42 research outputs found

    Mobile Software Development (KSU)

    Get PDF
    This Grants Collection for Mobile Software Development was created under a Round Twelve ALG Textbook Transformation Grant. Affordable Learning Georgia Grants Collections are intended to provide faculty with the frameworks to quickly implement or revise the same materials as a Textbook Transformation Grants team, along with the aims and lessons learned from project teams during the implementation process. Documents are in .pdf format, with a separate .docx (Word) version available for download. Each collection contains the following materials: Linked Syllabus Initial Proposal Final Reporthttps://oer.galileo.usg.edu/compsci-collections/1036/thumbnail.jp

    User Interface Engineering (KSU)

    Get PDF
    This Grants Collection for User Interface Engineering was created under a Round Twelve ALG Textbook Transformation Grant. Affordable Learning Georgia Grants Collections are intended to provide faculty with the frameworks to quickly implement or revise the same materials as a Textbook Transformation Grants team, along with the aims and lessons learned from project teams during the implementation process. Documents are in .pdf format, with a separate .docx (Word) version available for download. Each collection contains the following materials: Linked Syllabus Initial Proposal Final Reporthttps://oer.galileo.usg.edu/compsci-collections/1035/thumbnail.jp

    Emerging Security Threats in Modern Digital Computing Systems: A Power Management Perspective

    Get PDF
    Design of computing systems — from pocket-sized smart phones to massive cloud based data-centers — have one common daunting challenge : minimizing the power consumption. In this effort, power management sector is undergoing a rapid and profound transformation to promote clean and energy proportional computing. At the hardware end of system design, there is proliferation of specialized, feature rich and complex power management hardware components. Similarly, in the software design layer complex power management suites are growing rapidly. Concurrent to this development, there has been an upsurge in the integration of third-party components to counter the pressures of shorter time-to-market. These trends collectively raise serious concerns about trust and security of power management solutions. In recent times, problems such as overheating, performance degradation and poor battery life, have dogged the mobile devices market, including the infamous recall of Samsung Note 7. Power outage in the data-center of a major airline left innumerable passengers stranded, with thousands of canceled flights costing over 100 million dollars. This research examines whether such events of unintentional reliability failure, can be replicated using targeted attacks by exploiting the security loopholes in the complex power management infrastructure of a computing system. At its core, this research answers an imminent research question: How can system designers ensure secure and reliable operation of third-party power management units? Specifically, this work investigates possible attack vectors, and novel non-invasive detection and defense mechanisms to safeguard system against malicious power attacks. By a joint exploration of the threat model and techniques to seamlessly detect and protect against power attacks, this project can have a lasting impact, by enabling the design of secure and cost-effective next generation hardware platforms

    Highly-cited papers in software engineering: The top 100

    Get PDF
    Context: According to the search reported in this paper, as of this writing (May 2015), a very large number of papers (more than 70,000) have been published in the area of Software Engineering (SE) since its inception in 1968. Citations are crucial in any research area to position the work and to build on the work of others. Identification and characterization of highly-cited papers are common and are regularly reported in various disciplines. Objective: The objective of this study is to identify the papers in the area of SE that have influenced others the most as measured by citation count. Studying highly-cited SE papers helps researchers to see the type of approaches and research methods presented and applied in such papers, so as to be able to learn from them to write higher quality papers which will likely receive high citations. Method: To achieve the above objective, we conducted a study, comprised of five research questions, to identify and classify the top-100 highly-cited SE papers in terms of two metrics: total number of citations and average annual number of citations. Results: By total number of citations, the top paper is "A metrics suite for object-oriented design", cited 1,817 times and published in 1994. By average annual number of citations, the top paper is "QoS-aware middleware for Web services composition", cited 154.2 times on average annually and published in 2004. Conclusion: It is concluded that it is important to identify the highly-cited SE papers and also to characterize the overall citation landscape in the SE field. We hope that this paper will encourage further discussions in the SE community towards further analysis and formal characterization of the highly-cited SE papers.Vahid Garousi was partially supported by several internal grants provided by the Hacettepe University. The authors would like to thank the anonymous reviewers for their insightful comments

    End-to-End Trust Fulfillment of Big Data Workflow Provisioning over Competing Clouds

    Get PDF
    Cloud Computing has emerged as a promising and powerful paradigm for delivering data- intensive, high performance computation, applications and services over the Internet. Cloud Computing has enabled the implementation and success of Big Data, a relatively recent phenomenon consisting of the generation and analysis of abundant data from various sources. Accordingly, to satisfy the growing demands of Big Data storage, processing, and analytics, a large market has emerged for Cloud Service Providers, offering a myriad of resources, platforms, and infrastructures. The proliferation of these services often makes it difficult for consumers to select the most suitable and trustworthy provider to fulfill the requirements of building complex workflows and applications in a relatively short time. In this thesis, we first propose a quality specification model to support dual pre- and post-cloud workflow provisioning, consisting of service provider selection and workflow quality enforcement and adaptation. This model captures key properties of the quality of work at different stages of the Big Data value chain, enabling standardized quality specification, monitoring, and adaptation. Subsequently, we propose a two-dimensional trust-enabled framework to facilitate end-to-end Quality of Service (QoS) enforcement that: 1) automates cloud service provider selection for Big Data workflow processing, and 2) maintains the required QoS levels of Big Data workflows during runtime through dynamic orchestration using multi-model architecture-driven workflow monitoring, prediction, and adaptation. The trust-based automatic service provider selection scheme we propose in this thesis is comprehensive and adaptive, as it relies on a dynamic trust model to evaluate the QoS of a cloud provider prior to taking any selection decisions. It is a multi-dimensional trust model for Big Data workflows over competing clouds that assesses the trustworthiness of cloud providers based on three trust levels: (1) presence of the most up-to-date cloud resource verified capabilities, (2) reputational evidence measured by neighboring users and (3) a recorded personal history of experiences with the cloud provider. The trust-based workflow orchestration scheme we propose aims to avoid performance degradation or cloud service interruption. Our workflow orchestration approach is not only based on automatic adaptation and reconfiguration supported by monitoring, but also on predicting cloud resource shortages, thus preventing performance degradation. We formalize the cloud resource orchestration process using a state machine that efficiently captures different dynamic properties of the cloud execution environment. In addition, we use a model checker to validate our monitoring model in terms of reachability, liveness, and safety properties. We evaluate both our automated service provider selection scheme and cloud workflow orchestration, monitoring and adaptation schemes on a workflow-enabled Big Data application. A set of scenarios were carefully chosen to evaluate the performance of the service provider selection, workflow monitoring and the adaptation schemes we have implemented. The results demonstrate that our service selection outperforms other selection strategies and ensures trustworthy service provider selection. The results of evaluating automated workflow orchestration further show that our model is self-adapting, self-configuring, reacts efficiently to changes and adapts accordingly while enforcing QoS of workflows

    Nature-inspired survivability: Prey-inspired survivability countermeasures for cloud computing security challenges

    Get PDF
    As cloud computing environments become complex, adversaries have become highly sophisticated and unpredictable. Moreover, they can easily increase attack power and persist longer before detection. Uncertain malicious actions, latent risks, Unobserved or Unobservable risks (UUURs) characterise this new threat domain. This thesis proposes prey-inspired survivability to address unpredictable security challenges borne out of UUURs. While survivability is a well-addressed phenomenon in non-extinct prey animals, applying prey survivability to cloud computing directly is challenging due to contradicting end goals. How to manage evolving survivability goals and requirements under contradicting environmental conditions adds to the challenges. To address these challenges, this thesis proposes a holistic taxonomy which integrate multiple and disparate perspectives of cloud security challenges. In addition, it proposes the TRIZ (Teorija Rezbenija Izobretatelskib Zadach) to derive prey-inspired solutions through resolving contradiction. First, it develops a 3-step process to facilitate interdomain transfer of concepts from nature to cloud. Moreover, TRIZ’s generic approach suggests specific solutions for cloud computing survivability. Then, the thesis presents the conceptual prey-inspired cloud computing survivability framework (Pi-CCSF), built upon TRIZ derived solutions. The framework run-time is pushed to the user-space to support evolving survivability design goals. Furthermore, a target-based decision-making technique (TBDM) is proposed to manage survivability decisions. To evaluate the prey-inspired survivability concept, Pi-CCSF simulator is developed and implemented. Evaluation results shows that escalating survivability actions improve the vitality of vulnerable and compromised virtual machines (VMs) by 5% and dramatically improve their overall survivability. Hypothesis testing conclusively supports the hypothesis that the escalation mechanisms can be applied to enhance the survivability of cloud computing systems. Numeric analysis of TBDM shows that by considering survivability preferences and attitudes (these directly impacts survivability actions), the TBDM method brings unpredictable survivability information closer to decision processes. This enables efficient execution of variable escalating survivability actions, which enables the Pi-CCSF’s decision system (DS) to focus upon decisions that achieve survivability outcomes under unpredictability imposed by UUUR

    Packet filter performance monitor (anti-DDOS algorithm for hybrid topologies)

    Get PDF
    DDoS attacks are increasingly becoming a major problem. According to Arbor Networks, the largest DDoS attack reported by a respondent in 2015 was 500 Gbps. Hacker News stated that the largest DDoS attack as of March 2016 was over 600 Gbps, and the attack targeted the entire BBC website. With this increasing frequency and threat, and the average DDoS attack duration at about 16 hours, we know for certain that DDoS attacks will not be going away anytime soon. Commercial companies are not effectively providing mitigation techniques against these attacks, considering that major corporations face the same challenges. Current security appliances are not strong enough to handle the overwhelming traffic that accompanies current DDoS attacks. There is also a limited research on solutions to mitigate DDoS attacks. Therefore, there is a need for a means of mitigating DDoS attacks in order to minimize downtime. One possible solution is for organizations to implement their own architectures that are meant to mitigate DDoS attacks. In this dissertation, we present and implement an architecture that utilizes an activity monitor to change the states of firewalls based on their performance in a hybrid network. Both firewalls are connected inline. The monitor is mirrored to monitor the firewall states. The monitor reroutes traffic when one of the firewalls become overwhelmed due to a HTTP DDoS flooding attack. The monitor connects to the API of both firewalls. The communication between the rewalls and monitor is encrypted using AES, based on PyCrypto Python implementation. This dissertation is structured in three parts. The first found the weakness of the hardware firewall and determined its threshold based on spike and endurance tests. This was achieved by flooding the hardware firewall with HTTP packets until the firewall became overwhelmed and unresponsive. The second part implements the same test as the first, but targeted towards the virtual firewall. The same parameters, test factors, and determinants were used; however a different load tester was utilized. The final part was the implementation and design of the firewall performance monitor. The main goal of the dissertation is to minimize downtime when network firewalls are overwhelmed as a result of a DDoS attack

    A Pattern-Based Approach to Scaffold the IT Infrastructure Design Process

    Get PDF
    Context. The design of Information Technology (IT) infrastructures is a challenging task since it implies proficiency in several areas that are rarely mastered by a single person, thus raising communication problems among those in charge of conceiving, deploying, operating and maintaining/managing them. Most IT infrastructure designs are based on proprietary models, known as blueprints or product-oriented architectures, defined by vendors to facilitate the configuration of a particular solution, based upon their services and products portfolio. Existing blueprints can be facilitators in the design of solutions for a particular vendor or technology. However, since organizations may have infrastructure components from multiple vendors, the use of blueprints aligned with commercial product(s) may cause integration problems among these components and can lead to vendor lock-in. Additionally, these blueprints have a short lifecycle, due to their association with product version(s) or a specific technology, which hampers their usage as a tool for the reuse of IT infrastructure knowledge. Objectives. The objectives of this dissertation are (i) to mitigate the inability to reuse knowledge in terms of best practices in the design of IT infrastructures and, (ii) to simplify the usage of this knowledge, making the IT infrastructure designs simpler, quicker and better documented, while facilitating the integration of components from different vendors and minimizing the communication problems between teams. Method. We conducted an online survey and performed a systematic literature review to support the state of the art and to provide evidence that this research was relevant and had not been conducted before. A model-driven approach was also used for the formalization and empirical validation of well-formedness rules to enhance the overall process of designing IT infrastructures. To simplify and support the design process, a modeling tool, including its abstract and concrete syntaxes was also extended to include the main contributions of this dissertation. Results. We obtained 123 responses to the online survey. Their majority were from people with more than 15 years experience with IT infrastructures. The respondents confirmed our claims regarding the lack of formality and documentation problems on knowledge transfer and only 19% considered that their current practices to represent IT Infrastructures are efficient. A language for modeling IT Infrastructures including an abstract and concrete syntax is proposed to address the problem of informality in their design. A catalog of IT Infrastructure patterns is also proposed to allow expressing best practices in their design. The modeling tool was also evaluated and according to 84% of the respondents, this approach decreases the effort associated with IT infrastructure design and 89% considered that the use of a repository with infrastructure patterns, will help to improve the overall quality of IT infrastructures representations. A controlled experiment was also performed to assess the effectiveness of both the proposed language and the pattern-based IT infrastructure design process supported by the tool. Conclusion. With this work, we contribute to improve the current state of the art in the design of IT infrastructures replacing the ad-hoc methods with more formal ones to address the problems of ambiguity, traceability and documentation, among others, that characterize most of IT infrastructure representations. Categories and Subject Descriptors:C.0 [Computer Systems Organization]: System architecture; D.2.10 [Software Engineering]: Design-Methodologies; D.2.11 [Software Engineering]: Software Architectures-Patterns

    ERP implementation methodologies and frameworks: a literature review

    Get PDF
    Enterprise Resource Planning (ERP) implementation is a complex and vibrant process, one that involves a combination of technological and organizational interactions. Often an ERP implementation project is the single largest IT project that an organization has ever launched and requires a mutual fit of system and organization. Also the concept of an ERP implementation supporting business processes across many different departments is not a generic, rigid and uniform concept and depends on variety of factors. As a result, the issues addressing the ERP implementation process have been one of the major concerns in industry. Therefore ERP implementation receives attention from practitioners and scholars and both, business as well as academic literature is abundant and not always very conclusive or coherent. However, research on ERP systems so far has been mainly focused on diffusion, use and impact issues. Less attention has been given to the methods used during the configuration and the implementation of ERP systems, even though they are commonly used in practice, they still remain largely unexplored and undocumented in Information Systems research. So, the academic relevance of this research is the contribution to the existing body of scientific knowledge. An annotated brief literature review is done in order to evaluate the current state of the existing academic literature. The purpose is to present a systematic overview of relevant ERP implementation methodologies and frameworks as a desire for achieving a better taxonomy of ERP implementation methodologies. This paper is useful to researchers who are interested in ERP implementation methodologies and frameworks. Results will serve as an input for a classification of the existing ERP implementation methodologies and frameworks. Also, this paper aims also at the professional ERP community involved in the process of ERP implementation by promoting a better understanding of ERP implementation methodologies and frameworks, its variety and history
    corecore