466 research outputs found

    Enhancing RGB-D SLAM Using Deep Learning

    Get PDF

    Geometric and photometric affine invariant image registration

    Get PDF
    This thesis aims to present a solution to the correspondence problem for the registration of wide-baseline images taken from uncalibrated cameras. We propose an affine invariant descriptor that combines the geometry and photometry of the scene to find correspondences between both views. The geometric affine invariant component of the descriptor is based on the affine arc-length metric, whereas the photometry is analysed by invariant colour moments. A graph structure represents the spatial distribution of the primitive features; i.e. nodes correspond to detected high-curvature points, whereas arcs represent connectivities by extracted contours. After matching, we refine the search for correspondences by using a maximum likelihood robust algorithm. We have evaluated the system over synthetic and real data. The method is endemic to propagation of errors introduced by approximations in the system.BAE SystemsSelex Sensors and Airborne System

    Variable Resolution & Dimensional Mapping For 3d Model Optimization

    Get PDF
    Three-dimensional computer models, especially geospatial architectural data sets, can be visualized in the same way humans experience the world, providing a realistic, interactive experience. Scene familiarization, architectural analysis, scientific visualization, and many other applications would benefit from finely detailed, high resolution, 3D models. Automated methods to construct these 3D models traditionally has produced data sets that are often low fidelity or inaccurate; otherwise, they are initially highly detailed, but are very labor and time intensive to construct. Such data sets are often not practical for common real-time usage and are not easily updated. This thesis proposes Variable Resolution & Dimensional Mapping (VRDM), a methodology that has been developed to address some of the limitations of existing approaches to model construction from images. Key components of VRDM are texture palettes, which enable variable and ultra-high resolution images to be easily composited; texture features, which allow image features to integrated as image or geometry, and have the ability to modify the geometric model structure to add detail. These components support a primary VRDM objective of facilitating model refinement with additional data. This can be done until the desired fidelity is achieved as practical limits of infinite detail are approached. Texture Levels, the third component, enable real-time interaction with a very detailed model, along with the flexibility of having alternate pixel data for a given area of the model and this is achieved through extra dimensions. Together these techniques have been used to construct models that can contain GBs of imagery data

    Build 3D Abstractions with Wireframes

    Get PDF
    This chapter serves as an introduction to 3D representations of scenes or Structure From Motion (SfM) from straight line segments. Lines are frequently found in captures of man-made environments, and in nature are mixed with more organic shapes. The inclusion of straight lines in 3D representations provide structural information about the captured shapes and their limits, such as the intersection of planar structures. Line based SfM methods are not frequent in the literature due to the difficulty of detecting them reliably, their morphological changes under changes of perspective and the challenges inherent to finding correspondences of segments in images between the different views. Additionally, compared to points, lines add the dimensionalities carried by the line directions and lengths, which prevents the epipolar constraint to be valid along a straight line segment between two different views. This chapter introduces the geometrical relations which have to be exploited for SfM sketch or abstraction based on line segments, the optimization methods for its optimization, and how to compare the experimental results with Ground-Truth measurements

    3-D Scene Reconstruction from Aerial Imagery

    Get PDF
    3-D scene reconstructions derived from Structure from Motion (SfM) and Multi-View Stereo (MVS) techniques were analyzed to determine the optimal reconnaissance flight characteristics suitable for target reconstruction. In support of this goal, a preliminary study of a simple 3-D geometric object facilitated the analysis of convergence angles and number of camera frames within a controlled environment. Reconstruction accuracy measurements revealed at least 3 camera frames and a 6 convergence angle were required to achieve results reminiscent of the original structure. The central investigative effort sought the applicability of certain airborne reconnaissance flight profiles to reconstructing ground targets. The data sets included images collected within a synthetic 3-D urban environment along circular, linear and s-curve aerial flight profiles equipped with agile and non-agile sensors. S-curve and dynamically controlled linear flight paths provided superior results, whereas with sufficient data conditioning and combination of orthogonal flight paths, all flight paths produced quality reconstructions under a wide variety of operational considerations

    Mitigating non-Lambertian surfaces issues in Stereo Matching with Neural Radiance Fields

    Get PDF
    Depth estimation from images has long been regarded as a preferable alternative compared to expensive and intrusive active sensors, such as LiDAR and ToF. The topic has attracted the attention of an increasingly wide audience thanks to the great amount of application domains, such as autonomous driving, robotic navigation and 3D reconstruction. Among the various techniques employed for depth estimation, stereo matching is one of the most widespread, owing to its robustness, speed and simplicity in setup. Recent developments has been aided by the abundance of annotated stereo images, which granted to deep learning the opportunity to thrive in a research area where deep networks can reach state-of-the-art sub-pixel precision in most cases. Despite the recent findings, stereo matching still begets many open challenges, two among them being finding pixel correspondences in presence of objects that exhibits a non-Lambertian behaviour and processing high-resolution images. Recently, a novel dataset named Booster, which contains high-resolution stereo pairs featuring a large collection of labeled non-Lambertian objects, has been released. The work shown that training state-of-the-art deep neural network on such data improves the generalization capabilities of these networks also in presence of non-Lambertian surfaces. Regardless being a further step to tackle the aforementioned challenge, Booster includes a rather small number of annotated images, and thus cannot satisfy the intensive training requirements of deep learning. This thesis work aims to investigate novel view synthesis techniques to augment the Booster dataset, with ultimate goal of improving stereo matching reliability in presence of high-resolution images that displays non-Lambertian surfaces

    Adaptive Vision Based Scene Registration for Outdoor Augmented Reality

    Get PDF
    Augmented Reality (AR) involves adding virtual content into real scenes. Scenes are viewed using a Head-Mounted Display or other display type. In order to place content into the user's view of a scene, the user's position and orientation relative to the scene, commonly referred to as their pose, must be determined accurately. This allows the objects to be placed in the correct positions and to remain there when the user moves or the scene changes. It is achieved by tracking the user in relation to their environment using a variety of technology. One technology which has proven to provide accurate results is computer vision. Computer vision involves a computer analysing images and achieving an understanding of them. This may be locating objects such as faces in the images, or in the case of AR, determining the pose of the user. One of the ultimate goals of AR systems is to be capable of operating under any condition. For example, a computer vision system must be robust under a range of different scene types, and under unpredictable environmental conditions due to variable illumination and weather. The majority of existing literature tests algorithms under the assumption of ideal or 'normal' imaging conditions. To ensure robustness under as many circumstances as possible it is also important to evaluate the systems under adverse conditions. This thesis seeks to analyse the effects that variable illumination has on computer vision algorithms. To enable this analysis, test data is required to isolate weather and illumination effects, without other factors such as changes in viewpoint that would bias the results. A new dataset is presented which also allows controlled viewpoint differences in the presence of weather and illumination changes. This is achieved by capturing video from a camera undergoing a repeatable motion sequence. Ground truth data is stored per frame allowing images from the same position under differing environmental conditions, to be easily extracted from the videos. An in depth analysis of six detection algorithms and five matching techniques demonstrates the impact that non-uniform illumination changes can have on vision algorithms. Specifically, shadows can degrade performance and reduce confidence in the system, decrease reliability, or even completely prevent successful operation. An investigation into approaches to improve performance yields techniques that can help reduce the impact of shadows. A novel algorithm is presented that merges reference data captured at different times, resulting in reference data with minimal shadow effects. This can significantly improve performance and reliability when operating on images containing shadow effects. These advances improve the robustness of computer vision systems and extend the range of conditions in which they can operate. This can increase the usefulness of the algorithms and the AR systems that employ them
    • 

    corecore