469 research outputs found

    The Dialog State Tracking Challenge Series: A Review

    Get PDF
    In a spoken dialog system, dialog state tracking refers to the task of correctly inferring the state of the conversation -- such as the user's goal -- given all of the dialog history up to that turn.  Dialog state tracking is crucial to the success of a dialog system, yet until recently there were no common resources, hampering progress.  The Dialog State Tracking Challenge series of 3 tasks introduced the first shared testbed and evaluation metrics for dialog state tracking, and has underpinned three key advances in dialog state tracking: the move from generative to discriminative models; the adoption of discriminative sequential techniques; and the incorporation of the speech recognition results directly into the dialog state tracker.  This paper reviews this research area, covering both the challenge tasks themselves and summarizing the work they have enabled

    An active learning approach for statistical spoken language understanding

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-25085-9_67In general, large amount of segmented and labeled data is needed to estimate statistical language understanding systems. In recent years, different approaches have been proposed to reduce the segmentation and labeling effort by means of unsupervised o semi-supervised learning techniques. We propose an active learning approach to the estimation of statistical language understanding models that involves the transcription, labeling and segmentation of a small amount of data, along with the use of raw data. We use this approach to learn the understanding component of a Spoken Dialog System. Some experiments that show the appropriateness of our approach are also presented.Work partially supported by the Spanish MICINN under contract TIN2008-06856-C05-02, and by the Vicerrectorat d’Investigació, Desenvolupament i Innovació of the Universitat Politècnica de València under contract 20100982.García Granada, F.; Hurtado Oliver, LF.; Sanchís Arnal, E.; Segarra Soriano, E. (2011). An active learning approach for statistical spoken language understanding. En Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Springer Verlag (Germany). 7042:565-572. https://doi.org/10.1007/978-3-642-25085-9_67S5655727042De Mori, R., Bechet, F., Hakkani-Tur, D., McTear, M., Riccardi, G., Tur, G.: Spoken language understanding: A survey. IEEE Signal Processing Magazine 25(3), 50–58 (2008)Fraser, M., Gilbert, G.: Simulating speech systems. Computer Speech and Language 5, 81–99 (1991)Gotab, P., Bechet, F., Damnati, G.: Active learning for rule-based and corpus-based spoken labguage understanding moldes. In: IEEE Workshop Automatic Speech Recognition and Understanding (ASRU 2009), pp. 444–449 (2009)Gotab, P., Damnati, G., Becher, F., Delphin-Poulat, L.: Online slu model adaptation with a partial oracle. In: Proc. of InterSpeech 2010, Makuhari, Chiba, Japan, pp. 2862–2865 (2010)He, Y., Young, S.: Spoken language understanding using the hidden vector state model. Speech Communication 48, 262–275 (2006)Ortega, L., Galiano, I., Hurtado, L.F., Sanchis, E., Segarra, E.: A statistical segment-based approach for spoken language understanding. In: Proc. of InterSpeech 2010, Makuhari, Chiba, Japan, pp. 1836–1839 (2010)Riccardi, G., Hakkani-Tur, D.: Active learning: theory and applications to automatic speech recognition. IEEE Transactions on Speech and Audio Processing 13(4), 504–511 (2005)Segarra, E., Sanchis, E., Galiano, M., García, F., Hurtado, L.: Extracting Semantic Information Through Automatic Learning Techniques. International Journal of Pattern Recognition and Artificial Intelligence 16(3), 301–307 (2002)Tur, G., Hakkani-Tr, D., Schapire, R.E.: Combining active and semi-supervised learning for spoken language understanding. Speech Communication 45, 171–186 (2005

    Dialog-aware language models for speech recognition

    Get PDF
    Automatic speech recognizers (ASR) typically treat each utterance of a conversation independently. This often leads to errors such as the incorrect transcription of homophones. These errors cascade into further problems when performing natural language understanding. This disclosure presents speech recognition techniques that transcribe speech using the larger context of the dialog. Per the techniques, individual utterances are transcribed based on the context of the conversation. The techniques distinguish homophones by context and improve in-dialog ASR without relying on supervised data or manually-provided phrases. The techniques generalize well to unseen dialogs or queries

    Robust Dialog State Tracking for Large Ontologies

    Full text link
    The Dialog State Tracking Challenge 4 (DSTC 4) differentiates itself from the previous three editions as follows: the number of slot-value pairs present in the ontology is much larger, no spoken language understanding output is given, and utterances are labeled at the subdialog level. This paper describes a novel dialog state tracking method designed to work robustly under these conditions, using elaborate string matching, coreference resolution tailored for dialogs and a few other improvements. The method can correctly identify many values that are not explicitly present in the utterance. On the final evaluation, our method came in first among 7 competing teams and 24 entries. The F1-score achieved by our method was 9 and 7 percentage points higher than that of the runner-up for the utterance-level evaluation and for the subdialog-level evaluation, respectively.Comment: Paper accepted at IWSDS 201

    Acquiring and Maintaining Knowledge by Natural Multimodal Dialog

    Get PDF
    • …
    corecore