'est pas spécifique au graphes non orientés car il permet de calculer la vertex-separation des digraphes (qui coïncide avec la pathwidth dans le cas des graphes non orientés)

    Graph Embeddings Motivated by Greedy Routing

    Get PDF

    Automatic Label Placement in Maps and Figures: Models, Algorithms and Experiments

    Get PDF
    corecore