1,539 research outputs found

    Improving Hypernymy Extraction with Distributional Semantic Classes

    Full text link
    In this paper, we show how distributionally-induced semantic classes can be helpful for extracting hypernyms. We present methods for inducing sense-aware semantic classes using distributional semantics and using these induced semantic classes for filtering noisy hypernymy relations. Denoising of hypernyms is performed by labeling each semantic class with its hypernyms. On the one hand, this allows us to filter out wrong extractions using the global structure of distributionally similar senses. On the other hand, we infer missing hypernyms via label propagation to cluster terms. We conduct a large-scale crowdsourcing study showing that processing of automatically extracted hypernyms using our approach improves the quality of the hypernymy extraction in terms of both precision and recall. Furthermore, we show the utility of our method in the domain taxonomy induction task, achieving the state-of-the-art results on a SemEval'16 task on taxonomy induction.Comment: In Proceedings of the 11th Conference on Language Resources and Evaluation (LREC 2018). Miyazaki, Japa

    Learning to distinguish hypernyms and co-hyponyms

    Get PDF
    This work is concerned with distinguishing different semantic relations which exist between distributionally similar words. We compare a novel approach based on training a linear Support Vector Machine on pairs of feature vectors with state-of-the-art methods based on distributional similarity. We show that the new supervised approach does better even when there is minimal information about the target words in the training data, giving a 15% reduction in error rate over unsupervised approaches

    Inferring Concept Hierarchies from Text Corpora via Hyperbolic Embeddings

    Full text link
    We consider the task of inferring is-a relationships from large text corpora. For this purpose, we propose a new method combining hyperbolic embeddings and Hearst patterns. This approach allows us to set appropriate constraints for inferring concept hierarchies from distributional contexts while also being able to predict missing is-a relationships and to correct wrong extractions. Moreover -- and in contrast with other methods -- the hierarchical nature of hyperbolic space allows us to learn highly efficient representations and to improve the taxonomic consistency of the inferred hierarchies. Experimentally, we show that our approach achieves state-of-the-art performance on several commonly-used benchmarks

    Unsupervised Sense-Aware Hypernymy Extraction

    Full text link
    In this paper, we show how unsupervised sense representations can be used to improve hypernymy extraction. We present a method for extracting disambiguated hypernymy relationships that propagates hypernyms to sets of synonyms (synsets), constructs embeddings for these sets, and establishes sense-aware relationships between matching synsets. Evaluation on two gold standard datasets for English and Russian shows that the method successfully recognizes hypernymy relationships that cannot be found with standard Hearst patterns and Wiktionary datasets for the respective languages.Comment: In Proceedings of the 14th Conference on Natural Language Processing (KONVENS 2018). Vienna, Austri

    TiFi: Taxonomy Induction for Fictional Domains [Extended version]

    No full text
    Taxonomies are important building blocks of structured knowledge bases, and their construction from text sources and Wikipedia has received much attention. In this paper we focus on the construction of taxonomies for fictional domains, using noisy category systems from fan wikis or text extraction as input. Such fictional domains are archetypes of entity universes that are poorly covered by Wikipedia, such as also enterprise-specific knowledge bases or highly specialized verticals. Our fiction-targeted approach, called TiFi, consists of three phases: (i) category cleaning, by identifying candidate categories that truly represent classes in the domain of interest, (ii) edge cleaning, by selecting subcategory relationships that correspond to class subsumption, and (iii) top-level construction, by mapping classes onto a subset of high-level WordNet categories. A comprehensive evaluation shows that TiFi is able to construct taxonomies for a diverse range of fictional domains such as Lord of the Rings, The Simpsons or Greek Mythology with very high precision and that it outperforms state-of-the-art baselines for taxonomy induction by a substantial margin

    ExTaSem! Extending, Taxonomizing and Semantifying Domain Terminologies

    Get PDF
    We introduce EXTASEM!, a novel approach for the automatic learning of lexical taxonomies from domain terminologies. First, we exploit a very large semantic network to collect thousands of in-domain textual definitions. Second, we extract (hyponym, hypernym) pairs from each definition with a CRF-based algorithm trained on manuallyvalidated data. Finally, we introduce a graph induction procedure which constructs a full-fledged taxonomy where each edge is weighted according to its domain pertinence. EXTASEM! achieves state-of-the-art results in the following taxonomy evaluation experiments: (1) Hypernym discovery, (2) Reconstructing gold standard taxonomies, and (3) Taxonomy quality according to structural measures. We release weighted taxonomies for six domains for the use and scrutiny of the communit
    • …
    corecore