14,681 research outputs found

    Detailed Diagnosis of Performance Anomalies in Sensornets

    Get PDF
    We address the problem of analysing performance anomalies in sensor networks. In this paper, we propose an approach that uses the local flash storage of the motes for logging system data, in combination with online statistical analysis. Our results show not only that this is a feasible method but that the overhead is significantly lower than that of communication-centric methods, and that interesting patterns can be revealed when calculating the correlation of large data sets of separate event types.GINSENGCONE

    A Study of Concurrency Bugs and Advanced Development Support for Actor-based Programs

    Full text link
    The actor model is an attractive foundation for developing concurrent applications because actors are isolated concurrent entities that communicate through asynchronous messages and do not share state. Thereby, they avoid concurrency bugs such as data races, but are not immune to concurrency bugs in general. This study taxonomizes concurrency bugs in actor-based programs reported in literature. Furthermore, it analyzes the bugs to identify the patterns causing them as well as their observable behavior. Based on this taxonomy, we further analyze the literature and find that current approaches to static analysis and testing focus on communication deadlocks and message protocol violations. However, they do not provide solutions to identify livelocks and behavioral deadlocks. The insights obtained in this study can be used to improve debugging support for actor-based programs with new debugging techniques to identify the root cause of complex concurrency bugs.Comment: - Submitted for review - Removed section 6 "Research Roadmap for Debuggers", its content was summarized in the Future Work section - Added references for section 1, section 3, section 4.3 and section 5.1 - Updated citation

    ALOJA: A benchmarking and predictive platform for big data performance analysis

    Get PDF
    The main goals of the ALOJA research project from BSC-MSR, are to explore and automate the characterization of cost-effectivenessof Big Data deployments. The development of the project over its first year, has resulted in a open source benchmarking platform, an online public repository of results with over 42,000 Hadoop job runs, and web-based analytic tools to gather insights about system's cost-performance1. This article describes the evolution of the project's focus and research lines from over a year of continuously benchmarking Hadoop under dif- ferent configuration and deployments options, presents results, and dis cusses the motivation both technical and market-based of such changes. During this time, ALOJA's target has evolved from a previous low-level profiling of Hadoop runtime, passing through extensive benchmarking and evaluation of a large body of results via aggregation, to currently leveraging Predictive Analytics (PA) techniques. Modeling benchmark executions allow us to estimate the results of new or untested configu- rations or hardware set-ups automatically, by learning techniques from past observations saving in benchmarking time and costs.This work is partially supported the BSC-Microsoft Research Centre, the Span- ish Ministry of Education (TIN2012-34557), the MINECO Severo Ochoa Research program (SEV-2011-0067) and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft
    • …
    corecore