Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE


https://core.ac.uk/display/42863823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(NASA-CRE=163425) FLIGHT SOFTWARE Ny~ 30061
REQUIREMENTS AND DESIGN SUPPORT SYSTEH
Final Report (Colorado Univ. at Boulder.)

18 p HC A02/MF AO1 CsCL 078 Inclas
33/61 28323

Final Report

To National Aeronautics and Space Administration
Langley Research Center

For Grant NSG 1638
Flight Software Requirements and Design Support System

William Riddle
Bryan Edwards

August 1980

Introduction
The overall intent of this project was to investigate the
desirabiiity and feasibility of computer-augmented support for the

pre-implementation activities occurring during the development of

flight control software. The specific topics to be investigated

were:

. the capabilities to be included in a pre-implementation
support system for flight control software system devel-~
opment, and

. the specification of a preliminary design for such a
system.

Further, the pre-implementation support system was to be character-
ized and specified under the constraints that it:

support both deseription and‘assgéimsnh of flight
control software requirements definitions and design

specification,

account for known software description and
assessment technjiques,

. be compatible with existing and planned NASA fli
control software development support systems,

B

B e e i



. does not impose, but may encourage, specific devel-
opment methodologies.

In this final ruport, we give au overview of the resultus
; obtained during the project -~ specific details are given in the
' reports included as appendices. In the next section, we address
i the issues concerning the languages provided for the description of
? requirements and designs. Then, in the succeeding sections, we
' address issues concerning the tools included in the pre~-implementa-
tion support system and the basic nature of the support system

itself.

Qur investigation of the capabilitics desirable for the

description of flight control software during pre-implementation
development phases began with an attempt to describe the Annular
Suspension Pointing System in a fairly rigorous, formal manner, | {
In reading the original description of ASPS, which had been

prepared by NASA Langley personnel, we felt that it suffered the
usual problems encountered when using informal description media
such as English prose, block diagrams and timing diagrams. The
description itself had very little structure and was relatively hard
to follow. Also, various aspects of the system were presented in

an inconsistent manner, both in terms of the content of the descrip-
tion and in terms of the level of the description, and it was

difficult to detect inconsistencies and omissions. : :
, .
Using the understanding of ASPS obtained from the original

description, another description was produced (see Appendix A)

3
i
A
'
i




.",‘
i

using the DREAM Design Notation (DDN)., The DDN description is
hierarchically structured and at each level of the hierarchy, all
components of the system are presented at the same level of detail.
Further, in the DDN description, all relationships among system
components are explicitly stated and thus inconsistencies and

omissions are more easily observed,.

The DDN description is decidedly better in terms of rigor,
However, it fails to capturs several aspects of the ASPS system:
absolute time characteristics of processes within the system,
time slicing of processes, system initialization, and the use of the
main processor interval timer to verify the master timing pulse.

Failure to capture some of these aspects is acceptable hecause they

are not really concerns during requirements definition or (high-
level) design. However, the inability to describe them highlights

a (previously known) failing of the DDN language, namely that it
does nhot contain facilities for describing the absolute time charac-

teristics of systems.

In order to more completely consider the issue of the rigorous
specification of requirements and designs, we wanted to prepare
other descriptions of ASPS in other well-defined design description
languages. We attempted a description in the Gypsy language, but 4
did not find it suitable for describing ASPS at the design or
requirements definition level -- the level at which the system was

described in DDN.

The difficulty lay in some major differences between the DDN

and Gypsy languages. These two languages differ significantly in




terms of two characteristics which may be called property scope

and property statement. The property scope characteristic concerns
whether or not thie global, overall properties of a system may be
described -- a language having local property scope may be used to
describe thn characteristics of a system's components and one having
global property scope may be used to state the properties of
collections of components., The property statement characteristic
concerus how system properties are described. A language having
implicit property statement, with respect to some property, allous
that property to be only implicitly stated, i.e., the property must
he deduced from the information which is explicitly stated. A
language having explicit property statement, on the other hand,
allows that property to be stated using the primitive constructs of

the language.

In attempting to develop a Gypsy description of ASPS that was
comparable to the DDN description, we found that whereas DDN has
both local and global property scope, Gypsy has only local property
scope, and whereas DDN has explicit property statement with respect
to behavioral properties, Gypsy has only implicit property statement
with respect to behavioral properties. Because of the impossibility
of describing global properties and explicitly describing behavioral
properties we did not feel it was fruitful to further investigate
the Gypsy language as a medium for the description of flight control
software requirements and designs. Specifically, as a result of this
exercise, we feel that any language for the pre-implementation
description of flight control software should contain capabilities

similar in nature to the following which are present in the DDN




language:

. SUBCOMPONENTS -~ to allow the explicit description of the
hierarchical organization of the system

. CONNECTIONS -~ to allow the explicit specification of the

global connectivity re.ationships among a system's
components

deseription of the global behavior characteristics to

& . EVENTS and DESIRED BEHAVIOR -~ to allow the explicit
“ be exhibited by the system

We feel that it is more than merely desirable to be able to state

the global properties of a system during its design since these

global property statements may be effectively used to check the
suitability of lower-level design decisions made during the process

of iterative enhancement, This ability in turn helps in verifying that

the design is internally consistent and permits the early discovery

of omissions.

We came to one other conclusion as a result of our attempts to
use the Gypsy language to describe ASPS., We feel that Gypsy is
more appropriately considered to be an implementation description
medium rather than a pre-implementation description medium. Further
we feel that the fact that the Gypsy lanpguage utilizes basic concepts
(such as message transfer) which makes it a natural companion to the DDN
languagc. There are other natural companion languages of course,
such as Ada, but the point is that in developing pre-implementation
languages, they should be based upon the same set of primitive

concepts as the implementation languages, and vice versa.

To broaden our investigation of languages despite our inability

to use the Gypsy language in this endeavor, we turned to a survey




of actual descriptions of flight control software systems, We used
the Proceedings of the Programming Languages for Real-time Systems
Workshop held at NASA Langley Research Center in October 1979 and
scanncd these proceedings £0 determine answers to the following

questions:

. What aspects of flight control systems are typically
described in requirements and design descriptions and
what aspects are frequently omitted from these descrip-
tions?

. What description media are typically used?

., What description media are not used and could they
be effectively used?

. What is a typical description medium used to describe?

. What could a particular descript’on medium be
fruitfully used to dgscribe?

We summarize our findings in the following paragraphs.

The most commonly used descriptive medium was English prose
structured in a hierarchical or outline form. It was usually used
to describe the behavior of the system is a very loose manner. One
descriptive technique that could have been, but was not, used to
make these behavior descriptions a bit more rigorous is regular

expressions.

Block diagrams and flow charts were also used. Block
diagrams were used to describe the functional units of a system.
Very frequently, the units were physical, hardware ones, and the lines
between the blocks represented communication pathways. Usually the
paths in the block diagrams were bidirectional. Flow charts were
used to describe some type of cycle, for example, an execution cycle

or a project life cycle. Usually, but not always, the arcs in the




S T ORTTee————— T

flow charts represented directed paths.

A variety of information was represented in tabular form.
Included were tables of items and their associated costs, cross-
correlation tables and transition tables., A regular expression
notation could have been used to effectively represent both the
information presented in the tables and correlations of items
indicated in the tables, e.g., correlations among transitions

indicating common transition seguences,

Overall system timing was usuvally presented in the form of
timing diagrams. This information could have been more extensively
and formally represented Ly using clock variables (such as found
in Gypsy) and giving regular expressions over the values of these

variables to express timing constraints.

Graphs indicating the relationships between two variables were
frequently used to indicate project dynamics. These graphs usually

communicated a history of the occurrences of an event over time.

Lastly, schematic diagrams were frequently used to give a
drawing of actual e. :ipment or an "artist's conception" of the final
system. Sometimes these schematic diagrams were presented with
associated block diagrams to show the physical layout of a system's

functional units.

The descriptions frequently did not distinguish between
whether a particular aspect of the system was a system requirement
or part of the system design. This is a very common happening

when the description is prepared after the fact and the developers




have lost sight of whether a particular aspect is there because it
was part of the initial requirements or because it was the result
of a design decision. It points out the critical need to carefully
demarcate the description of a system's requirements, which are
immutable and fixed, and the description of the system's design,
which may be changed as long as the new system design still

leads to the delivery of the characteristics and properties

specified, directly or indirectly, in the requirements,

Another characteristic of the descriptions inspected was that
it was difficult to trace the effect of decisions through the design
and relate these decisions to aspects of the final system. It
would seem that, in addition to facilities for directly capturing
the effect of a decision, it would be important to have the capability
to have more structured descriptions that would capture, in the
organization of the description itself, some of the interrelationships
among the various aspects of the description. Also, it is important
for the purpose of tracing requirements and design decisions to be
able to rigorously specify the "world" in which the eventual system
will operate since the hardware, software and human aspects of this

"world" impact and constrain the decisions that can be made.

Tools

Some attempt was made to identify the tools that could and should
be included in a pre-implementation support system oriented towards
flight control software system development., One attack on this aspect

was to hypothesize the sequence of activities that must be carried




out by a number of agents during flight control software system
development -~ in essence, this amounted to giving a very detailed
life~cyecle for the development of these systems, Once this was
developed, note was made of the tools that would be useful in
aiding each of the activities, The results of this part of the
project are given in Appendix B.

To augment this activity and give some indication of the
spectrum of tools which are available (as opposed to those which
should bte available), a bibliography was prepared giving references
to literature concerned with tools which cnuld support pre~imple-
nentation development activities. This bibliography appears as
Appendix C. The bibliography was not intended to be complete but
a number of sources were utilized and it does give a fairly accurate
indication of the range of capabilities available. (It should be
emphasized that the bibliography, besides fixing on tools for aiding
pre-implementation activities, does not reference any literature on
development methods or techniques, i.e., cognitive tools, or any
literature on descriptive media, i.e., notational tools.)

The conclusion that we wish to suggest may be drawn from a
perusal of the tools bibliography is that a large number of quite
adequate tools exist already #nd that an effective and useful
collection of techniques and capabilities can easily be identified.
The problem that arises is obvious -- although the collection of
capabilities and techniques may easily be identified, implementing
them in some coherent, integrated manner is entirely a different
matter, let alone very difficult. We will address this issue again

in the next section.




;e I

We were unable to give concentrated attention to the very

important question of the ccmpatibility of capabilities and techniques
: already present in the MUST environment and those which should be
' included in the pre-implementation support system. It is clear that
the intent of some of the already existing capabilities and techniques
is consonant with the requirements levied upon the capabilities and
f techniques necessary and desirable during pre-implementation
activities. This does not mean, however, that the existing techniques
and capabilities are the ones of choice when efficiency,

effectiveness, and performance criteria are considered,

For example, the DAVE system employs annotated graph

representations of a program and then does graph searching activities

to identify anomalous occurrences. This processing can also be
thought of as doing language theoretic operations upon sets of
sequences defined by regular expressions; this latter, functionally
equivalent processing approach was not chosen for the DAVE system
for efficiency and performance reasons. It is, for a number of
reasons, quite viable at the pre-implementation level because of the
generally smaller and less complex descriptions (because of the use

of abstraction) which exist at this level.

The conclusion which we reach from this train of thought is that

the questions of what capabilities and techniques should be used during
pre-implementation activities and the extent of overlap between the |
capabilities and techniqueé used before and during implementation
are much more difficult than originally perceived., The more we

addressed these questions, the more we felt that we cauld not, in




the lifetime of this project, adequately address them.

We did, however, develop the strong feeling that the way to
approach these questions was experimentally. By this we mean that
a triasl-and-error, iterative approach to deciding the applicability
of already existing capabilities and techniques and deciding the
relative effectiveness of new techniques and ¢apabilities is the
appropriate way to proceed. In the next section, we will glve some
quidelines for carrying out this approach -~ those quidelines were
in part affected by our consideration of the questions discussed

here.

In corecluding this section, we should emphasize that the tools
of use during pre-implementation are, in a sense, fundamentally
different from those of which aid implementation acltivities. By
nature, the activities ccecurring durina ‘ ¢mentation are
explorato>r: rd speculative; whersas those occurring during
implementation are straightforward and well-defined, It is, there-
fore, hard to duplicate the level of automation that has been
achieved for tools of use during implementation. Instead, it is
necessary, at this point in fime, to make the tools provided to
support pre-implementation activities very interactive -~ they
should in essence be considered as extensions of the human
developers and should be viewed as augmenting rather than replacing
the developers. Tools which serve to "animate" the system description
and provide information concerning its behavior as feedback to the

developers are particularly important in this regard.




Environment s

Tools become all the more useful and effective when they are
provided as a coherent, well-integrated set ~- one has only te
compare a toolbox with a machine shop to come¢ to this conclusion,

The result of this integration is an environment in which the
development practitioners may perform their day-to-day work. To
conclude the investigations of this project, we were interested in
the questions: what is a good basis for providing an integrated

set of tools for aiding flight control software development and

how can such an environment be delivered to development practitioners

in a reasoned and relatively inexpensive manner?

With regard to the first question we feel that the organization
of choice for development environments is one in which there is a
central data base which serves as a repository for all information
ever generated about the system under development. This is not a
particularly startling observation at this point in time as this
organization is the one most often used or suggested. Ve wonld like
to point out, however, that it is about the only organization that
is consistent with our suggestion that the investigation of tools
be experimental in nature. This is because it provides the flexibility
necessary to add and subtract tools since it imposes no restrictions
on what tools are available and how they are provided in the environ-
ment. (Additionally, it should be noted that this organization
permits avoiding the imposition of methodologies through the
environment itself since methodological constraints come, when using

this organization, in the form of rules and guidelines for using the




tools nrovided by the envirocnment,)

We have reached this conclusion as a result of a number of
introspective reviews of our previous work on the DREAM development
support system, One of these reviews was very general in nature
' and tried to assess the current state of affairs accounting for the
} history of development environments in general. This review appears

as Appendix D,

We also have prepared a review -~ appearing as Appendix E =--
which considers the DREAM system alone, but pays attention to
non-technical as well as techhical aspects, As a result of this

review, we feel strongly that the DREAM system organization and the

set of concepts embodied in the DDN language are the right way to
proceed but that the set of concepts is ancomplete (as noted hefore
in our discussion of language issues) and that more careful thought
is needed concerning the syntax of the language delivering the

concepts and the organization of the tools in the environment.

The final review appears as Appendix F and contains little
hindsight but rather attempts to establish a vocabulary for talking
about environments and a framework for thinking about their design

and implementation.

Another aspect of this part of the project was to prepare a

bibliography on software development environments -- this appears |

|
as Appendix G. Again, an attempt was made to be fairly complefe é
but the bibliography was not intended to be exhaustive of the |

literature. It was, however, extremely disconcerting to find two !




o T AN TPy - o e -

other bibliographies that had very little overlap with ours --

one which covered the area of programming environments such as

the Lisp machine and the other covered development environments.

(Our bibliography has since been merged with the second one cited
above and will appear in the Proceedings of the Symposium onr Software
Engineering Environments held in Cologne, Germany, which is to

be published by North tlolland in October.) The lesson to be learned
from finding these other bibliographies is that there is a
tremendous amount of activity in the area of environments and that
the literature is not appearing in a small, concentrated segment

of the computer science publications.

To conclude, we would like to suggest an incremental approach

to delivering flight software development support environments in
which a series of progressively more sophisticated environments are
produced, the last of which is what we feel would be the complete
environment. (It should be noted that we were helped in developing
this incremental approach by participating in a NBS-sponsored
workshop at whicn this topic was given concentrated attention by

a working group of seven people over three days.)

The initial environment would provide the minimum necessary
support, much of it through manual rather than automated procedures.
This system (and all of the others) assumes the presence of several
pieces of standard system software (such as compilers, linking
loaders, runtime libraries, file systems, etc.) such as are found

in the MUST environment. To arrive at a minimal pre-implementation

environment, little need be added to this assumed core since a number




e ey e e

T o e et o .

g

. B S

of manual procedures are available for the control of pleces of
textual information and the assessment of its validity. The point
is that a minimal environment can be made available by augmenting

MUST with manual procedures for requirements definition, design,

testing and project management.

Requirements would be handled by instituting manual procedures
(for example, the use of SADT diagrams) for the definition of
requirements. Desigh could be handled by informal design procedures
chosen and implemented by the project leader. To handle the
organizing of the various descriptions, a partially implemented
text control system (using the ideas embodied in the UNIX source
code control system) would be included. This system would include
facilities for text entry and cediting and facilities for "version"
control. It would also include facilities for maintaining a simple

directory allowing for the ecasy retrieval of pieces of text.

Analysis would be handled manually as would be project manage-

ment. This labtter aid could be augmented by facilities for the

preparation of PERT-type charts.

This first in the series of environments is admittedly primitive

and simple -- but it indicates that a good deal of aid could be
provided by a relatively simple extension to the MUST environment.
It relies upon existing software and manual procedures and, as such,
does not represent a large expense in terms of time or resources

in order to provide a basic, simple environment. We feel that this
environment would be sufficient to support small, 2-5 person flight

control software development projects.




Extensions can be made to arrive at a second system in the
series. The most extensive addition would be a data base systoem
(mostly already provided in MUST) which would provide support
for keeping track of objects, object attributes, and relationships
among objects, This "simple" change has very broad implications
since it moves the environment towards one in which there is a
central repository of information and thus the basis for tool

integration.

Requirements could now be kept in machine-processable form
in terms of objects, attributes and relations (much as in the ISDOS
system). Simple analysis procedures could be provided to analyze
requirement descriptions for completeness and form. Manual

procedures could be defined for more extensive analysis.

The manual design procedures could also be replaced by simple,
formal techniques which also relied on the definition of designs
in terms of objects, attributes and relations. As with requirements,
the designs could be analyzed for completeness and form. However,
automated procedures for checking the consistency of requirements

definitions and designs would not be included.

Project management could also be aided with the addition of
a simple project control system, again relying on the use of
the object-attribute-relation data base. Automated aids for the
generation of project status reports, milestone progress reports

and dependency charts could also be included.

This second environment in the series would not be a terribly




larpge step away from the first and would not be difficult to
implement. But it lays the groundwork for all subsequent environ-
ments through the introduction of the central data base. We feel

that it could be effective in aiding medium sized projects.

The rest of the environments in the series would be obtained by
adding more and nmore sophisticated nols., Languages could easily
be added to the system and the data va.. could be used to help
maintain descriptions written within the languages since a fragment
of text can be viewed as a object and the means exists for Keeping
track of these btext fragments, their attributes and their relation-

ships.

Tools could rather easily be added or deleted from the environ-
ment as long as each tool is viewed as using the information in the
data base to produce new information to be added to the data base.

Tools for possible inclusion would be: data flow analyzers, pretty

printers, flow charters, control flow analyzers, performance monitors,

simulators, cross referencers, ete. In fact, most of the tools
indicated in the tools bib}iography appearing in the appendices
are candidates with the primary decision being whether the effort
of implementing versions which operate on the descriptions in the
languages provided by the environment is cost effective with

respect to the benefit derived.

This scenario of successively more sophisticated environments
is simple but effective. It allows a gradual committment to the
production of an environment and a gradual expenditure of effort and

money. It also provides useful environments along the way --

NP




re

environments whiech are not only able to be used for {light control
software development but also may be used to evaluate the effective-
ness of environments in the flight control software development
situation and thus the efficacy of proceceding farther through the

series.

Conglugion

We have indicated some of the results obtained during through
this project., The details of the results are reported in the
appendices and we have here provided just and overview and given the
conclusions wnich we feel may be drawn. In summary, we feel that the
means and techniques already exist for the preparation of flight
control software development support systems but that the
only way to effectively determine what should be in the support system
and just how effective the support system will be is by an incre-
mental, experimental approach. We have provided a game-plan for such
an approach and given advice on what should be considered as
candidate tools for inclusion in the successive versions of the

support system produced by following this approach.

RS

© et



	1980021560.pdf
	0001A01.tif
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif




