9,259 research outputs found

    Improved determination of the atmospheric parameters of the pulsating sdB star Feige 48

    Full text link
    As part of a multifaceted effort to exploit better the asteroseismological potential of the pulsating sdB star Feige 48, we present an improved spectroscopic analysis of that star based on new grids of NLTE, fully line-blanketed model atmospheres. To that end, we gathered four high S/N time-averaged optical spectra of varying spectral resolution from 1.0 \AA\ to 8.7 \AA, and we made use of the results of four independent studies to fix the abundances of the most important metals in the atmosphere of Feige 48. The mean atmospheric parameters we obtained from our four spectra of Feige 48 are : Teff= 29,850 ±\pm 60 K, log gg = 5.46 ±\pm 0.01, and log N(He)/N(H) = -2.88 ±\pm 0.02. We also modeled for the first time the He II line at 1640 \AA\ from the STIS archive spectrum of the star and we found with this line an effective temperature and a surface gravity that match well the values obtained with the optical data. With some fine tuning of the abundances of the metals visible in the optical domain we were able to achieve a very good agreement between our best available spectrum and our best-fitting synthetic one. Our derived atmospheric parameters for Feige 48 are in rather good agreement with previous estimates based on less sophisticated models. This underlines the relatively small effects of the NLTE approach combined with line blanketing in the atmosphere of this particular star, implying that the current estimates of the atmospheric parameters of Feige 48 are reliable and secure.Comment: Accepted for publication in ApJ, April 201

    Spectroscopic Observation and Analysis of HII regions in M33 with MMT: Temperatures and Oxygen Abundances

    Full text link
    The spectra of 413 star-forming (or HII) regions in M33 (NGC 598) were observed by using the multifiber spectrograph of Hectospec at the 6.5-m Multiple Mirror Telescope (MMT). By using this homogeneous spectra sample, we measured the intensities of emission lines and some physical parameters, such as electron temperatures, electron densities, and metallicities. Oxygen abundances were derived via the direct method (when available) and two empirical strong-line methods, namely, O3N2 and N2. In the high-metallicity end, oxygen abundances derived from O3N2 calibration were higher than those derived from N2 index, indicating an inconsistency between O3N2 and N2 calibrations. We presented a detailed analysis of the spatial distribution of gas-phase oxygen abundances in M33 and confirmed the existence of the axisymmetric global metallicity distribution widely assumed in literature. Local variations were also observed and subsequently associated with spiral structures to provide evidence of radial migration driven by arms. Our O/H gradient fitted out to 1.1 R25R_{25} resulted in slopes of 0.17±0.03-0.17\pm0.03, 0.19±0.01-0.19\pm0.01, and 0.16±0.17-0.16\pm0.17 dex R251R_{25}^{-1} utilizing abundances from O3N2, N2 diagnostics, and direct method, respectively.Comment: Accepted for publication in Ap

    [Corrigendum to] Effects of small-scale turbulence on lower trophic levels under different nutrient conditions [vol 32, pg 197, 2010]

    Get PDF
    Small-scale turbulence affects the pelagic food web and energy flow in marine systems and the impact is related to nutrient conditions and the assemblage of organisms present. We generated five levels of turbulence (2*10 29 to 1*10 24 W kg 21 ) in land-based mesocosms (volume 2.6 m 3 ) with and without additional nutrients (31:16:1 Si:N:P m M) to asses the effect of small-scale turbulence on the lower part of the pelagic food web under different nutrient conditions. The ecological influence of nutrients and small-scale turbulence on lower trophic levels was quantified using multivariate statistics (RDA), where nutrients accounted for 31.8% of the observed biological variation, while 7.2% of the variation was explained by small-scale turbulence and its interaction with nutrients. Chlorophyll a, primary production rates, bacterial production rates and diatom and dinoflagellate abundance were positively correlated to turbulence, regardless of nutrient conditions. Abundance of autotrophic flagellates, total phytoplankton and bacteria were positively correlated to turbulence only when nutrients were added. Impact of small-scale turbulence was related to nutrient con- ditions, with implications for oligotrophic and eutrophic situations. The effect on community level was also different compared to single species level. Microbial processes drive biogeochemical cycles, and nutrient-controlled effects of small-scale turbulence on such processes are relevant to foresee altered carbon flow in marine systems

    Large-scale shock-ionized and photo-ionized gas in M83: the impact of star formation

    Full text link
    We investigate the ionization structure of the nebular gas in M83 using the line diagnostic diagram, [O III](5007 \degA)/H{\beta} vs. [S II](6716 \deg A+6731 \deg A)/H{\alpha} with the newly available narrowband images from the Wide Field Camera 3 (WFC3) of the Hubble Space Telescope (HST). We produce the diagnostic diagram on a pixel-by-pixel (0.2" x 0.2") basis and compare it with several photo- and shock-ionization models. For the photo-ionized gas, we observe a gradual increase of the log([O III]/H{\beta}) ratios from the center to the spiral arm, consistent with the metallicity gradient, as the H II regions go from super solar abundance to roughly solar abundance from the center out. Using the diagnostic diagram, we separate the photo-ionized from the shock-ionized component of the gas. We find that the shock-ionized H{\alpha} emission ranges from ~2% to about 15-33% of the total, depending on the separation criteria used. An interesting feature in the diagnostic diagram is an horizontal distribution around log([O III]/H{\beta}) ~ 0. This feature is well fit by a shock-ionization model with 2.0 Z\odot metallicity and shock velocities in the range of 250 km/s to 350 km/s. A low velocity shock component, < 200 km/s, is also detected, and is spatially located at the boundary between the outer ring and the spiral arm. The low velocity shock component can be due to : 1) supernova remnants located nearby, 2) dynamical interaction between the outer ring and the spiral arm, 3) abnormal line ratios from extreme local dust extinction. The current data do not enable us to distinguish among those three possible interpretations. Our main conclusion is that, even at the HST resolution, the shocked gas represents a small fraction of the total ionized gas emission at less than 33% of the total. However, it accounts for virtually all of the mechanical energy produced by the central starburst in M83.Comment: Accepted for publication in ApJ. aastex preprint 12pt, 21 pages, 13 figure

    Galaxy emission line classification using 3D line ratio diagrams

    Get PDF
    Two-dimensional (2D) line ratio diagnostic diagrams have become a key tool in understanding the excitation mechanisms of galaxies. The curves used to separate the different regions - HII-like or else excited by an active galactic nucleus (AGN) - have been refined over time but the core technique has not evolved significantly. However, the classification of galaxies based on their emission line ratios really is a multi-dimensional problem. Here we exploit recent software developments to explore the potential of three-dimensional (3D) line ratio diagnostic diagrams. We introduce a specific set of 3D diagrams, the ZQE diagrams, which separate the oxygen abundance and the ionisation parameter of HII region-like spectra, and which also enable us to probe the excitation mechanism of the gas. By examining these new 3D spaces interactively, we define a new set of 2D diagnostics, the ZE diagnostics, which can provide the metallicity of objects excited by hot young stars, and which cleanly separate HII region-like objects from the different classes of AGNs. We show that these ZE diagnostics are consistent with the key log[NII]/Hα\alpha vs. log[OIII]/Hβ\beta diagnostic currently used by the community. They also have the advantage of attaching a probability that a given object belongs to one class or to the other. Finally, we discuss briefly why ZQE diagrams can provide a new way to differentiate and study the different classes of AGNs in anticipation of a dedicated follow-up study.Comment: 21 pages, 15 figures, accepted for publication in ApJ. Due to size limitations, the supplementary STL file for the 3D-printable diagram is available here: http://www.mso.anu.edu.au/~fvogt/online_material.htm
    corecore