17,150 research outputs found

    Three Dimensional Software Modelling

    Get PDF
    Traditionally, diagrams used in software systems modelling have been two dimensional (2D). This is probably because graphical notations, such as those used in object-oriented and structured systems modelling, draw upon the topological graph metaphor, which, at its basic form, receives little benefit from three dimensional (3D) rendering. This paper presents a series of 3D graphical notations demonstrating effective use of the third dimension in modelling. This is done by e.g., connecting several graphs together, or in using the Z co-ordinate to show special kinds of edges. Each notation combines several familiar 2D diagrams, which can be reproduced from 2D projections of the 3D model. 3D models are useful even in the absence of a powerful graphical workstation: even 2D stereoscopic projections can expose more information than a plain planar diagram

    Flight software requirements and design support system

    Get PDF
    The desirability and feasibility of computer-augmented support for the pre-implementation activities occurring during the development of flight control software was investigated. The specific topics to be investigated were the capabilities to be included in a pre-implementation support system for flight control software system development, and the specification of a preliminary design for such a system. Further, the pre-implementation support system was to be characterized and specified under the constraints that it: (1) support both description and assessment of flight control software requirements definitions and design specification; (2) account for known software description and assessment techniques; (3) be compatible with existing and planned NASA flight control software development support system; and (4) does not impose, but may encourage, specific development technologies. An overview of the results is given

    Automatic Generation of Minimal Cut Sets

    Get PDF
    A cut set is a collection of component failure modes that could lead to a system failure. Cut Set Analysis (CSA) is applied to critical systems to identify and rank system vulnerabilities at design time. Model checking tools have been used to automate the generation of minimal cut sets but are generally based on checking reachability of system failure states. This paper describes a new approach to CSA using a Linear Temporal Logic (LTL) model checker called BT Analyser that supports the generation of multiple counterexamples. The approach enables a broader class of system failures to be analysed, by generalising from failure state formulae to failure behaviours expressed in LTL. The traditional approach to CSA using model checking requires the model or system failure to be modified, usually by hand, to eliminate already-discovered cut sets, and the model checker to be rerun, at each step. By contrast, the new approach works incrementally and fully automatically, thereby removing the tedious and error-prone manual process and resulting in significantly reduced computation time. This in turn enables larger models to be checked. Two different strategies for using BT Analyser for CSA are presented. There is generally no single best strategy for model checking: their relative efficiency depends on the model and property being analysed. Comparative results are given for the A320 hydraulics case study in the Behavior Tree modelling language.Comment: In Proceedings ESSS 2015, arXiv:1506.0325

    Operations planning and analysis handbook for NASA/MSFC phase B development projects

    Get PDF
    Current operations planning and analysis practices on NASA/MSFC Phase B projects were investigated with the objectives of (1) formalizing these practices into a handbook and (2) suggesting improvements. The study focused on how Science and Engineering (S&E) Operational Personnel support Program Development (PD) Task Teams. The intimate relationship between systems engineering and operations analysis was examined. Methods identified for use by operations analysts during Phase B include functional analysis, interface analysis methods to calculate/allocate such criteria as reliability, Maintainability, and operations and support cost
    • …
    corecore