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Abstract

We introduce EXTASEM!, a novel approach for the au-
tomatic learning of lexical taxonomies from domain
terminologies. First, we exploit a very large seman-
tic network to collect thousands of in-domain textual
definitions. Second, we extract (hyponym, hypernym)
pairs from each definition with a CRF-based algorithm
trained on manually-validated data. Finally, we intro-
duce a graph induction procedure which constructs a
full-fledged taxonomy where each edge is weighted ac-
cording to its domain pertinence. EXTASEM! achieves
state-of-the-art results in the following taxonomy eval-
uation experiments: (1) Hypernym discovery, (2) Re-
constructing gold standard taxonomies, and (3) Taxon-
omy quality according to structural measures. We re-
lease weighted taxonomies for six domains for the use
and scrutiny of the community.

Introduction
Question Answering and Reasoning, as well as other ap-
plications in Artificial Intelligence and Natural Language
Processing (NLP), can benefit dramatically from seman-
tic knowledge. Many approaches for creating and formaliz-
ing this knowledge are based on domain ontologies, whose
backbone are lexical taxonomies (Navigli, Velardi, and Far-
alli 2011). The term taxonomy is used to refer to graph-like
hierarchical structures where concepts are nodes organized
over a predefined merging or splitting criterion (Hwang,
Grauman, and Sha 2012). For example, WordNet (Miller et
al. 1990) groups words into sets of super and subordinate
(is-a) relations. Taxonomies have proven beneficial for tasks
like Question Answering (Harabagiu, Maiorano, and Pasca
2003) or textual entailment (Glickman, Dagan, and Koppel
2005).

Prominent examples of projects leveraging taxonomic or-
ganization of knowledge are lexical databases like WordNet,
or knowledge-oriented endeavours aimed at taxonomizing
large information repositories, such as YAGO (Suchanek,
Kasneci, and Weikum 2007), WikiTaxonomy (Ponzetto and
Strube 2008) or the Wikipedia Bitaxonomy (WIBI) (Flati
et al. 2014). More recently, the first Semeval Task on Tax-
onomy Learning Evaluation (Bordea et al. 2015) aimed at
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providing a common evaluation benchmark for taxonomy
learning.

Previous methods for inducing taxonomic relations can
be (broadly) classified into linguistic or statistic. Linguistic
methods are those that, extending Hearst’s patterns (Hearst
1992), exploit linguistic evidence for unveiling hypernym
relations (Kozareva and Hovy 2010; Navigli, Velardi, and
Faralli 2011; Flati et al. 2014; Luu Anh, Kim, and Ng
2014). Other approaches are based purely on statistical
evidence and graph-based measures (Fountain and Lapata
2012; Alfarone and Davis 2015). However, none of these
approaches addressed explicitly the problem of ambiguity
and semantically-motivated domain pertinence, albeit a few
cases in which all this was tackled tangentially (Kozareva
and Hovy 2010; Velardi, Faralli, and Navigli 2013).

EXTASEM! is designed to bridge the gap between relation
extraction and graph construction, on one hand, and domain
pertinence on the other. Starting from a list of domain terms,
EXTASEM! induces a full-fledged taxonomy by leveraging
a large semantic network, from which high quality knowl-
edge in the form of textual definitions is retrieved for each
domain. Then, (hyponym, hypernym) pairs are extracted via
a Conditional Random Fields (CRF) based sequential clas-
sifier. Finally, a state-of-the-art vector space representation
of individual word senses is exploited for constructing a
domain taxonomy only made up of semantically pertinent
edges1. Our approach does not require a step for graph prun-
ing or trimming, a must in some of the systems mentioned
above.

In terms of taxonomy evaluation, EXTASEM! is able to
reliably reconstruct gold standard taxonomies of interdisci-
plinary domains such as Science, Terrorism or Artificial In-
telligence, as well as more specific ones like Food or Equip-
ment. In addition, it has the capacity to extend and semantify
an input taxonomy, i.e. increase its size and link many of its
nodes to a reference sense inventory.

Related Work
Building up on the pioneering work by (Hearst 1992) for
hypernym discovery, later methods have leveraged linguis-
tic regularities as a first step for taxonomy learning. Some
of these works include KnowItAll (Etzioni et al. 2005),

1Taxonomies available at http://taln.upf.edu/extasem.
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designed over tamplates for harvesting candidate instances
which are afterwards ranked via Mutual Information. An-
other well-known contribution exploits syntactic evidence
together with a probabilistic framework (Snow, Jurafsky,
and Ng 2006), using WordNet hypernym relations to learn
syntactic dependencies and introduce them as features into
a logistic regression classifier. Taxonomies can also be con-
structed combining syntactic dependencies and structural in-
formation present in Wikipedia such as hyperlinks (Flati et
al. 2014). Finally, (Kozareva and Hovy 2010) introduce the
double anchored method, which retrieves a priori disam-
biguated (hyponym, hypernym) pairs, as a first stage of a
graph-based taxonomy learning algorithm.

Taxonomy learning can also be cast as a clustering prob-
lem. For instance, (Hjelm and Buitelaar 2008) observe that
multilingual distributional evidence can be effectively used
for clustering terms hierarchically using the k-means algo-
rithm. Furthermore, (Liu et al. 2012) propose a “knowledge
+ context” hierarchical clustering approach, where key do-
main terms are extracted from a general-purpose Knowl-
edge Base (KB) and afterwards the web is used as source
for contextual evidence. Contextual evidence is also used in
(Luu Anh, Kim, and Ng 2014), who assign a taxonomic re-
lation to concept pairs according to predefined syntactic re-
lations over dependency trees, e.g. if two terms appear in a
Subject-Verb-Object pattern.

As for graph-based systems, (Fountain and Lapata 2012)
leverage hierarchical random graphs, modelling the proba-
bility of a given edge to exist in a target taxonomy. In the
case of OntoLearn ReLoaded (Velardi, Faralli, and Navigli
2013), syntactic evidence, distributional information and do-
main filtering are combined with a graph-based algorithm
to achieve an optimal branching for an initially dense tax-
onomy. Finally, (Alfarone and Davis 2015) combine infer-
ence based on distributional semantics with an approach to
remove incorrect edges, again aiming at an optimal non-
reduntant branching.

Resources
EXTASEM! operates on the back of two semantic knowl-
edge sources: BABELNET (Navigli and Ponzetto 2010) and
SENSEMBED (Iacobacci, Pilehvar, and Navigli 2015).

BabelNet We leverage BABELNET2 mainly as a definition
source. Our choice stems from the fact that it currently con-
stitutes the largest single multilingual repository of named
entities and concepts, containing around 14M synsets en-
riched with a set of definitions, available thanks to the seam-
less integration of resources such as Wikipedia, OmegaWiki,
Wiktionary, Wikidata and WordNet.

SENSEMBED EXTASEM! takes advantage of a vector
space representation of items, which is exploited to compute
the domain pertinence of a candidate edge to the taxonomy.
Current representations like word embeddings (Mikolov,
Yih, and Zweig 2013) or multi sense models (Neelakantan et
al. 2014) associate one or more vectors to individual words.
However, these are not represented in any reference sense

2http://babelnet.org

inventory, which we observe can provide significant sup-
port in term of is-a relations and domain pertinence. Hence,
since semantic information is crucial in the taxonomy learn-
ing task, we leverage SENSEMBED, a knowledge-based ap-
proach for obtaining latent continuous representations of in-
dividual word senses. It exploits the structured knowledge
of a large sense inventory along with the distributional in-
formation gathered from text corpora. SENSEMBED vectors
are trained on the English Wikipedia, with BABELNET as a
reference sense inventory.

Method
In this section, we describe the pipeline of EXTASEM! and
the resources enabling its semantic properties. Let Iϕ be a
set of terms in domain ϕ, where:
ϕ ∈ {Food,Equipment,Science,Chemical,AI,Terrorism}3

and let Tϕ be the final domain taxonomy, which can be de-
scribed as a directed acyclic graph. The root node of the tax-
onomy corresponds with a generic umbrella term of the tar-
get domain ϕ. This paper describes the procedure to learn
Tϕ from Iϕ.

Domain Definition Harvesting
Following previous work in Definition Extraction (Saggion
2004; Navigli and Velardi 2010), EXTASEM! extracts can-
didate hypernyms of terms by mining textual definitions re-
trieved from reliable knowledge sources. In this way we can
focus on the semantic coherence and the completeness of
the taxonomy we build with respect to both the addition of
novel terms and edges and the evaluation of their quality
against reference sense inventories. Moreover, by gathering
definitions from reliable knowledge sources we reduce the
risk of semantic drift in our taxonomy and the need of costly
and often imprecise pruning approaches. These approaches
are usually adopted when evidence is harvested from non-
curated data like the web (Kozareva and Hovy 2010) or the
output of Open Information Extraction (OIE) systems (Al-
farone and Davis 2015).

The first component of the EXTASEM! pipeline is the Do-
main Definition Harvesting (DDH) module. Given a domain
terminology Iϕ, the DDH module collects a corpus of do-
main definition sentences Dϕ retrieved from BABELNET
that constitutes our global definition repository.

The DDH module consists of two sequential phases (see
Figs. 1 and 2): the Computation of the Domain Pertinence
Score of Wiki-Categories (DDH-CatDPScore) and the Do-
main Definitions Gathering (DDH-DefGath). The DDH-
CatDPScore generates a list of Wikipedia Categories, each
one characterized by a score that quantifies its pertinence to
the domain of the input terminology Iϕ. Then, the DDH-
DefGath prunes further this list of Wikipedia Categories
with respect to their domain relevance and semantic coher-
ence and, then, exploits the pruned Category list to populate
the corpus of domain definition sentences (Dϕ). Hereafter
we describe each phase in detail.

3See the Evaluation section for the motivation behind the choice
of these domains.



Figure 1: DDH: DPS computation phase.

Figure 2: DDH: Domain Definitions Gathering phase.

DDH-CatDPScore (see Fig. 1): for each term τ belong-
ing to the input domain terminology Iϕ, we collect the BA-
BELNET synsetsBNτ that include the term τ as one of their
lexicalizations. Then, exploiting the Wikipedia Bitaxonomy
(Flati et al. 2014) integrated in BABELNET, for each set of
BABELNET synsets BNτ , we compute cats(BNτ ), i.e. the
set of Wikipedia Categories that include at least one BABEL-
NET synset in BNτ . We compute the Domain Pertinence
Score (DPS) of each Wikipedia Category CATn:

DPS(CATn) =
∑
τ∈Iϕ

{
1 if CATn ∈ cats(BNτ )

0 if CATn /∈ cats(BNτ )

The DPS of each Category is equal to the number of terms
τ that represent one of the lexicalizations of a BABELNET
synset included in the same Category (thus belonging to
BNτ ). We rely on the intuition that the greater the DPS of
a Category is, the higher is the relevance of that Category to
the domain of the terminology Iϕ. The output of the DDH-
CatDPScore phase is the list of all Wikipedia Categories that
have a DPS greater than zero.

DDH-DefGath (see Fig. 2): from the list of Wikipedia
Categories that have a DPS greater than zero, we filter out
those that include more than η synsets. We applied this pro-
cedure since we noted that often Wikipedia Categories that

include large amounts of synsets are one-size-fits-all reposi-
tories. These Categories may not be relevant to characterize
our domain of interest since they often group huge amounts
of semantically heterogeneous synsets, thus showing low se-
mantic coherence. Examples of these Categories are: Liv-
ing People or English Language Films. As a consequence
of the analysis of several cases, we empirically set the Cat-
egory exclusion threshold η to 1000. From the filtered list
of Categories, we select the κ Categories with the highest
DPS (top-κ). From each BABELNET synset that is included
in a top-κ Category or one of its sub-Categories, we col-
lect all the full-sentence definitions in BABELNET (which
includes Wikipedia, WikiData, OmegaWiki, WordNet, and
Wiktionary definitions). In all the experiments reported in
this paper, we set κ equal to 10. The set of full-sentence
definitions we collect constitutes our corpus of domain defi-
nition sentences Dϕ.

Hypernym Extraction
A core component of our pipeline is the Hypernym Extrac-
tion (HE) module. Given a textual definition dτ ∈ Dϕ, we
obtain the longest and most specific hypernym of τ . Then,
exploiting the syntactic structure of each multiword hyper-
nym, we propose a hypernym-decomposition step for in-
creasing the depth of the graph, which is preferred in tax-
onomy learning (Navigli, Velardi, and Faralli 2011).

We cast HE as a sequential classification problem where,
for each word, our model predicts whether such word is at
the beginning of (B), inside of (I) or outside (O) a hyper-
nym (single or multiword). Recall that at this stage we have
extracted many definitions in the form of both full defini-
tional sentences and glosses. For full sentence definitions
(like the ones in Wikipedia), we trained a model with the
WCL corpus, a manually validated dataset (Navigli, Ve-
lardi, and Ruiz-Martı́nez 2010). It contains about 2000 sen-
tences, including definitions annotated following the genus
et differentia model, and what the authors called syntacti-
cally plausible false definitions, i.e. sentences that include a
domain term but are not properly defining it. For dictionary-
style glosses, we manually annotated the hypernym of 500
glosses from WordNet. These glosses came from domains
unrelated to the ones in which the experiments were per-
formed.

Prior to training, data is preprocessed and parsed with
a dependency parser (Bohnet 2010). We follow (Espinosa-
Anke, Saggion, and Ronzano 2015) and apply a combina-
tion of linguistic and statistic features. They are used to
train a Conditional Random Fields (Lafferty, McCallum, and
Pereira 2001) model4 with a word-level context window of
[3, -3]. This window is designed to capture definition trig-
gers (e.g. is a or constitutes a) as well as recurrent key
phrases at definiens position (e.g. which is considered or fa-
mous for).

The model is applied to Dϕ to extract a set Hϕ of (hy-
ponym, hypernym) pairs. At this stage, τ may be associ-
ated with more than one hypernym, as we may extract sev-
eral candidates from different definition sources. For ex-

4CRF++: http://crfpp.googlecode.com/



ample, for τ = TRUFFLE, extracted candidates are CONFEC-
TION, GANACHE CENTER, and CHOCOLATE CANDY. Note that
GANACHE CENTER is a wrong hypernym for TRUFFLE, and
will eventually be pruned out.

Fine-Graining Hyponym - Hypernym Pairs
We propose a hypernym decomposition heuristic over the
syntactic dependencies in a definition dτ . In dependency
grammar, a sentence is represented as a lexical tree where
words depend on each other in various ways (Francom and
Hulden 2008). We exploit this linguistic structure to: (1) Ex-
tract from the sentence the dependency subtree rooted at
the head of the hypernym candidate; (2) Remove one mod-
ifier at a time until the hypernym candidate consists only
of one token. A syntactic constraint is introduced to retain
only relevant modifiers, i.e. only nouns, adjectives and verbs
are kept. This procedure outputs a finer-grained set of rela-
tions, denoted as H′

ϕ. For example, JAPANESE SNACK FOOD

7→ {JAPANESE SNACK FOOD, SNACK FOOD, FOOD}.5
After the hypernym decomposition step, we construct

a set of candidate paths Pϕ from H′
ϕ. A candidate path

pϕτ ∈ Pϕ is defined as a path from a term node τ to the root
node ϕ, and includes as intermediate nodes those created
during the syntactic decomposition step. From our previous
example, {JAPANESE SNACK FOOD, SNACK FOOD, FOOD} 7→
{JAPANESE SNACK FOOD → SNACK FOOD → FOOD}6. In the
following section, we explain how EXTASEM! constructs a
domain-pertinent taxonomy from Pϕ.

Path Weighting and Taxonomy Induction
We expect good paths to be relevant to the domain. We
could model this relevance in terms of syntactic evidence
(Luu Anh, Kim, and Ng 2014), frequency in knowledge gen-
erated by OIE systems (Alfarone and Davis 2015) or the web
(Kozareva and Hovy 2010). However, recent work in vec-
torial representations of semantically-enhanced items has
shown state-of-the-art performance in several word similar-
ity and word relatedness tasks (Camacho-Collados, Pilehvar,
and Navigli 2015). This suggests that these representations
may be much more suitable for our semantics-intensive path
weighting policy. Thus, we incorporate a module based on
SENSEMBED, which operates on the back of a sense inven-
tory S with a corresponding vector space Γ.

We model the relevance of pϕτ to ϕ (e.g. Food or Chem-
ical) by computing its domain pertinence. This is given by
the weighting function w(·), computed as the cumulative se-
mantic similarity between each node n ∈ pϕτ and ϕ. We
first gather all the available senses in S of both n and ϕ,
namely S(n) = {sn1 , ..., snm} and S(ϕ) = {sϕ1 , ..., sϕz},
and we retrieve from Γ the corresponding sets of vectors
V (n) = {vn1 , ..., vnm} and V (ϕ) = {vϕ1 , ..., vϕz}. Our
aim now is to assign to n the closest sense to ϕ so that, for
instance, for the node apple, the correct sense in the Food
domain will be that of the fruit, and not that of the company.

5A manual analysis over a random sample of 100 edges in the
AI domain showed that compositionality failed in less than 6% of
the cases.

6Henceforth, we denote edges as term→hypernym.

Next, we compare each possible pair of senses and select
the one maximizing the cosine similarity COS between their
corresponding vectors:

COS (n, ϕ) = maxvn∈V (n),vϕ∈V (ϕ)
vn · vϕ
||vn||||vϕ||

Then, we weigh each path as follows:

w(pϕτ ) =
∑

l∈L(pϕτ )

COS(l, ϕ)

where L(pϕτ ) is the set of linkable nodes in a path, i.e. those
nodes with at least one vector representation associated with
them.

This yields PϕW , a weighted set of candidate edges. For
instance, {(MIKADO→JAPANESE SNACK FOOD), (JAPANESE

SNACK FOOD→SNACK FOOD), (SNACK FOOD→FOOD)}w=0.3.
Finally, the taxonomy induction module generates a full-
fledged semantified taxonomy Tϕ with many intermediate
nodes which were not present in Iϕ, as well as a large num-
ber of novel non-redundant edges. This last step is described
in Alg. 1. We empirically set a threshold θ to .135, and apply
it over all domains.

Algorithm 1 Taxonomy Induction
Input: Threshold θ, weighted paths PϕW
Output: Disambiguated domain taxonomy Tϕ

/*A(term,Tϕ) denotes the set of ancestors of term in Tϕ */
Tϕ = ∅
for ρϕτ ∈ P

ϕ
W do

if w(ρϕτ ) > θ then
for (term, hyp) ∈ ρϕτ do

if hyp /∈ A(term,Tϕ) then
Tϕ = Tϕ ∪ {term→ hyp}

return Tϕ

Evaluation
Evaluating the quality of lexical taxonomies is an extremely
difficult task, even for humans (Kozareva, Hovy, and Riloff
2009). This is mainly because there is not a single way
to model a domain of interest (Velardi, Faralli, and Nav-
igli 2013), and even a comparison against a gold standard
may not reflect the true quality of a taxonomy, as gold stan-
dard taxonomies are not complete. This is especially rele-
vant in multidisciplinary and evolving domains such as Sci-
ence (Bordea et al. 2015). Thus, we evaluated EXTASEM!
from two different standpoints, namely: (1) Reconstructing
a gold-standard taxonomy; and (2) Taxonomy quality. We
used the following data for our experiments:

1. TExEval 2015: We evaluated on Semeval-2015 Task 17
(TExEval) domains: Science (sci.), Food (food), Equip-
ment (equip.) and Chemical (chem.). For each domain,
two terminologies and their corresponding gold standard
taxonomies were available. Such gold standards came
from both domain-specific sources (e.g. for chem., the



ChEBI taxonomy7) and the WordNet subgraph rooted at
the domain concept (e.g. the WordNet subtree rooted at
chemical in the case of chem.). Note that since WordNet is
integrated in BABELNET, evaluation over WordNet gold
standard would artificially favour our approach, so we de-
cided to only evaluate on the domain-specific taxonomies.
We compared our results against the taxonomies produced
by task participants.

2. Additional multidisciplinary domains: We assessed the
EXTASEM! taxonomies in the domains of Artificial Intel-
ligence (AI) (Velardi, Faralli, and Navigli 2013) and Ter-
rorism (terr.) (Luu Anh, Kim, and Ng 2014). For the same
fairness reason as above, we avoid domains covered in
previous work where the gold standard comes from Word-
Net, such as Animals, Plants and Vehicles, used in (Ve-
lardi, Faralli, and Navigli 2013; Kozareva and Hovy 2010;
Alfarone and Davis 2015).

Food Science Chem. Equip.

P R F P R F P R F P R F

INRIASAC .18 .51 .27 .17 .44 .25 .08 .09 .09 .26 .49 .34

LT3 .28 .29 .29 .40 .38 .39 - - - .70 .32 .44

ntnu .07 .05 .06 .05 .04 .04 .02 .002 .001 .01 .006 .009

QASSIT .06 .06 .06 .20 .22 .21 - - - .24 .24 .24

TALN-UPF .03 .03 .03 .07 .25 .11 - - - .14 .15 .15

USAARWLV .15 .26 .20 .18 .37 .24 .07 .09 .08 .41 .36 .39

EXTASEM! .28 .66 .39 .27 .32 .29 .05 .02 .03 .51 .56 .54

Table 1: Comparative edge-level Precision, Recall and F-
measure scores. Refer to (Bordea et al. 2015) for a descrip-
tion of each of the systems listed.

Reconstructing a Gold Standard
Experiment 1 - TExEval 2015 The taxonomies generated
by EXTASEM! are compared against participant systems in
TExEval. The evaluation criterion in this experiment is to
assess how well systems can replicate a gold standard in any
of the four evaluated domains. This is done via Precision,
Recall and F-Score at edge level.

EXTASEM! ranks first in half of the domains (Table 1),
and second and third in Science and Chemical respectively.
Note that if we average the results of all the systems par-
ticipating in this experiment across the four domains, our
approach ranks first (F=0.31, the second best system being
LT3 with F=0.28).

Experiment 2 - Evaluation of a Subsample The Cumu-
lative Fowlkes&Mallows Measure (CFM) (Velardi, Faralli,
and Navigli 2013) has become a de-facto standard for eval-
uating lexical taxonomies against ground truth. It was intro-
duced as a rework of the original Fowlkes&Mallows mea-
sure (Fowlkes and Mallows 1983), and was used as one of
the evaluation criteria in TExEval 2015. This measure as-
signs a score between 0 and 1 according to how well a sys-
tem clusters similar nodes at different cut levels.

7https://www.ebi.ac.uk/chebi/

In this experiment, we took advantage of extensive hu-
man input, and asked domain experts to reconstruct a sample
of 100 concepts from taxonomies produced by EXTASEM!.
The reason for having a sample of 100 terms is that it is a
compact enough sample to avoid the “messy organization”
previous authors have reported (Velardi, Faralli, and Navigli
2013; Kozareva and Hovy 2010), while being a larger sam-
ple than experiments performed similarly, e.g. in (Fountain
and Lapata 2012), where the terminologies given to human
judges were only of 12 terms.

For each 100-term sample, a domain expert was asked to
order hierarchically as many concepts as possible, but was
allowed to leave out any node if it was considered noisy. We
used these expert taxonomies as gold standard. We also eval-
uated a baseline method based on substring inclusion con-
sisting in creating a hyponym→hypernym pair between two
terms if one is prefix or suffix substring of the other. Table 2
shows results in terms of edge overlap (RECALL) and CFM.
The agreement between EXTASEM! and human experts was
high, performing much better than the baseline.

Baseline EXTASEM!
RECALL CFM RECALL CFM

Food 0.49 0.02 0.79 0.50
Science 0.22 0.01 0.57 0.64
Equip. 0.43 0.01 0.773 0.506
Terr. 0.54 0.07 0.697 0.274
AI 0.51 0.02 0.771 0.497

Table 2: CFM for domain 100-term gold standard compari-
son.

Taxonomy Quality
Experiment 1 - Structural Evaluation
According to (Bordea et al. 2015), the purpose of taxonomy
structural evaluation is to: (1) Quantify its size in terms of
nodes and edges; (2) Assess whether all components are
connected; and (3) Quantify semantic richness in terms of
proportion of intermediate nodes versus leaf nodes (which
are considered less important). Thus, we compare automatic
taxonomies produced by EXTASEM! with gold standard
taxonomies from TExEval 2015 (TEXE) in all domains, as
well as automatic taxonomies produced in Artificial Intel-
ligence (AI) (Velardi, Faralli, and Navigli 2013) and Ter-
rorism (terr.) (Luu Anh, Kim, and Ng 2014). We evaluated
over these parameters: Number of nodes (NODES); number
of edges (EDGES); number of connected components (C.C);
number of intermediate nodes, i.e. those which are neither
root or leaf nodes (I.N); maximum depth of the taxonomy
(MD); and average depth (AD).

EXTASEM! produces bigger taxonomies with more inter-
mediate nodes in three out of four TExEval domains. This
does not affect negatively the structural properties of these
taxonomies, as they also improve in terms of MD and are
only slightly behind in AD in some domains. The case of
the Science domain is remarkable, where the automatic EX-
TASEM! taxonomy shows greater AD than the gold stan-



FOOD SCIENCE EQUIPMENT CHEMICAL TERRORISM ARTIFICIAL INTELLIGENCE

TEXE EXTASEM! TEXE EXTASEM! TEXE EXTASEM! TexE. EXTASEM! Luu Ahn et al EXTASEM! Velardi et al EXTASEM!

NODES 1556 3647 452 2124 612 2062 17584 4932 123 510 2388 1556
EDGES 1587 3930 465 2243 615 2214 24817 5355 243 548 2386 1610
C.C 1556 3647 452 2124 612 2062 17584 4932 N.A 510 2386 1556
I.N 69 1980 53 611 57 995 3349 2051 N.A 292 747 730
MD 6 9 5 8 6 9 18 8 N.A 7 13 7
AD 3.8 3.6 3.7 3.9 3.6 3.5 9 3.7 N.A 3.4 6.7 3.5

Table 3: Taxonomy structure results.

dard. The one domain that poses most difficulties for our
approach is Chemical due to the low coverage this domain
has in BABELNET.

As for comparison against automatic taxonomies, while
AD and MD are lower than Velardi et al.’s OntoLearn
Reloaded, note that in their approach many upper-level (not
domain-specific) nodes are introduced, which are described
as “general enough to fit most domains”8. Finally, our eval-
uation suggests that the Terrorism taxonomy in (Luu Anh,
Kim, and Ng 2014) does not have all the components con-
nected. We therefore report statistics on its biggest con-
nected subgraph. Additionally, since it was not constructed
on the back of an umbrella root node, we do not report
numbers on depth. This reflects the complexity of the tax-
onomy learning task, where perfectly valid domain-specific
taxonomies may be shaped as trees or as directed acyclic
graphs, with or without root nodes. Full domain-wise details
are provided in Table 3.

Experiment 2 - Hypernym Extraction
We considered WIBI as our main competitor in the task of
hypernym extraction due to the similarities in terms of (hy-
ponym, hypernym) extraction from a definition setting.

For each domain, two experts were presented with 100
randomly sampled terms and two possible hypernyms, the
hypernym selected by EXTASEM! and the one from WIBI.
Each pair was shuffled to prevent evaluators from guessing
which could be the source. For each pair of hypernym candi-
dates, evaluators had to decide which of the two options con-
stituted a valid hypernym in the given domain. They were
allowed to leave this field blank for both systems. If both the
hypernyms in WIBI and EXTASEM! were valid, evaluators
were asked to decide which system offered the best hyper-
nym (or both if it was the same), and for this we asked them
to consider the hypernym’s semantic relatedness and close-
ness to the hyponym, as well as relevance to the domain. For
example, for the hyponym CHUPA CHUPS, we would prefer
LOLLIPOP over COMPANY in the Food domain, even if strictly
speaking both options would be valid. We computed inter-
rater agreement with the Cohen’s Kappa metric over the
valid and best classes, with average results of 0.53 and 0.36.

The results in Table 4 suggest that in general the hy-
pernyms extracted with our procedure are better, i.e. more
appropriate to the domain and more informative, than the

8Some of these nodes are abstraction, entity, event or act.

FOOD SCIENCE EQUIPMENT

Valid Best Valid Best Valid Best

WIBI 0.85 0.29 0.85 0.39 0.84 0.3

EXTASEM! 0.94 0.91 0.91 0.83 0.90 0.83

CHEMICAL AI TERRORISM

Valid Best Valid Best Valid Best

WIBI 0.75 0.03 0.76 0.39 0.79 0.24

EXTASEM! 0.64 0.32 0.84 0.80 0.78 0.73

Table 4: Human judgement on the quality of the hypernymic
relations provided by WIBI and EXTASEM! for 6 domains.

ones extracted from the syntactically-motivated heuristic de-
scribed in (Flati et al. 2014).

Conclusion and Future Work
We have presented EXTASEM!9, a system that constructs
a domain-specific semantically rich taxonomy from an in-
put terminology. It consists of three main modules, namely:
(1) Domain Definition Harvesting, where BABELNET and
WIBI are leveraged in order to obtain a significant amount
of definitional evidence; (2) Hypernym Extraction and De-
composition, based on a CRF-based sequential classifier
and a syntactically-motivated hypernym decomposition al-
gorithm; and (3) Path Disambiguation and Graph Induction,
on the back of SENSEMBED, a state-of-the-art vector space
representation of individual word senses.

Parting ways from previous approaches in which is-a re-
lation evidence was gathered from non curated data like the
web or OIE systems, EXTASEM! explicitly tackles the se-
mantics of each candidate (hyponym, hypernym) pair, as
well as its pertinence to the target domain.

EXTASEM! achieves state-of-the-art performance in re-
constructing gold standard taxonomies, and is able to extend
them retaining their domain relevance. Still, we acknowl-
edge limitations in terms of lackluster coverage for certain
domains (e.g. Chemical), as well as potential errors intro-
duced in the hypernym extraction, syntactic decomposition
and path weighting modules.

9This work is partially funded by Dr. Inventor (FP7-ICT-
2013.8.1611383) and the SKATER-TALN UPF project (TIN2012-
38584-C06-03).
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