
ALOJA: a Benchmarking and Predictive
Platform for Big Data Performance Analysis

Nicolas Poggi, Josep Ll. Berral, and David Carrera

Barcelona Supercomputing Center (BSC)
Universitat Politcnica de Catalunya (UPC-BarcelonaTech)

Barcelona, Spain
{nicolas.poggi,josep.berral,david.carrera}@bsc.es

http://aloja.bsc.es

Abstract. The main goals of the ALOJA research project from BSC-
MSR, are to explore and automate the characterization of cost-effectiveness
of Big Data deployments. The development of the project over its first
year, has resulted in a open source benchmarking platform, an online
public repository of results with over 42,000 Hadoop job runs, and web-
based analytic tools to gather insights about system’s cost-performance1.
This article describes the evolution of the project’s focus and research
lines from over a year of continuously benchmarking Hadoop under dif-
ferent configuration and deployments options, presents results, and dis-
cusses the motivation both technical and market-based of such changes.
During this time, ALOJA’s target has evolved from a previous low-level
profiling of Hadoop runtime, passing through extensive benchmarking
and evaluation of a large body of results via aggregation, to currently
leveraging Predictive Analytics (PA) techniques. Modeling benchmark
executions allow us to estimate the results of new or untested configu-
rations or hardware set-ups automatically, by learning techniques from
past observations saving in benchmarking time and costs.

1 Introduction

Hadoop and its derived technologies have become the most popular deployment
frameworks for Big-Data processing, and its adoption still on the rise [15]. But
even with such broad acceptance in industry and society, it is still a very complex
system due to its distributed run-time environment, and its flexible configura-
tion [17, 18, 20]. This makes Hadoop to be poorly efficient, and improving its
efficiency requires knowledge of this complex system behavior. Not to mention
all the emerging hardware and new technologies enhancing Hadoop that increase
complexity of Hadoop systems.

The ALOJA project is a research initiative from the Barcelona Supercomput-
ing Center (BSC) with support from Microsoft Research and product groups [11]
to explore and produce a systematic study of Hadoop configuration and de-
ployment options. The study includes the main software configurations that can

1 ALOJA’s Web application, tools, and sources available at http://aloja.bsc.es

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-49748-8_4

2 N.Poggi, J.Ll.Berral, and D.Carrera

greatly impact Hadoop’s performance [7]; as well as different hardware choices to
evaluating their effectiveness and use cases including: current commodity hard-
ware on which Hadoop systems where originally designed for [1], low-power de-
vices, high-end servers, to new storage and networking2; as well as new managed
Cloud services (PaaS). The intent of such study is to better understand how
data processing components interact during execution and automate the charac-
terization of Big Data applications and deployments. With the final purpose of
producing knowledge and tools for the Big Data community, that can improve
efficiency of already deployed clusters and guide the design of new-cost effective
data intensive infrastructures.

This article presents the evolution of the project, initial results, and some
lessons learned while benchmarking Hadoop for over a year continuously; iterat-
ing software configuration options and over a hundred different hardware cluster
setups. At the same time, discusses the motivation both technical and market-
based of such changes i.e., large search space and the emergence of economic
Cloud services. As well as it overviews the different techniques employed to ex-
tract performance knowledge and insights from Hadoop executions, and exposes
our current lines of research and focus. Since project beginnings almost two years
ago, ALOJA’s target and perspective has first evolved from a low-level profiling
of Hadoop distributed environment, which allows to understand the networking
bottlenecks and how components interact; to performing extensive benchmark-
ing —which is still expanding, creating the largest public Hadoop performance
repository so far with over 42,000 job executions. The repository is then used to
evaluate via aggregation and summarization the performance and cost effective-
ness of the different configurations available in the project’s Web site, reducing
both the size of data to be processed and stored. This reduction in data sizes
allow us to share the platform a development virtual image to other researchers
and practitioners directly, as well as to apply different Machine Learning (ML)
techniques directly to the data [2].

While the results from the data aggregation efforts allows to process data
interactively for the analytic online tools [2], the increasing number of config-
uration choices as the project expands in architectures and services —in the
millions for benchmarks that a single iteration can take hours to execute, had
led us to leverage Predictive Analytics (PA) techniques to be able to prioritize
benchmarks and reduce the number of executions. PA encompasses a variety of
statistical and ML techniques to make predictions of unknown events based on
historical data [5, 13] —in this case the aggregated metadata of our benchmark-
ing repository.

We use the Intel HiBench benchmark suite [19] as representative work-
loads, and we use the ALOJA-ML toolkit, the machine learning extension of
the ALOJA framework [21] for such learning. The purpose of ALOJA-ML is to
discover knowledge from Hadoop environments, first predicting execution times
for given known workloads depending on the Hadoop configuration and the pro-
vided hardware resources; then evaluating which elements of a given deployment

2 Storage PCIe NAND flash, SSD drives, and InfiniBand networking

ALOJA: a Benchmarking and Predictive Platform for Big Data 3

are the most relevant to reduce such running times. Our project goal is to find
accurate models automatically to show and understand how our systems work,
but also use them for making decisions on infrastructure set-ups, also recommen-
dations for Hadoop final users towards platform and software configurations. At
the same time supporting ALOJA’s goal of automating Knowledge Discovery
(KD) and recommendations to users.

An overview of the project’s evolution summarized in Figure 1, showing the
different performance extraction techniques employed in the project, as well as
the expansion to extract knowledge from Big Data applications to infrastructure
providers. The next section describes in detail the motivation of such change in
focus and efforts; while the pros and cons of each discussed with further details
in Section 3.

Fig. 1: Evolution of ALOJA: from performance profiling to PA benchmarking

2 ALOJA Evolution

During the development of the defined phases for project ALOJA [11], we have
experienced a shift from an initial approach of using low-level HPC tools to
profile Hadoop runtime [3] based BSC’s previous expertise to higher-level per-
formance analysis. Part of the initial work included inserting hooks into the
Hadoop source code to capture application events, that are later post-processed
into the format of BSC’s HPC tools, which are used to analyze the performance
and parallel efficiency of supercomputing or MPI-based workloads. However, due

4 N.Poggi, J.Ll.Berral, and D.Carrera

to the non-deterministic nature of Hadoop distributed execution, on top of the
large number of software configuration options in Hadoop, some of the HPC
tools were not directly applicable for finding best configurations for a particular
hardware. Furthermore, our target has not been to directly improve the Hadoop
framework codebase, but its deployment scenario.

To compare configuration options, during the first months of the project we
started an extensive benchmarking effort on different cluster architectures and
cloud services; iterating software configurations to extract execution times that
were comparable. The resulting repository of benchmarks can be found at our
web site [2]. As the number of benchmarks in the repository grew, evaluating in-
ternal results for each was no longer feasible, either for the low-level performance
analysis tools or for manually revising them. Performance metric collection and
log parsing both for profiling and benchmarking, have become Big Data problem
in itself as results grow. For this reason, aggregation into summaries of the execu-
tion characteristics i.e., sums and averages. In this way turning execution details
into meta-data, which allow us to contrast different results more efficiently; at
the loss of information on execution internals, but reducing processing time. To
explore these results more efficiently, we then developed different Web views
and filters of the aggregated executions from the repository’s online database.
The analysis of results has led to a shift of focus in the project from the initial
low-level profiling and Hadoop configuration, to cluster configuration and the
cost/performance efficiency of the different systems.

Another reason for this change in perspective has been a shift from bench-
marking on on-premise to Cloud based clusters. Current cloud offerings for Big
Data provide compelling economic reasons to migrate data processing to the
Cloud [12] with the pay-as-you-go or even pay-what-you-process models. While
the cloud has many benefits for cluster management i.e., dynamically scaling in
servers, it also introduces challenges for moving data e.g., data is no longer local
to nodes and it is accessed over the network. On the Cloud, due to the virtual-
ized and public multi-tenant nature, low-level profiling becomes less relevant, as
many samples of the same execution are needed to estimate average performance
and results aggregation come into play. On top of this, for Platform-as-a-Service
(PaaS) offerings, you might not have superuser access to the server to install
packages or profiling the system [4].

Cloud providers also offer a great number of virtual machines (VM) op-
tions —at time of writing the Microsoft Azure Cloud offers over 32 different
VM choices. Under this model, the same number of CPU processing cores and
memory can be achieved by either having a larger number of small VMs (scale-
out) or having a few larger VMs (scale-up) in a cluster. This great number
of cluster configuration choices, which have an impact in the performance and
the costs of executions [9, 14] has become one of the main targets of research
and benchmarking efforts. Examples cloud VM size comparisons can found in
our Web site [2]. These large number of Cloud topologies and services, hardware
technologies, software configuration options that affect the execution time —and

ALOJA: a Benchmarking and Predictive Platform for Big Data 5

costs— of the different applications, leave us with millions of possible benchmark
executions in the search space.

In order to cope with the increasing number of configuration options and
new systems, the project was faced with the need first to do manual sampling
from the search space, and grouping of results to extrapolate results between
clusters. However, this initial approach has not been sufficient either, and still
requires a large number of benchmarks. For this reason, we have leveraged Ma-
chine Learning (ML) techniques and implemented them as an extension of the
platform. The generated prediction models allows us to estimate metrics such
as job execution time for not-benchmarked configurations with great accuracy
compared to classical statistical sampling and interpolation, as well as saving us
time and execution costs. We are currently in the process of extending the use of
such models on the platform to enable the Predictive Analytics (PA) [5, 13] to
complement the descriptive analytical tools available. PA techniques also com-
plement our goal of automating Knowledge Discovery (KD) from the growing
benchmark repository.

Having our efforts focused in PA, does not mean that we have stopped bench-
marking or low-level profiling efforts. Each of the techniques have different uses
cases and can complement each other i.e., PA is based on benchmarking meta-
data and profiling is used to debug or improve OS settings and configuration. An
overview of the project’s evolution summarized in Figure 1, showing the different
performance extraction techniques employed in the project, as well as the expan-
sion to extract knowledge from Big Data applications to infrastructure providers.
The next section compares each of the different performance extraction methods
identified above.

3 Approaches to extract performance knowledge from
Hadoop

This section describes distinctive techniques to measure efficiency, performance,
resource usage and costs employed by ALOJA.

3.1 Profiling

BSC having strong background with HPC workloads and their performance [3],
the preliminary approaches to ALOJA consisted in instrumenting Hadoop, to
make it compatible with well established performance tools used for parallel su-
percomputing jobs e.g., for MPI and related programming models. This initial
work was achieved by developing the now Hadoop Analysis Toolkit which lever-
ages the Java Instrumentation Suite (JIS) [6], a tracing environment for Java
application, inserting hooks into the Hadoop source code; and a network snif-
fer based in libpcap. These changes allowed us to leverage the already existing
low-level tools, simulators and knowhow from the HPC world, at the cost of

6 N.Poggi, J.Ll.Berral, and D.Carrera

having to patch and recompile Hadoop code3. Network traces allow us to study
in great detail e.g, up to packet-level, the communication between components;
both between nodes, as well as local data transfers as Hadoop uses remote and
local services to transfer data.

While employing the Hadoop Analysis Toolkit for profiling, we are able to
understand at specifically what timeframe certain Map/Reduce (M/R) steps
i.e., shuffle, sort, merge, and spill. As well as how components synchronized in
the cluster during the different distributed tasks. While profiling allow us a deep
understanding of the underlying execution and debugging code, the level of detail
can be daunting if not with the intent of optimizing the Hadoop code, or working
with drivers or accelerators. Another problem that we faced with profiling, is the
large amount of data that it produces. While the overhead to produce it is not a
main concern, it leaves us with a Big Data problem in itself. Figure 2 compares
the amount of data that would have been produced by profiling if enabled for the
42,000 executions in the repository. We currently enable low-level profiling only
on selected traces, when a particular execution requires a deep level of analysis
and debugging.

Fig. 2: Comparing the data sizes produced by each strategy (chart not in scale)

3.2 Benchmarking

Due to the large number of configuration options that have an effect on Hadoop’s
performance, to improve the efficiency of Hadoop requires manual, iterative and
time consuming benchmarking and fine tuning over a myriad of software config-
uration options. Hadoop exposes over 100, interrelated configuration parameters

3 Implementing dynamic code interposition is planned i.e., Aspect Oriented Program-
ming

ALOJA: a Benchmarking and Predictive Platform for Big Data 7

that affect its performance, reliability and operation [7, 9]. For this reason in
ALOJA we have built an automated benchmarking platform to deal with defin-
ing cluster setups, server deployment, defining benchmarking execution plans,
orchestration of configuration, and data management of results. While the plat-
form is generic for benchmarking, our use case has been Hadoop.

Hadoop’s distribution includes jobs that can be used to benchmark its perfor-
mance, usually referred as micro benchmarks, however these type of benchmarks
usually have limitation on their representativeness and variety. ALOJA currently
features the HiBench open-source benchmark from Intel [8], which can be more
realistic and comprehensive than the supplied example jobs in Hadoop. These
are considered a representative proxy for benchmarking Hadoop applications,
categorized into micro-benchmark, search indexing, machine learning and ana-
lytical queries types. We have currently gathered over 42,000 executions from the
different HiBench benchmarks, that we use as base of our research to automate
characterization and KD for Big Data environments.

In contrast to profiling, the benchmarking efforts operates more as black-box,
where different Big Data frameworks and applications can be tested and sum-
maries about their execution time and performance metrics are collected. How-
ever, we do include in ALOJA specific features for Hadoop, such as log parsers
to detect the different phases in the M/R process, which could be extended for
other frameworks if needed. Over time, collecting performance metrics have also
become a Big Data problem: we have over 1.2TB of performance metrics for the
executions after importing the executions into the database. A description of the
architecture in ALOJA can be found in [11]. While the data is 45x smaller than
traces from profiling as can be seen in Figure 2, as we get more executions, we
currently use this data mostly for debugging executions manually. While we still
keep it for every execution, summarizing data via aggregation has become more
useful to extract cost and performance knowledge from groups of results.

3.3 Aggregation and Summaries

After a benchmark is executed and stored, the produced folder is then imported
into a relational database. This process involves uncompressing data, transform-
ing formats by using command line tools, parsing Hadoop logs, and importing
the data into the database. This operation is a one time process, however the
execution folders are kept in case they need to be reimported in the future due
possible changes to the import routines or the use of external tools compatible
with the logs. Once the data is on the relational database, ALOJA-WEB, the
website component, interacts directly and interactively with it though SQL. This
allows us very simply to use SQL group by statements on the data on different
screens of the site.

As Hadoop job executions are non-deterministic, and several reasons can
affect a particular execution performance i.e., multi-tenancy in the Cloud, or
different random data generated by the benchmarks; all repeating executions
are grouped and averaged (or other statistical functions are performed such as
means or percentiles). Also, different views in ALOJA-WEB, allow to group

8 N.Poggi, J.Ll.Berral, and D.Carrera

together executions that share some common parameters i.e., same number of
datanodes, disk configuration, or number of mappers; to complement missing
executions and produce a common result. While these results need to be revised
and validated, i.e., mixing executions with different cluster sizes might produce
incoherent results; they can quickly offer a view on the tendency for the cost-
performance. An example of these tools can be found in the Config Evaluations
and the Cost/Perf Evaluations menus; including tools that allow to find the best
configuration found with a particular filter, explore configuration parameters
scalability, and rank clusters by cost-performance.

Aggregating results allows us to execute benchmarks only sampling the search
space, and grouping to complement the results. Another feature is that it allows
us to average noise or outlier executions automatically. While this is an im-
provement to analyzing benchmark result individually, it has several drawbacks:
it exposes us to the problems of averages, that might not represent a well dis-
tributed value; also might lead to wrong conclusions if the grouped data is not
analyzed and validated manually carefully, as mixing technologies and cluster
sizes in these groups. For these reasons, and continue our goal towards automa-
tion, we have started the PA extension to overcome some of these shortcomings
and automate Knowledge Discovery.

3.4 Predictive Analytics

While the results from the data aggregation efforts allows to process data inter-
actively for the analytic online tools [11], the increasing number of configuration
choices as the project expands in architectures and services —in the millions
for benchmarks that a single iteration can take hours to execute. In order to
cope with the increasing number of configuration options the project was faced
with the need first to do manual sampling from the search space, and grouping
of results to extrapolate results between clusters. However, this initial approach
has not been sufficient either, and still requires a large number of benchmarks.
For this reason, we have leveraged Predictive Analytics (PA) techniques to be
able to optimally execute a smaller number of benchmarks. PA encompasses a
variety of statistical and ML techniques to make predictions of unknown events
based on historical data [5, 13] —in this case the aggregated metadata of our
benchmarking repository.

At this time, the ALOJA dataset has some challenging issues we have to
deal with, in order to create as much representative models as possible. First of
all, not all benchmarks have the same number of executions nor all the same
executed configurations. Half of the ALOJA data-set examples are from tera-
sort executions, while we can consider pagerank under-represented because of
having much fewer executions. Executions use resources and time (thus they
cost money), and the examples composing the data-set were executed following
different reasons than to obtain a homogeneously representation of every bench-
mark and feature. One of the goals of ALOJA-ML is to be able to infer models
from a not-so-regular data-set. In addition, the data-set contains failed or outlier
executions, where external factors heavily affected the final execution time of the

ALOJA: a Benchmarking and Predictive Platform for Big Data 9

run. Some of those examples can be easily detected and removed, while others
can not. Further, having a huge space of feature combinations, compared to the
number of examples, can bring uncertainty when deciding if an example is an
outlier or is a legitimate example lonely in its space region. At this time we will
use the data-set without filtering, as a first approach to it without massaging
our data.

Modeling Benchmark Behaviors To model a system some examples of this
system are collected, this is what we want to be able to predict from this system,
and any element that can determine or affect it. The model is then a function that
receives as inputs variables like in our case the benchmark name, the introduced
Hadoop configuration and the hardware specifications, and produces as output
the required execution time for the benchmark in such conditions. Then from
the collected set of examples, the data-set, machine learning algorithms attempt
to infer an explanation for these outputs from the provided inputs

Our current main focus is to obtain a model to predict benchmark execution
times from a given software and hardware configurations, in the more automatic
possible way. As previously said, Hadoop executions can be tuned through soft-
ware configurations (number of mapping agents, type of compression used, etc.)
and through the provided hardware resources. These tuning parameters deter-
mine the resulting execution, and we consider them our input variables. Also, as
we focus on the resulting execution time, we consider that as out output vari-
able we want to be able to predict. Being able to predict such values will let
us to plan benchmark executions, compare different environments without even
executing such benchmarks, also plan new data-centers by deciding their com-
ponents from a variety of available hardware configurations while predicting the
execution time of reference benchmarks with each of them. Figure 3 summarizes
the machine learning schema, also applied to our case of study.

Fig. 3: Machine Learning Methodology in our Environment

10 N.Poggi, J.Ll.Berral, and D.Carrera

4 Modeling Behaviors

4.1 Learning Models

Having different benchmarks available, and willing to cover with one model as
much space of configuration possibilities as possible, raises our first concern, that
is to check if they are comparable and in which degree, in order to model all of
them in a generalist model. Each benchmark has different characteristics that led
to different behaviors (CPU bound workloads, IO bound workloads, etc.). One
could hope that training a model with samples of different benchmark executions,
when including the identifier of each benchmark, the model would recognize
this as an important feature and return different sub-models for each group of
behave-alike benchmarks. One of the studies done is to check whether training
a model with all the benchmarks produce an acceptable model against creating
a model for each specific benchmark. In one hand, a generalist model requires
one single training process, benchmarks with many examples in the data-set can
complement other behave-alike ones with less examples. On the other hand, a
specific model can fit better a benchmark, being aware of not over-fitting, but
it requires enough examples of each one, and for each benchmark it requires a
new training process.

For a first learning attempt, we selected as a machine learning algorithm
the M5P, which creates a regression tree model [22, 23]. Learning is done by
using a random split of 50% of the available data-set, 25% used to validate the
parameters of the obtained model, and 25% kept for testing only. The selected
variables input for the following experiments are benchmark, network, storage
type, number of maps, block size, cloud provider + kind of deployment, sort
factor, file buffer size, also execution time as output variable.

After learning models on each of the 8 tested benchmarks, we obtain different
results for each one. Benchmarks like bayes, kmeans, sort, terasort and wordcount
reach Relative Absolute Errors (RAE) between 0.11 to 0.23 during the testing
process. This is that we can predict execution times of new executions with
an expected bias between 11 and 23 percent. In the other hand, the pagerank
benchmark has shown unstable executions, and for some executions their exe-
cution time in extremely high, making difficult to learn and predict (obtaining
an unacceptable RAE of 1.18 in testing). The lighter side of this is that, from
this process, we detected that such executions deserve a human review to see
whether pagerank is actually unstable or something unexpected happened on our
system when running some Hadoop jobs. Finally we observe how benchmarks
dfsioe read and dfsioe write have high variance on their execution times, and in
both training/validation and testing errors are high enough to re-think how to
deal with them (RAE between 0.38 and 0.44 in testing). The fact that shared
resources like disks are heavily involved in such benchmarks can produce this
variance, so in the future modeling them should include variables representing
the shared usage of such resources.

Once seen that most of the benchmarks can be modeled automatically with
a tolerable error, we proceed to create a generalist model for the complete set.

ALOJA: a Benchmarking and Predictive Platform for Big Data 11

We had hope that the generalist model would do worse but not much than the
specific ones. We obtain RAEs for all our benchmarks around 0.44 on train-
ing/validation and test, modeling all 8 benchmarks together also using all but
the dfsioes and pagerank just to check whether the high error was caused by
the hard-to-model benchmarks. This brings us to the conclusion that we should
attempt to create separated models per benchmark, but it would be interest-
ing to model any workload despite being benchmarks or not. A general model
would help us to introduce a new workload, represented by any of the mod-
eled benchmarks, and predict its execution time. Our future approaches focus
on work-around the problem of being unable to generalize, by parametrizing
benchmarks so any benchmark (even any properly parametrized workload) can
be go through the same model, and trying to find the causes that make some
benchmarks harder to predict or find proper new input variables that define
better those benchmarks.

4.2 Representing Characteristics

Far away from just model benchmarks to do predictive analysis, we can use
the obtained models to discover how each input affects the output variable.
Instead of producing more executions or rely on the example executions we
complete, for each configuration not tested (or even tested), the space of possible
configurations with each expected execution time. For practical reasons we do
this given a reduced set of input variables we can consider relevant, fixing the
rest of inputs to a given value. Note that using all inputs could lead to millions of
predictions, hence we select the inputs we consider more interesting to explore.
With the resulting predictions we can rank each configuration from slower to
faster, and observe how changing variables affect the result.

For this we use a greedy algorithm that separates the ranked configurations in
a dichotomous way (Algorithm 1), finding which variables produce the biggest
changes on execution time, recursively. E.g. after determining which variable
separates better the slow configurations from the faster ones, the algorithm fixes
this variable and repeats for each of its distinct values.

As an example, depicted in Figure 4, we select an on-premise cluster formed
by 3 data-nodes with 12 cores per VM and 128GB RAM, and we want to observe
the relevance of variables disk (local SSD and HDD), network (Infiniband and
Ethernet), IO file buffer (64KB and 128KB) and block size (128, 256) for the
benchmark terasort, fixing then the other variables (maps = 4, sort factor =
10, no compression and 1 replica). We train a model for this benchmark and
predict all the configurations available for the given scenario. Then, using the
dichotomous Least Splits algorithm we get the tree of relevant variables.

The example shown in Figure 4 is just one of all the explorations that the
ALOJA-ML tool can realize using learned models. E.g., in this example we
observe that the variable that defines a division between slower and faster exe-
cutions is the type of storage units, and then for SSDs only the File Buffer seems
relevant, while for HDDs the type of network is the second important variable,
then File Buffers and Block Sizes.

12 N.Poggi, J.Ll.Berral, and D.Carrera

Algorithm 1 Least Splits Algorithm

1: function Least.Splits(e) . e set of 〈conf, pred〉 ordered by pred
2: if |e| > 1 then
3: bv ← null ; lc←∞
4: for i ∈ variables(e) do . Search variable with less changes
5: c← 0
6: for j ∈ [2, |e|] do
7: if e[i, j] 6= e[i, j − 1] then
8: c← c + 1
9: end if

10: end for
11: if c < lc then
12: 〈bv, lc〉 ← 〈i, c〉 . Variable i is candidate
13: end if
14: end for
15: t← empty tree()
16: for v ∈ values of(e[bv]) do . Split set by the selected variable
17: sse← subset(e, bv = v)
18: branch(t, ”bv = v”)← Least.Splits(sse) . Redo for each split
19: end for
20: return t . Return sub tree for selected variable
21: else
22: return prediction(e) . Return prediction value at leaf level
23: end if
24: end function

As just said, this is an example of what we can experiment and obtain with
automatic benchmark modeling using machine learning. This tool and its data-
sets are open to the community at http://hadoop.bsc.es, also the complete
framework can be downloaded and deployed locally at https://github.com/

Aloja/aloja for everyone to work with their own data.

5 Conclusions

This article delineated the evolution of ALOJA’s focus approach over the last two
years to automatically characterize Hadoop deployments and gather performance
insights that can improve the execution of current clusters, as well as we aim
to influence the design of new cost-effective, data processing infrastructures. On
our path from low-level profiling to Predictive Analytics (PA) —our current
frontier, we have found specific use cases for the tested performance extraction
techniques; as well as finding the data sizes of the different techniques.

Our results show that detailed performance counter collection accounts for
over 99% of the data produced, while summaries from the already give the most
value to rapidly obtaining cost and performance insights from the data. Aggre-
gated summaries and also allow us to use PA techniques with more ease, and
the first results looks promising to speed up and reduce costs of the benchmark-

ALOJA: a Benchmarking and Predictive Platform for Big Data 13

Net Disk IO.FBuf Blk.Size Prediction (s)

ETH HDD 65536 128 2249.766
IB HDD 65536 128 2737.112

ETH SSD 65536 128 1036.366
IB SSD 65536 128 1036.366

ETH HDD 131072 128 2165.927
IB HDD 131072 128 2653.273

ETH SSD 131072 128 969.537
IB SSD 131072 128 969.537

ETH HDD 65536 256 2249.766
IB HDD 65536 256 2737.112

ETH SSD 65536 256 1036.366
IB SSD 65536 256 1036.366

ETH HDD 131072 256 2165.927
IB HDD 131072 256 2653.273

ETH SSD 131072 256 969.537
IB SSD 131072 256 969.537

Terasort, 4 maps, sort factor 10, no comp

Disk=SSD

IO.FBuf=131072 -> 970s

IO.FBuf=65536 -> 1036s

Disk=HDD

Net=ETH

IO.FBuf=131072 -> 2166s

IO.FBuf=65536 -> 2250s

Net=IB

IO.FBuf=131072

Blk.size=128 -> 2653s

Blk.size=256 -> 2653s

IO.FBuf=65536

Blk.size=128 -> 2737s

Blk.size=256 -> 2737s

Fig. 4: Example of estimation of the selected space of search, with the corre-
sponding descriptive tree

ing efforts as well to automate. In this case of study we showed how we can
model easily separate benchmarks, but the aim is to achieve in the next future
a general model that include all benchmarks by studying ways to parametrize
those and being able to compare (and then discriminate) them. Also we showed,
from our machine learning tool in ALOJA project, a quick algorithm to display
how variables affect Hadoop benchmarks execution time, based in the learned
models.

Our project is now focused on study how to treat benchmarks and clusters in
general models, finding methods to characterize them towards the challenge of
learning general models with more proper accuracy. At the same time supporting
ALOJA’s goal of automating Knowledge Discovery (KD) and recommendations
to users.

We also will like to invite fellow researchers and Big Data practitioners to
use on our open source tools to expand on the available analytic tools and public
benchmark repository.

Acknowledgements

This work is partially supported the BSC-Microsoft Research Centre, the Span-
ish Ministry of Education (TIN2012-34557), the MINECO Severo Ochoa Re-
search program (SEV-2011-0067) and the Generalitat de Catalunya (2014-SGR-
1051).

14 N.Poggi, J.Ll.Berral, and D.Carrera

References

[1] D. Borthakur. The Hadoop Distributed File System: Architecture and De-
sign.
http://hadoop.apache.org/docs/r0.18.0/hdfs design.pdf. The Apache Soft-
ware Foundation, 2007.

[2] BSC. Aloja home page: http://aloja.bsc.es/, 2015.
[3] BSC. Performance tools research group page: http://www.bsc.es/computer-

sciences/performance-tools, 2015.
[4] BSC. Administrator privileges on headnode of hdinsight-cluster:

http://www.postseek.com/meta/bd1cddf3af9c7ce35d147e842a686410,
May, 2015.

[5] Gartner. Predictive analytics: http://www.gartner.com/it-
glossary/predictive-analytics, May, 2015.

[6] J. Guitart, J. Torres, E. Ayguad, J. Oliver, and J. Labarta. Java instrumen-
tation suite: Accurate analysis of java threaded applications. In Proceedings
of the second annual workshop on Java for HPC, ICS00, pages 15–25, 2000.

[7] D. Heger. Hadoop Performance Tuning - A pragmatic & iterative approach.
DH Technologies, 2013.

[8] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The HiBench bench-
mark suite: Characterization of the MapReduce-based data analysis. Data
Engineering Workshops, 22nd International Conference on, 0:41–51, 2010.

[9] K. Kambatla, A. Pathak, and H. Pucha. Towards optimizing hadoop provi-
sioning in the cloud. In Proceedings of the 2009 Conference on Hot Topics
in Cloud Computing, HotCloud’09, Berkeley, CA, USA, 2009. USENIX As-
sociation.

[10] L. Person. Global Hadoop Market. Allied market research, March 2014.
[11] N. Poggi, D. Carrera, A. Call, S. Mendoza, Y. Becerra, J. Torres,

E. Ayguadé, F. Gagliardi, J. Labarta, R. Reinauer, N. Vujic, D. Green, and
J. Blakeley. ALOJA: A systematic study of hadoop deployment variables
to enable automated characterization of cost-effectiveness. In 2014 IEEE
Intl. Conf. on Big Data, Big Data 2014, Washington, DC, USA, October
27-30, 2014, pages 905–913, 2014.

[12] B. Schwartz, P. Zaitsev, and V. Tkachenko. High Performance MySQL.
O’Reilly media, 2012.

[13] Wikipedia. Predictive analytics: http://en.wikipedia.org/wiki/predictive analytics,
May, 2015.

[14] Z. Zhang, L. Cherkasova, and B. T. Loo. Optimizing cost and performance
trade-offs for mapreduce job processing in the cloud. In Network Operations
and Management Symposium (NOMS), 2014 IEEE, pages 1–8. IEEE, 2014.

[15] Apache Foundation. Apache Hadoop. http://hadoop.apache.org (Ac-
cessed April 2015).

[16] J. Ll. Berral. Improved Management of Data-Center Systems using Machine
Learning. Ph.D. Thesis on Computer Science. November 2013.

[17] D. Heger. Hadoop Performance Tuning - A pragmatic & iterative approach.
DH Technologies, 2013.

ALOJA: a Benchmarking and Predictive Platform for Big Data 15

[18] D. Heger. Hadoop Performance Tuning. https://hadoop-toolkit.

googlecode.com/files/Whitepaper-HadoopPerformanceTuning.pdf

(Accessed Jan 2015).
[19] Intel Corporation. Intel HiBench, Hadoop benchmark suite. https://

github.com/intel-hadoop/HiBench (Accessed April 2015).
[20] L. Person. Global Hadoop Market. Allied market research, March 2014.
[21] N. Poggi, D. Carrera, A. Call, S. Mendoza, Y. Becerra, J. Torres, E.

Ayguadé, F. Gagliardi, J. Labarta, R. Reinauer, N. Vujic, D. Green, and J.
Blakeley. ALOJA: A systematic study of hadoop deployment variables to
enable automated characterization of cost-effectiveness. In 2014 IEEE Intl.
Conf. on Big Data, Big Data 2014, Washington, DC, USA, October 27-30,
2014, pages 905-913, 2014.

[22] Ross J. Quinlan. Learning with Continuous Classes. 5th Australian Joint
Conference on Artificial Intelligence, Singapore, 343-348, 1992.

[23] Y. Wang, I. H. Witten. Induction of model trees for predicting continuous
classes. Poster papers of the 9th European Conference on Machine Learning,
1997.

