7,263 research outputs found

    Network-wide Configuration Synthesis

    Full text link
    Computer networks are hard to manage. Given a set of high-level requirements (e.g., reachability, security), operators have to manually figure out the individual configuration of potentially hundreds of devices running complex distributed protocols so that they, collectively, compute a compatible forwarding state. Not surprisingly, operators often make mistakes which lead to downtimes. To address this problem, we present a novel synthesis approach that automatically computes correct network configurations that comply with the operator's requirements. We capture the behavior of existing routers along with the distributed protocols they run in stratified Datalog. Our key insight is to reduce the problem of finding correct input configurations to the task of synthesizing inputs for a stratified Datalog program. To solve this synthesis task, we introduce a new algorithm that synthesizes inputs for stratified Datalog programs. This algorithm is applicable beyond the domain of networks. We leverage our synthesis algorithm to construct the first network-wide configuration synthesis system, called SyNET, that support multiple interacting routing protocols (OSPF and BGP) and static routes. We show that our system is practical and can infer correct input configurations, in a reasonable amount time, for networks of realistic size (> 50 routers) that forward packets for multiple traffic classes.Comment: 24 Pages, short version published in CAV 201

    SDN management layer: design requirements and future direction

    Full text link
    Computer networks are becoming more and more complex and difficult to manage. The research community has been expending a lot of efforts to come up with a general management paradigm that is able to hide the details of the physical infrastructure and enable flexible network management. Software Defined Networking (SDN) is such a paradigm that simplifies network management and enables network innovations. In this survey paper, by reviewing existing SDN management layers (platforms), we identify the general common management architecture for SDN networks, and further identify the design requirements of the management layer that is at the core of the architecture. We also point out open issues and weaknesses of existing SDN management layers. We conclude with a promising future direction for improving the SDN management layer.This work is supported in part by the National Science Foundation (NSF grant CNS-0963974)

    On Negotiation as Concurrency Primitive

    Full text link
    We introduce negotiations, a model of concurrency close to Petri nets, with multiparty negotiation as primitive. We study the problems of soundness of negotiations and of, given a negotiation with possibly many steps, computing a summary, i.e., an equivalent one-step negotiation. We provide a complete set of reduction rules for sound, acyclic, weakly deterministic negotiations and show that, for deterministic negotiations, the rules compute the summary in polynomial time

    Introducing Dynamic Behavior in Amalgamated Knowledge Bases

    Full text link
    The problem of integrating knowledge from multiple and heterogeneous sources is a fundamental issue in current information systems. In order to cope with this problem, the concept of mediator has been introduced as a software component providing intermediate services, linking data resources and application programs, and making transparent the heterogeneity of the underlying systems. In designing a mediator architecture, we believe that an important aspect is the definition of a formal framework by which one is able to model integration according to a declarative style. To this purpose, the use of a logical approach seems very promising. Another important aspect is the ability to model both static integration aspects, concerning query execution, and dynamic ones, concerning data updates and their propagation among the various data sources. Unfortunately, as far as we know, no formal proposals for logically modeling mediator architectures both from a static and dynamic point of view have already been developed. In this paper, we extend the framework for amalgamated knowledge bases, presented by Subrahmanian, to deal with dynamic aspects. The language we propose is based on the Active U-Datalog language, and extends it with annotated logic and amalgamation concepts. We model the sources of information and the mediator (also called supervisor) as Active U-Datalog deductive databases, thus modeling queries, transactions, and active rules, interpreted according to the PARK semantics. By using active rules, the system can efficiently perform update propagation among different databases. The result is a logical environment, integrating active and deductive rules, to perform queries and update propagation in an heterogeneous mediated framework.Comment: Other Keywords: Deductive databases; Heterogeneous databases; Active rules; Update

    Property-Based Testing - The ProTest Project

    Get PDF
    The ProTest project is an FP7 STREP on property based testing. The purpose of the project is to develop software engineering approaches to improve reliability of service-oriented networks; support fault-finding and diagnosis based on specified properties of the system. And to do so we will build automated tools that will generate and run tests, monitor execution at run-time, and log events for analysis. The Erlang / Open Telecom Platform has been chosen as our initial implementation vehicle due to its robustness and reliability within the telecoms sector. It is noted for its success in the ATM telecoms switches by Ericsson, one of the project partners, as well as for multiple other uses such as in facebook, yahoo etc. In this paper we provide an overview of the project goals, as well as detailing initial progress in developing property based testing techniques and tools for the concurrent functional programming language Erlang
    • …
    corecore