9 research outputs found

    Managing project interdependencies in IT/IS project portfolios: a review of managerial issues

    Get PDF
    Adequately managing project interdependencies among diverse and simultaneous projects is deemed critical for successful implementation of project portfolios. The challenge is significant because it may entail managing a complex network of project interdependencies that keeps changing over time. The present study investigates the managerial challenges that may undermine effective management of project interdependencies in IT/IS project portfolios. The investigation is based on evidence from reviewing relevant literature and documented studies associated with managing project interdependencies. The main contribution of this study is to discuss three managerial challenges of project interdependencies in project portfolios. We discuss the challenges from three perspectives: types of interdependencies; patterns of interaction in interdependencies; and cost/benefit impact of project interdependencies

    Handling requirements dependencies in agile projects: A focus group with agile software development practitioners

    Get PDF
    Agile practices on requirements dependencies are a relatively unexplored topic in literature. Empirical studies on it are scarce. This research sets out to uncover concepts that practitioners in companies of various sizes across the globe and in various industries, use for dealing with requirements dependencies in their agile software projects. Concepts were revealed through online focus group research, using an adapted forum for discussion, and grounded theory to analyze the responses. Our study resulted in the following findings: (1) requirements dependencies occur in agile projects and are important to these projects' success just as this is known for `traditional' software projects'; (2) requirements dependencies (i) were considered and treated as part of risk management, (ii) were deemed a responsibility of the individual team members, and (iii) mostly did affect project planning; (3) continuous communication and collaboration - two essential features of any agile method, were found critical to mitigating the risks due to dependencies; (4) a hybrid approach to architecture between agile and plan-driven methods was perceived to yield maximum scalability and help coping with dependencies; (5) `cross-cutting concerns', a category of dependencies, were not uniformly understood in an agile context and require more research

    Distributed Web Service Coordination for Collaboration Applications and Biological Workflows

    Get PDF
    In this dissertation work, we have investigated the main research thrust of decentralized coordination of workflows over web services. To address distributed workflow coordination, first we have developed “Web Coordination Bonds” as a capable set of dependency modeling primitives that enable each web service to manage its own dependencies. Web bond primitives are as powerful as extended Petri nets and have sufficient modeling and expressive capabilities to model workflow dependencies. We have designed and prototyped our “Web Service Coordination Management Middleware” (WSCMM) system that enhances current web services infrastructure to accommodate web bond enabled web services. Finally, based on core concepts of web coordination bonds and WSCMM, we have developed the “BondFlow” system that allows easy configuration distributed coordination of workflows. The footprint of the BonFlow runtime is 24KB and the additional third party software packages, SOAP client and XML parser, account for 115KB

    The exploration of a category theory-based virtual Geometrical product specification system for design and manufacturing

    Get PDF
    In order to ensure quality of products and to facilitate global outsourcing, almost all the so-called “world-class” manufacturing companies nowadays are applying various tools and methods to maintain the consistency of a product’s characteristics throughout its manufacturing life cycle. Among these, for ensuring the consistency of the geometric characteristics, a tolerancing language − the Geometrical Product Specification (GPS) has been widely adopted to precisely transform the functional requirements from customers into manufactured workpieces expressed as tolerance notes in technical drawings. Although commonly acknowledged by industrial users as one of the most successful efforts in integrating existing manufacturing life-cycle standards, current GPS implementations and software packages suffer from several drawbacks in their practical use, possibly the most significant, the difficulties in inferring the data for the “best” solutions. The problem stemmed from the foundation of data structures and knowledge-based system design. This indicates that there need to be a “new” software system to facilitate GPS applications. The presented thesis introduced an innovative knowledge-based system − the VirtualGPS − that provides an integrated GPS knowledge platform based on a stable and efficient database structure with knowledge generation and accessing facilities. The system focuses on solving the intrinsic product design and production problems by acting as a virtual domain expert through translating GPS standards and rules into the forms of computerized expert advices and warnings. Furthermore, this system can be used as a training tool for young and new engineers to understand the huge amount of GPS standards in a relative “quicker” manner. The thesis started with a detailed discussion of the proposed categorical modelling mechanism, which has been devised based on the Category Theory. It provided a unified mechanism for knowledge acquisition and representation, knowledge-based system design, and database schema modelling. As a core part for assessing this knowledge-based system, the implementation of the categorical Database Management System (DBMS) is also presented in this thesis. The focus then moved on to demonstrate the design and implementation of the proposed VirtualGPS system. The tests and evaluations of this system were illustrated in Chapter 6. Finally, the thesis summarized the contributions to knowledge in Chapter 7. After thoroughly reviewing the project, the conclusions reached construe that the III entire VirtualGPS system was designed and implemented to conform to Category Theory and object-oriented programming rules. The initial tests and performance analyses show that the system facilitates the geometric product manufacturing operations and benefits the manufacturers and engineers alike from function designs, to a manufacturing and verification

    Modelling the integration between the design and inspection process of geometrical specifications for digital manufacturing

    Get PDF
    Geometrical Product Specifications (GPS) is a technical language which covers the standardization for micro/macro- geometry specifications. In today’s environment of globalization, out-sourcing and sub-contracting is increasing. Geometrical specifications of a product need to be detailed to a degree where nothing is left open to interpretation. To fulfil this, and to meet the requirements of digital manufacturing, it is necessary to integrate the design and inspection process of a geometrical specification. At the technical level, many functional operator/operations are employed in a geometrical specification. These functional operators/operations are based on rigorous mathematics, and they are intricately related and inconvenient to be used directly. Consequently, it is of practical utility to build an integrated information system to encapsulate and manage the information involved in GPS. This thesis focuses on geometrical tolerancing, including form/orientation/ location tolerancing, and its integrated geometry information system. The main contributions are: Firstly, a global data expression for modelling the integration between the design and inspection process of a geometrical tolerance is presented based on category theory. The categorical data model represents, stores and manipulates all the elements and their relationships involved in design and inspection process of a geometrical tolerance, by categories, objects and morphisms, flexibly; the relationships between objects were refined by pull back structures; and the manipulations of the model such as query and closure of query are realized successfully by functor structures in category theory. Secondly, different categories of knowledge rules have been established to enhance the rationality and the intellectuality of the integrated geometry information system, such as the rules for the application of geometrical requirement, tolerance type, datum and datum reference framework and, for the refinement among geometrical specifications. Finally, the host system for drawing indication of geometrical tolerances in the framework of GPS was established based on AutoCAD 2007 using ObjectARX.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The exploration of a category theory-based virtual geometrical product specification system for design and manufacturing

    Get PDF
    In order to ensure quality of products and to facilitate global outsourcing, almost all the so-called “world-class” manufacturing companies nowadays are applying various tools and methods to maintain the consistency of a product’s characteristics throughout its manufacturing life cycle. Among these, for ensuring the consistency of the geometric characteristics, a tolerancing language − the Geometrical Product Specification (GPS) has been widely adopted to precisely transform the functional requirements from customers into manufactured workpieces expressed as tolerance notes in technical drawings. Although commonly acknowledged by industrial users as one of the most successful efforts in integrating existing manufacturing life-cycle standards, current GPS implementations and software packages suffer from several drawbacks in their practical use, possibly the most significant, the difficulties in inferring the data for the “best” solutions. The problem stemmed from the foundation of data structures and knowledge-based system design. This indicates that there need to be a “new” software system to facilitate GPS applications. The presented thesis introduced an innovative knowledge-based system − the VirtualGPS − that provides an integrated GPS knowledge platform based on a stable and efficient database structure with knowledge generation and accessing facilities. The system focuses on solving the intrinsic product design and production problems by acting as a virtual domain expert through translating GPS standards and rules into the forms of computerized expert advices and warnings. Furthermore, this system can be used as a training tool for young and new engineers to understand the huge amount of GPS standards in a relative “quicker” manner. The thesis started with a detailed discussion of the proposed categorical modelling mechanism, which has been devised based on the Category Theory. It provided a unified mechanism for knowledge acquisition and representation, knowledge-based system design, and database schema modelling. As a core part for assessing this knowledge-based system, the implementation of the categorical Database Management System (DBMS) is also presented in this thesis. The focus then moved on to demonstrate the design and implementation of the proposed VirtualGPS system. The tests and evaluations of this system were illustrated in Chapter 6. Finally, the thesis summarized the contributions to knowledge in Chapter 7. After thoroughly reviewing the project, the conclusions reached construe that the III entire VirtualGPS system was designed and implemented to conform to Category Theory and object-oriented programming rules. The initial tests and performance analyses show that the system facilitates the geometric product manufacturing operations and benefits the manufacturers and engineers alike from function designs, to a manufacturing and verification.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Towards a Formal Reactive Autonomic Systems Framework using Category Theory

    Get PDF
    Software complexity is the main obstacle to further progress in IT industry, as the difficulty of managing complex and massive computing systems goes well beyond IT administrators’ capabilities. One of the remaining options is autonomic computing, which helps to address complexity by using technology to manage technology in terms of hiding and removing low level complexities from end users. Real-time reactive systems are some of the most complex systems that have become increasingly heterogeneous and intelligent. Thus, we want to add autonomic features to real-time reactive systems by building a formal framework, Reactive Autonomic Systems Framework (RASF), which can leverage specification, modeling and development of Reactive Autonomic Systems (RAS). With autonomic behavior, the real-time reactive systems are more self-managed to themselves and more adaptive to their environment. Formal methods are proven approaches to ensure the correct operation of complex interacting systems. However, many current formal approaches do not have appropriate mechanisms to specify RAS and have not addressed well on verifying self-management behavior, which is one of the most important features of the RAS. The management of evolving specifications and analysis of changes require a specification structure, which can isolate those changes in a small number of components and analyze the impacts of a change on interconnected components. Category theory has been proposed as a framework to offer that structure; it has a rich body of theory to reason about objects and their relations. Furthermore, category theory adopts a correct by construction approach by which components can be specified, proved and composed in the way of preserving their properties. In the multi-agent community, agent-based approach is considered as a natural way to model and implement autonomic systems, as the ability of an autonomous agent can be easily mapped to the self-management behaviors in autonomic systems. Thus, many ideas from the Multi-Agent Systems (MAS) community can be adapted to implement the autonomic systems, such as the self-management behavior, automatic group formation, interfacing and evolution. Therefore, in terms of achieving our research goal, we need to i) build an architecture and corresponding communication mechanism for modeling both reactive and autonomic behavior of the RAS, ii) formally specify the architecture, communication and behavior above using category theory, iii) design and implement the architecture, communication as well as behavior of the RAS model by the MAS approach with its implementation and iv) illustrate our RASF methodology and approach with case studies

    A framework for analyzing changes in health care lexicons and nomenclatures

    Get PDF
    Ontologies play a crucial role in current web-based biomedical applications for capturing contextual knowledge in the domain of life sciences. Many of the so-called bio-ontologies and controlled vocabularies are known to be seriously defective from both terminological and ontological perspectives, and do not sufficiently comply with the standards to be considered formai ontologies. Therefore, they are continuously evolving in order to fix the problems and provide valid knowledge. Moreover, many problems in ontology evolution often originate from incomplete knowledge about the given domain. As our knowledge improves, the related definitions in the ontologies will be altered. This problem is inadequately addressed by available tools and algorithms, mostly due to the lack of suitable knowledge representation formalisms to deal with temporal abstract notations, and the overreliance on human factors. Also most of the current approaches have been focused on changes within the internal structure of ontologies, and interactions with other existing ontologies have been widely neglected. In this research, alter revealing and classifying some of the common alterations in a number of popular biomedical ontologies, we present a novel agent-based framework, RLR (Represent, Legitimate, and Reproduce), to semi-automatically manage the evolution of bio-ontologies, with emphasis on the FungalWeb Ontology, with minimal human intervention. RLR assists and guides ontology engineers through the change management process in general, and aids in tracking and representing the changes, particularly through the use of category theory. Category theory has been used as a mathematical vehicle for modeling changes in ontologies and representing agents' interactions, independent of any specific choice of ontology language or particular implementation. We have also employed rule-based hierarchical graph transformation techniques to propose a more specific semantics for analyzing ontological changes and transformations between different versions of an ontology, as well as tracking the effects of a change in different levels of abstractions. Thus, the RLR framework enables one to manage changes in ontologies, not as standalone artifacts in isolation, but in contact with other ontologies in an openly distributed semantic web environment. The emphasis upon the generality and abstractness makes RLR more feasible in the multi-disciplinary domain of biomedical Ontology change management
    corecore