
Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

3 0 3

J.W.Schmidt S. Ceri M. Missikoff (Eds.)

Advances in Database Technology -
EDBT '88
International Conference on Extending Database Technology
Venice, Italy, March 14-18, 1988
Proceedings

Springer-Verlag
Berlin Heidelberg New York London Paris Tokyo

Editor ial Board

D. Barstow W. Brauer R Brinch Hansen D. Gries D. Luckham

C. Moler A. Pnueli G. Seegmüller J. Stoer N. Wir th

Editors

Joachim W. Schmidt

Fachbereich Informatik, Johann Wolfgang Goethe-Universität

Postfach 11 19 32, D-6000 Frankfurt am Main 11, FRG

Stefano Ceri

Dipartimento di Matematica, Universitä di Modena

Via Campi 213/B, 1-41100 Modena, Italy

Michele Missikoff

IASI-CNR

Viale Manzoni 30, 1-00185 Rome, Italy

CR Subject Classification (1987): D.3.3, E.2, F.4.1, H.2,1.2.1,1.2.4

ISBN 3-540-19074-0 Springer-Verlag Berlin Heidelberg New York

ISBN 0-387-19074-0 Springer-Verlag New York Berlin Heidelberg

This work is subject to Copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1965, in its Version of June 24, 1985, and a Copyright fee must always be
paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1988
Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2145/3140-543210

C o n t e n t s

Invited Paper
L . C a r d e l l i
Types for Data-Oriented Languages 1

Databases and Logic

R . K r i s h n a m u r t h y and C. Z a n i o l o
Optimization in a Logic Based Language for Knowledge and Data
Intensive Applications 16

P . M . D . Gray, D . S . Moffat and N . W . Paton
A Prolog Interface to a Functional Data Model Database 34

J. H a n , G. Q a d a h and C. C h a o u
The Processing and Evaluation of Transitive Closure Queries 49

Expert System Approaches to Databases

A . M . Kotz, K . R . D i t t r i c h and J . A . Mülle
Supporting Semantic Rules by a Generalized Event/Trigger Mechanism 76

M . C . Shan
Optimal Plan Search in a Rule-Based Query Optimizer 92

C. Cauvet, C. P r o i z and C. R o l l a n d
Information Systems Design: An Expert System Approach 113

Distributed Databases and Transaction Management

C. Beert, H . - J . Schek and G. W e i k u m
Multilevel Transaction Management, Theoretical Art or Practical Need? 134

E . B e r t i n o and L . M . H a a s
Views and Security in Distributed Database Management Systems 155

E . Bellcastro, A . Dutkowski, W. Kaminski, M . Kowalewski, C . L . M a l l a m a c i ,
S. Mezyk, T. M o s t a r d i , F . P . Scrocco, W. Staniszkis and G. T u r c o
An Overview of the Distributed Query System DQS 170

Database Administration

A . P . Sheth, J . A . Larson and E . Watkins
TAILOR, a Tool for Updating Views 190

S.J. O a m m a r a t a
An Intelligent Information Dictionary for Semantic Manipulation of
Relational Databases 214

VIII

F . Rabitti, D . Woelk and W. K i m
A Model of Authorization for Object-Oriented and Semantic Databases 231

Complex Database Objects

D . Beech
A Foundation for Evolution from Relational to Object Databases 251

S. Abiteboul and S. G r u m b a c h
C 0 L : A Logic-Based Language for Complex Objects 271

M . Levene and G. Loizou
A Universal Relation Model for Nested Relations 294

Efficient Data Access

W. L i t w i n , D . Zegour and G. Levy
Multilevel Trie Hashing 309

A . Sikeler
V A R - P A G E - L R U : A Buffer Replacement Algorithm Supporting Different
Page Sizes 336

A . H u t f l e s z , H . - W . Six and P . Widmayer
The Twin Grid File: A Nearly Space Optimal Index Structure 352

S . M . C h u n g and P . B . B e r r a
A Comparison of Concatenated and Superimposed Code Word Surrogate
Files for Very Large Data/Knowledge Bases 364

G. Z . Q a d a h
Filter-Based Join Algorithms on Uniprocessor and Distributed-Memory
Multiprocessor Database Machines 388

Efficiency by Replicated Data

A . M i l o and O. Wolfson
Placement of Replicated Items in Distributed Databases 414

A . K u m a r and A . Segev
Optimizing Voting-Type Algorithms for Replicated Data 428

R . Alonso, D . B a r b a r a , H . G a r c i a - M o l i n a and S. Abad
Quasi-Copies: Efficient Data Sharing for Information Retrieval Systems 443

Data Typ es and Data Semantics

K . L . C h u n g , D . Rios-Zertuche, B . A . N i x o n and J. Mylopoulos
Process Management and Assertion Enforcement for a Semantic Data Model . 469

F . Bry, H . Decker and R . M a n t h e y
A Uniform Approach to Constraint Satisfaction and Constraint Satisfiability
in Deductive Databases 488

IX

Special Data

R . H . Güting
Geo-Relational Algebra: A Model and Query Language for
Geometrie Database Systems 506

N . A . Lorentzos and R . G . Johnson
An Extension of the Relational Model to Support Generic Intervals 528

Short Project Papers

J. Metthey and J. Cotta
ESPRIT: Trends and Challenges in Database Technology 543

Support for Data- and Knowledge-Based Applications

D . Saccä (Session C h a i r m a n)
Introduction 549

S. Ceti, S. Crespi Reghizzi, G. Gottlob, F . L a m p e r t i , L . Lavazza,
L . T a n c a and R . Z i c a r i
The A L G R E S Project 551

C. Lecluse, P . R i c h a r d and F . Velez
03, an Object-Oriented Data Model 556

A . V . Z a m u l i n
Database Programming Tools in the A T L A N T Language 563

A . A l b a n o , L . Alf6, S. C o l u c c i n i and R . O r s i n i
An Overview of Sidereus: A Graphical Database Schema Editor
for GALILEO 567

D A I D A T e a m
Towards KBMS for Software Development: An Overview of the
DAIDA Project 572

5. Bergamaschi, F . B o n f a t t i and C. S a r t o r i
ENTITY-SITUATION: A Model for the Knowledge Representation
Module of a KBMS 578

S. H i m b a u t
T E L L - M E : A Natural Language Query System 583

Distributed Database Applications

G. Pelagatti (Session C h a i r m a n)
Introduction 588

P . M . G . Apers, M . L . Kersten and H . C . M . Oerlemans
PRISMA Database Machine: A Distributed, Main-Memory Approach 590

X

M . D r i o u c h e f Y. Gicquel, B . Kerherve, G. L e Gac, Y. Lepetit and
G. N i c a u d
SABRINA-RT, a Distributed DBMS for Telecommunications 594

D . E l l i n g h a u s , M . H a l l m a n n , B . H o l t k a m p and K . - D . K r e p l i n
A Multidatabase System for Transnational Accounting 600

E . B e r t i n o , F . R a b i t t i and C. Thanos
MULTOS: A Document Server för Distributed Office Systems 606

W. Johannsen, W. Lamersdorf, K. R e i n h a r d t and J. W. Schmidt
The DURESS Project: Extending Databases into an Open Systems
Architecture 616

A Uniform Approach to Constraint Satisfaction
and Constraint Satisfiability in Deductive Databases

Frangois Bry, Hendrik Decker and Rainer Manthey
E C R C , Arabellastr. 17, D - 8 0 0 0 München 8 1 , West Germany

ABSTRACT I n t e g r i t y maintenance methods have been definedfor preventing Updates f r o m
violating integrity constraints. Depending on the update, the füll check for constraint satisfac
tion is reduced to checking certain instances ofsome relevant constraints only. In thefirst part
ofthe paper new ideas a r e proposed for enhancing the efficiency of such a method. T h e second
part is devoted to checking constraint satisfiability, i.e., whether a database exists i n which a l l
constraints a r e simultaneously satisfied. A satisfiability checking method is presented that
employs integrity maintenance techniques. Simple Prolog programs a r e given that serve both
as specifications as w e l l as a basis for a n efficient implementation.

1 . Introduction

Integrity maintenance methods are intended to guarantee that all integrity constraints remain satisfied

after an update, provided they have been satisfied before. In general, not all constraints are relevant to an

update but only certain instances of some of them. This depends on which relations are updated. It is

sufficient to check whether relevant instances are satisfied in order to guarantee satisfaction of the füll

constraint set after the update. Since this basic principle for efficient constraint checking was first

described in [NICO 79] and [BLAU 81], several authors have proposed extensions for the deductive case,

e.g., [DECK 86], [LLOY 86], [KOWA 87] and [LING 87]. In the first part of this paper we present a

method that is based on principles common to all proposals mentioned, but introduces several new ideas.

We propose to perform the computation of relevant constraint instances independently from any access to

the fact base. Fact access is entirely delayed to the evaluation phase and may thus benefit from optimiza-

tion Steps performed during query evaluation. Furthermore we propose to simulate evaluation of con

straints over the updated database by means of a simple meta-interpreter. This approach permits to

handle recursive rules, provided the database query-answering System has this capacity (e.g., [VIEI 87]).

489

Apart from preventing constraint violations caused by fact or rule Updates, one has to detect inconsis-

tencies when updating the constraint set as well. If a newly introduced constraint is not satisfied in the

current database, one can try to enforce it by means of further Updates to the factual part of the database.

However, any attempt to do so will fail, if the new constraint is not compatible with the already existing

ones. Such situations can be characterized by the logical concept of finite satisfiability. A set of formulas

is finitely satisfiable if there is at least one finite model that satisfies all formulas in the set. Formulas that

are not finitely satisfiable either have no model at all, or all models are infinite and thus not suitable for

database purposes. In presence of deduction rules, these logical deficiencies may be due to inherent con-

tradictions between rules and constraints as well. Thus constraint violations observed after a rule update

possibly indicate that constraints and rules are no longer finitely satisfiable after the modification.

In contrast to constraint satisfaction which is a decidable property, finite satisfiability of constraints is

only semi-decidable, i.e., every algorithm for checking this property may run forever if applied to con

straint sets that contain certain "axioms of infinity". In [BRY 86] we have discussed this problem in more

detail, and have investigated various possible approaches to it. In this paper we propose a method for

checking constraint satisfiability that is closely related to the way constraint satisfaction is handled. The

method is based on a proof procedure that we have recently presented to the theorem proving Community

as well [MANT 87a, MANT 87b]. If applied to a given set of rules and constraints, the method systemati-

cally tries to construct a finite set of facts such that all constraints are satisfied in the resulting database.

If the procedure succeeds in doing so, a finite model of rules and constraints has been found and finite

satisfiability has been demonstrated. The construction process can be viewed as a sequence of successive

Updates, each of them possibly causing constraint violations that can be efficiently checked by means of

the techniques mentioned above. The violated constraint instances determined this way are used for deriv-

ing the next Updates necessary to enforce the violated instance. Only few authors have tili now been

concemed with constraint satisfiability. In [KUNG 84] a method is proposed that relies on the same basic

principle as ours, but is not complete for finite satisfiability and considerably less efficient. The approach

of [LASS 87] is efficiently applicable for propositional rules only.

Besides introducing methods for checking both properties, constraint satisfaction as well as constraint

satisfiability, we would like to show that Prolog is a very convenient programming language for the im-

plementation of these methods. We therefore include short Prolog programs in the paper, that on the one

hand serve as specifications, on the other hand can be efficiently applied in practice. This is particularly

important as several Prolog-DBMS couplings are now available (e.g., [BOCC 86]) that allow to use

Prolog for database querying as well.

490

2. Definitions

A deductive database D consists of three finite sets: a set F of facts, a set R of rules, and a set I of

integrity constraints. A fact is a ground atom. A rule is an expression H<— B, where the head H is a

positive literal and the body B is a literal or a conjunction of (positive or negative) literals. The only terms

occurring in a rule are constants and variables. We assume every rule to be range-restricted, i.e., every

variable occurring in H, or in a negative literal in B occurs in a positive literal in B as well.

Constraints are function-free, closed first-order formulas with restricted quantification, i.e., quantified

(sub)formulas have one of the forms

3X 1 . . .X n [A J A ^ A A ^ Q]

V X 1 . . . X n [- n A 1 v . . . v - 1 A m v Q]

where Aj , A m are atoms such that every variable X { occurs in at least one Aj, and where Q is either

true or false, or some formula in which some or all Xj are free. In the Prolog programs quantified for

mulas are represented as

e x i s t s ([X I , . . . , X n] , (A I a n d . . . a n d Am),Q)
f o r a l l ([X I , . . . , X n] , (A I a n d . . . a n d Am),Q)

assuming that a n d and or have been declared as Prolog infix Operators. Furthermore we assume that

integrity constraints are expressed in the following normalized form:

• Formulas are rectified, i.e., no two quantifiers in a formula introduce a same variable.

• The scope of each quantifier is reduced as much as possible (miniscope form).

• Implications and equivalences are expressed by means of logical connectives A , V , and - i , and

negations occur in front of atoms only (negation normal form).

• V is distributed over A .

These forms are assumed for obtaining more concise definitions throughout the paper. Negation normal

form, e.g., allows to speak directly about complementary literals instead of having to use polarities, and in

miniscope form governing relationships between variables and scopes of quantifiers coincide. As far as

the expressive power is concemed, neither the restricted quantification form nor the above normalization

impose significant restrictions. Note in particular that an expression in relational calculus corresponds to a

formula with restricted quantification.

The semantics of integrity constraints - as of queries in general - are defined according to a canonical

Interpretation in which the true atoms are exactly those that are explicit in F or derivable from F and R. In

order to be able to uniquely determine the canonical Interpretation, we restrict R to be stratified in the

sense of [APT 87]. Constraints are satisfied in D if they are satisfied in the canonical Interpretation as-

sociated with FuR.

491

3. Integrity Maintenance

Let single-fact Updates be represented by literals, a positive literal indicating insertion, a negative

literal indicating deletion. Throughout this chapter, let U denote a ground single-fact update to a database

D and let U(D) denote the updated database.

Definition 1 :

If U is a positive literal explicit in D, the updated database U(D) is identical with D. If U is a

positive literal not explicit in D, U(D) is D augmented with U.

If U is a negative literal - i A and if A is explicit in D, then U(D) is D without the fact A. If U is

a negative literal - i A and if A is not explicit in D, then U(D) is identical with D.

The truth value of certain formulas - like, e.g., VX p(X) or BX -ip(X) - depends on the database

domain as a whole. Evaluation of such formulas therefore requires that the domain is explicitly stored or

computed. This can be extremely inefficient. In order to avoid this problem, the class of domain

independent or definite formulas [KUHN 67] has been proposed: A formula C is domain independent if

and only if its truth value does not depend on any domain element other than those occurring in the

relations that are explicitly mentioned in C. For the efficiency of integrity maintenance methods, it is very

desirable that all constraints are domain independent. This permits to evaluate only those constraints in

which updated relations occur. Formulas with restricted quantifications are domain independent.

Definition 2:

A constraint C is relevant to an update U iff the complement of U is unifiable with a literal in C.

For constraints with restricted quantifications it is even sufficient to evaluate only certain simplified in

stances of constraints relevant to an update, in order to prove that these constraints are satisfied in the

updated database.

Definition 3:

Let C be an integrity constraint relevant to U. A simplified instance of C is obtained as follows:

Let L denote a literal in C unifiable with the complement of U. Let a denote a most general

unifier (mgu) of L and U, and let x denote the restriction of c to those universally quantified

variables that are not govemed by an existentially quantified variable.

a. partially instantiate C by applying x

b. simplify the partial instance Ct by

- dropping quantifiers for variables grounded by T

- replacing Lx by false, in case L x is identical with the complement of U, and even-

tually applying absorption laws (like, e.g., false v F s F)

x is called the defining Substitution of the simplified instance.

492

Consider the integrity constraint:

(V V X H p P O v q C X)]

The simplified instance of Cj associated with the update p(a) is q(a). It is indeed sufficient to evaluate

q(a) in order to ensure that Cj remains satisfied in the updated database. The simplified instance of

C 2 : VXY -,p(X,Y)v[3Zq(X,Z)A-,s(Y,Z,a)]

associated with the update -iqCc^c^) is

VY ^p(c 1;*)v[3Zq(c 1,Z)A-is(Y,Z fa)]

The defining Substitution binds X to Cj. Instances of Cj binding X to anyother constant are not affected

by the considered update. Note that the existentially quantified variable Z must remain unbound in the

simplified instance. Several examples are discussed in [NICO 79] in which this technique was first

described.

More than one simplified instance can be obtained from a same integrity constraint. This happens

when the complement of U is unifiable with more than one literal in the constraint.

3.1. Relational Databases

Integrity maintenance for relational databases (i.e., databases without deduction rules) is based on the

following result:

Proposition 1 : [NICO 79]

All constraints are satisfied in U(D) iff they are satisfied in D and every simplified instance of a

constraint relevant to U is satisfied in U(D).

In Prolog, the integrity maintenance principle stated in this proposition can be easily implemented as

follows. Assume constraints to be stored as Prolog facts i n t e g r i t y _ c o n s t r a i n t (I d , C, V) , where

C is the constraint, I d is its unique identifier and V the list of universally quantified variables in C that are

not governed by an existential one. Furthermore assume that for every literal L in a constraint C a fact

r e l e v a n t (I d , L) has been precomputed, where I d denotes the identifier associated with C.
Simplified instances of constraints that are relevant to U can be generated through backtracking by means

of:

s i m p l i f i e d _ i n s t a n c e (U , S I) :-
r e l e v a n t (I d , U) ,
i n t e g r i t y _ c o n s t r a i n t (I d , C l , V) ,
c o m p l e m e n t (U , UC)
i n s t a n t i a t e (C l , U C) ,
i n t e g r i t y _ c o n s t r a i n t (I d , C 2 , V) ,
s i m p l i f y (C 2 , U C , S I) .

493

complement(not A,A) :- !.
complement (A, not A) .

i n s t a n t i a t e (f o r a l l (_ , F 1 , F 2) , U C) :-
! , (complement(UC,U) , i n s t a n t i a t e (F l , U) ; i n s t a n t i a t e (F 2 , U C)) .

i n s t a n t i a t e (e x i s t s (_ ,F1,F2), UC) :-
! , (i n s t a n t i a t e(Fl,UC) ; i n s t a n t i a t e (F 2 , U C)) .

i n s t a n t i a t e (F l and F2,UC) :-
! , (i n s t a n t i a t e(Fl,UC) ; i n s t a n t i a t e (F 2 , U C)) .

i n s t a n t i a t e (F l or F2,UC) :-
! , (i n s t a n t i a t e(Fl,UC) ; i n s t a n t i a t e (F 2 , U C)) .

i n s t a n t i a t e (L , L) .

Code for the predicate s i m p l i f y is not given here because it is simple but unsubstantial. The par-

tial instantiation is obtained as follows: Calling i n s t a n t i a t e (C1,UC) instantiates all variables of

C l , particularly those in V. Since variables in V are bound, the subsequent call

integr i ty__constraint (I d , C 2 , V) returns the desired partial instance C2 respecting the bindings

given to v before. The set S of instances to be evaluated over the updated database is obtained by calling

s e t o f(SI, s i m p l i f i e d _ i n s t a n c e(U, S I) , S) .

3.2. Deductive Databases: Principles

In presence of deduction rules, an explicit update may induce further logical changes of the database.

Induced Updates correspond to facts that are either true after the update but not before, or false after the

update but true before. They can be characterized as follows:

Definition 4:

Let L denote a ground literal and A a ground atom.

A (-i A, resp.) is directly induced by L over U(D) iff

- there is a deduction rule A' <— B such that B contains a literal L* unifiable with L

(the complement of L, resp.); let % denote a mgu of L and L'

- A = (A'T)o,

where o is an answer Substitution returned by evaluating (B\L')x in U(D)

(B\L' denotcs B without L \ true if B = L')

- A (~i A, resp.) evaluates to false (true, resp.) in D (in U(D), resp.)

A literal is induced by L over U(D) iff it is directly induced by L over U(D) or by a literal

induced by L over U(D). Every literal induced by U over U(D) is an update induced by U.

P r o p o s i t i o n 1 c a n b e e x t e n d e d to d e d u c t i v e d a t a b a s e s b y c o n s i d e r i n g a l l c o n s t r a i n t s r e l e v a n t to i n d u c e d

U p d a t e s t o o :

494

Proposition 2;

AU constraints are satisfied in U(D) iff they are satisfied in D and every simplified instance of a

constraint relevant to U or relevant to an update induced by U is satisfied in U(D).

[Proof: (sketched) The property follows easily from Proposition 1 by reduction to the relational

case. Consider the canonical interpretation of D as a relational database. Treat the induced

Updates as explicit Updates to this database.]

If integrity maintenance is straightforwardly performed according to Proposition 2 the following

would be done: Induced Updates are successively computed. As soon as a constraint is relevant to such an

update, the corresponding simplified instance is evaluated in the updated database. The methods

described in [DECK 86] and [KOWA 87] are of this kind. This approach suffers from two drawbacks.

First, all induced Updates are computed, even those for which no constraint is relevant. This is for ex-

ample the case with an update p(a,b) in presence of the deduction rule r(X) <—q(X,Y)Ap(Y,Z) if the predi-

cate r does not occur positively in any constraint. The overhead is considerable if there are a lot of q(X,a)-

facts. Second, evaluating all simplified instances independently of each other prevents from applying cer

tain optimizations that a global evaluation would permit. Especially the detection of redundant subqueries

can be very useful in this context. Consider for example the following constraint:

C{: VX [-iStudent(X)v-,enrolled(X,cs)vattends(X,ddb)]

Assume that there is a deduction rule enrolled(X,cs) «- student(X) expressing that all students are enrolled

in C o m p u t e r science. The u p d a t e student(jack) yields the following simplified i n s t a n c e

S f — t enrolled (jack,cs) v attends(jack,ddb)

The induced update enrolled(jack,cs) leads to a simplified instance

S2: - i student(jack) v attends(jack,ddb)

Evaluating and S 2 independently requires to evaluate the subquery attends(jack,ddb) twice. A global

evaluation, however, could be expected to avoid this redundancy when simultaneously evaluating both

instances. Such redundancies, although a bit artificial in this simple example, appear rather frequently in

case of transactions consisting of more than one single-fact update.

Instead of applying Proposition 2 straightforwardly, we propose an alternative approach that does not

exhibit the above-mentioned drawbacks. This approach does not interleave generation of induced Updates

and evaluation of simplified instances, but clearly separates two phases: a preparatory one, that does not

access the base of facts, and a pure evaluation phase. In the first phase, potential Updates are computed,

that represent possible ground induced Updates. From potential Updates and constraints, expressions

called update constraints are generated. In a second stage, all update constraints are evaluated. Facts are

accessed only during evaluation.

495

Definition 5:

Let L be a literal and A an atom (both not necessarily ground).

A (-1A, resp.) directly depends on L iff

- there is a deduction rule A' <—B such that B contains a literal L' unifiable with L

(the complement of L, resp.)

- A = A'x, where x is a mgu of L' and L (the complement of L, resp.)

A depends on L if and only if A directly depends on L or on a literal that depends on L. Every

literal which depends on U is a potential update induced bv U.

Every induced update is an instance of a potential update, depending on the facts stored in the database. If
for example the database contains a deduction rule r(X)«-p(X,Y)Aq(Y,Z) then r(X) (- i r (X) , resp.) is a
potential update induced by q(a,b) (-iq(a,b), resp.). Note that potential Updates are defined without con-
sidering any answer S u b s t i t u t i o n , as opposed to induced Updates. There may be potential Updates no
instance of which is an induced update.

Let 'delta' denote a meta-predicate such that delta(U,L) holds if and only if L is satisfied in U(D), but

not in D. Similarly, let new(U,F) denote the evaluation of the formula F over the updated database U(D).

Definition 6:

For every constraint C relevant to a literal L the universal closure of the formula

-idelta(U,Lx)vnew(U,s(C)) is an update constraint for L, where s(C) denotes a simplified in

stance of C wrt L with defining Substitution x.

Update constraints can be used for integrity maintenance on the basis of the following result:

Proposition 3:

All constraints are satisfied in U(D) iff they are satisfied in D and every update constraint for U

or for a potential update induced by U is satisfied in U(D).

[Proof: (sketched) By Definitions 3 and 4, all induced Updates are instances of potential in

duced Updates. From this remark and from the definition of update constraints, it follows that a

simplified instance of a constraint relevant to an induced update is necessarily the right hand

side of an instance of an update constraint, the left hand side of which is an induced update. The

proposition follows.]

A concept similar to that of a potential update can be found in [LLOY 86]. However, the method

proposed in that article does not distinguish between 'new' and 'delta'. Instead of evaluating expressions

of the form -idelta(U,L) v new(U,s(C)), they evaluate formulas corresponding to ~.new(U,L) v

new(U,s(C)), in our terminology. The resulting loss in efficiency is often considerable. The method

described here for single-fact Updates has been defined for more general Updates, such as transactions and

conditional Updates [BRY 87]. Rule Updates can be treated like c o n d i t i o n a l Updates. However, when

defining induced or p o t e n t i a l U p d a t e s one has to r e s p e c t m o d i f i c a t i o n s to the rule set as well.

496

3.3. Deductive Databases: Implementation

3.3.1. Computation of update constraints

According to Definition 5, assume that for every deduction rule A<—B and every literal L in B the

facts d i r e c t l y _ d e p e n d e n t (L , A , R) and d i r e c t l y _ d e p e n d e n t (L C , n o t A, R) have been

computed, where LC is the complement of L and R denotes B\L. The 'dependent' relationship between

literals can be represented in terms of d i r e c t l y _ d e p e n d e n t through

d e p e n d e n t (L , U) :-
d i r e c t l y _ d e p e n d e n t (L , U , _) .

d e p e n d e n t (L , U) :-
d i r e c t l y _ d e p e n d e n t (L , L I , _) , d e p e n d e n t (L I , U) .

The set P of potential Updates induced by U is obtained by calling:

s e t o f (L , d e p e n d e n t (L , U) , P)

In order to stop the generation of potential Updates in presence of recursive rules, it is necessary to discard

subsumed literals while constructing the set. If the rules are not recursive, this subsumption test is

desirable for avoiding redundancies. For every simplified instance SI of C wrt L a Prolog fact

u p d a t e _ _ c o n s t r a i n t (L I , (n o t d e l t a (U, L I) o r new (U, S I))) can be computed by back-

tracking over

r e l e v a n t (I d , L) ,
s i m p l i f i e d _ _ i n s t a n c e (L , S I) ,

a s s e r t (u p d a t e _ c o n s t r a i r r t (L , (n o t d e l t a (U,L) o r n e w (U , S I))))

The set S of queries to be evaluated on the updated database is now obtained by calling:
s e t o f (UC, (u p d a t e _ c o n s t r a i n t (U , U C) ;

d e p e n d e n t (L , U) , u p d a t e _ c o n s t r a i n t (L , U C)) , S)

Since it can be determined without querying the facts, this set can be precompiled as well.

3.3.2. S i m u l a t i o n ofthe updated State

Assume that deduction rules H « - B are stored as meta-facts r u l e (H < - B) . Let the predicate

e v a l u a t e represent a call to the database query evaluator. Assume in addition that explicitly stored

facts can be accessed by means of a predicate e x p l i c i t . The meta-predicate 'new' permitting to simu-

late the evaluation of formulas in the updated database before the update is actually performed can be

implemented as follows:

497

n e w (U , t r u e) .
new (U, n o t A) :-

!, n o t n e w (U , A) .
n e w (U , A a n d B) :-

!, n e w (U , A) , n e w (U , B) .
new(U,A) :-

U = n o t V, !,
(e x p l i c i t (A) , n o t (A = V)

; r u l e (A < - B) , n e w (U , B)) .
new(U,A) :-

n o t (ü = n o t V) , !,
(e x p l i c i t (A) ; A = U

; r u l e (A < - B) / n e w (U , B)) .

Simulating the updated database with new does not require any specific query evaluator. Although

new occurs in bodies of clauses defining it, it is worth noting that new is not recursive as long as no

deduction rules of the database are recursive. This applies as well to the procedure d e l t a defined below.

In presence of recursive rules it is necessary to dispose of a query evaluator able to handle recursion in

order to correctly evaluate new and d e l t a . The other Solutions proposed in the literature either require

the implementation of an additional query evaluator [KOWA 87], or do not handle recursion [LING 87].

3.3.3. I m p l e m e n t a t i o n of'delta'

By definition, delta(U,F) could be implemented by new (U, F) , evaluate (not F) . However,

this direct implementation would in general be extremely inefficient. It would evaluate formulas not

relevant to an update twice, once through the meta-predicate 'new*, once in the non-updated database. As

opposed to that, the following implementation of 'delta' that closely follows Definition 4 exploits that any

induced update is necessarily a descendent of the update literal.

d e l t a (U , U) :-
U = n o t A,
n o t e v a l u a t e (U) , n e w (U , U) .

d e l t a (U , U) :-
n o t (U = n o t A) ,
n o t e v a l u a t e (U) .

d e l t a (U , A) :-
A = n o t B,
d i r e c t l y _ d e p e n d e n t (L , A , R) , d e l t a (U , L) , n e w (U , R) ,
n o t e v a l u a t e (A) , n e w (U , A) .

d e l t a (U , A) :-
n o t (A = n o t B) ,
d i r e c t l y _ d e p e n d e n t (L , A , R) , d e l t a (U , L) , n e w (U , R) ,
n o t e v a l u a t e (A) .

Instead of completely interpreting every delta-expression inside an update constraint, one can as well

imagine various degrees of precompilation or macro expansion of delta-calls. This would result in replac-

ing certain delta-expressions by an expression that consists of calls to new and e v a l u a t e .

We point out that it is not necessary to dispose of a coupling between Prolog and the DBMS in order

to generate update constraints. The respective program refers to rules, constraints and to the update only,

but not to facts. As opposed, the procedures new and d e l t a call the database query-evaluator. Provided

498

the DBMS is efficiently coupled with Prolog, e.g. [BOCC 86], this approach permits to rely on the

database query-evaluator.

4. Checking constraint satisfiability

In this chapter we will outline a procedure that, if applied to a set of constraints and rules, systemati-

cally attempts to construct a finite set of facts such that all constraints are satisfied in the resulting

"database". This sample database is temporary and independent from the set of facts held on secondary

storage. The procedure is complete for finite satisfiability as well as for unsatisfiability. If the procedure

terminates successfully, finite satisfiability of rules and constraints has been shown, whereas failure in-

dicates unsatisfiability. In case all models of the constraints and rules under consideration are infinite the

construction process will not terminate. Because of the semi-decidability of both properties, such cases

cannot be avoided, The procedure is based on two main principles:

1. enforcement of violated constraints by means of fact insertions into the sample database so
far constructed

2. determination of constraints violated by an insertion by means of techniques introduced in
the previous chapter

Initially, the set of facts to be constructed is empty. It is well possible that all constraints are already

satisfied in a database without facts. This is the case iff each constraint is a universal formula, i.e., its

outermost quantifier is V. Because of restricted quantification and due to the assumption that V has been

distributed over A , every instance of a universal formula is a disjunction, at least one component of which

is a negative literal. In an empty database all negative facts are true, and thus every universal formula is

satisfied. This Situation arises, e.g., when all constraints are functional or multi-valued dependencies.

The remaining constraints, which are not satisfied in a database without facts, are determined and

successively enforced by addition of new facts. Every enforcement step can be viewed as an update in the

sense of the previous chapter. Constraint violations caused by these Updates can be determined according

to the principles discussed and have to be enforced accordingly. Thus integrity checking and database

update steps alternate until finally either all constraints are satisfied, or every possible enforcement alter

native has led to constraint violations from which no recovery is possible.

As the sample database which is tentatively constructed is comparatively small, it should completely

reside in main memory. It is not necessary to take care of separating fact access and update constraint

determination as proposed for big secondary storage databases. Thus constraint violations can be deter

mined on the basis of Proposition 2, i.e., by using simplified instances of constraints relevant to actually

induced Updates instead of potential Updates.

Enforcement of violated constraint instances can be achieved by constructively exploiting the induc-

499

tive definition of the semantics of first-order formulas relative to some Interpretation (uniquely
represented by a set of positive facts F). In order to satisfy a formula C that is violated in F, do the
following:

• if C is a conjunction (disjunction), satisfy all (one of) its immediate subformulas

• i f C i s V X 1 . . . X n [- , R v Q]
(-iR representing the disjunction of negative literals that restricts Xj...X n) satisfy each in
stance Qa such that Ra is satisfied in F

• ifCis 3 X v . X n [R A Q] ,

either satisfy at least one Qa such that Ra is satisfied in F, or satisfy [R A Q] X where x instan-
tiates each Xj with a new constant not yet occurring in F

• if C is a positive literal, add C to F

Negative literals that are complementary to a fact in F cannot be satisfied without undoing choices made

previously.

For completeness reasons we have to assume that for every rule with negative literals in its body an

additional constraint has been introduced: For every rule

H f - A j , A N A - . B 1 A . . . A - , B m

involving free variables X j , X k a constraint

V X 1 . . . X k [- . A 1 v . . . v - i A n v B 1 v . . . v B m v H]

has to be added. Without this addition certain alternatives that exist for reaching a finite model of the

constraint set would never be exploited.

The principle of constructively interpreting the inductive definition of formula semantics is by no

means new. It has been proposed independently by several logicians in the early days of automated

theorem proving. Their approach has become known as the tableaux method, which has extensively been

documented in [SMUL 68]. Our method differs from the original tableaux approach in three points:

l.Instead of fully instantiating universal formulas over the whole domain, we exploit the
domain independent-property of restricted quantification that permits to consider only those
instantiations that are obtained through evaluation of the restricting literals.

2. In case of existential formulas, the tableaux method considers a Single instance only,
namely the one obtained through replacing every variable by a newly introduced constant.
Consequently, the tableaux method is not complete for finite satisfiability. Only if alter-
natively the instances obtained through evaluation of the restricting literals are considered
too, one can always guarantee that the method stops if finite models exist.

3. Our choice to determine constraints that have to be enforced next in dependence on the
most recently introduced facts can be viewed as a special search strategy inside the tableaux
approach which may considerably reduce its search space.

While points 1 and 3 are substantial optimizations of the tableaux method, point 2 is an extension of

it. This extension is indispensable in the database context, but also leads to a more satisfactory termina-

tion behaviour in a theorem proving context. This additional capability has its price: If several constants

have to be considered for replacing existential variable, the required case analysis might be fairly expen-

sive. Exploiting domain independence - a property the relevance of which has first been recognized in

500

the database area - can be related to tendencies in theorem proving to exploit typed logic. However,

domain independent formulas, especially those with restricted quantification, are less restrictive than the

requirement for füll typing.

An advantage of our approach is its close affinity to Prolog. Like for integrity maintenance, we give

the basic code for a Prolog implementation making use of predicates introduced in the previous chapter.

Note that the predicate v i o l a t e d implements the determination of violated constraints wrt to an update

according to Proposition 2. The predicate new_constants is assumed to bind each element in a list of

variables to a newly generated constant. Fact insertion is implemented through assertions to the Prolog

main memory database. Evaluation of constraints is assumed to be done by Prolog. The predicate

assume performs these assertions and automatically undoes them when backtracking to a previous

choice point.

Like in the tableaux method, one has to organize the generation of new facts in a level-saturation

manner. All constraints violated by the most recent update to the sample database are determined before

any further Updates are initiated. Such an Organization is necessary in order to avoid cases where the

database under construction is infinitely extended simply because certain constraints that would allow to

stop the generation process are never considered. The parameter I attached to most of the Prolog predi

cates given below indicates the respective generation levels.

s a t i s f i a b l e : -
s e t o f(C, (i n t e g r i t y _ c o n s t r a i n t (_ ,C,_) , not C) , S) ,
(S = [] ; e n f o r c e _ s e t(0,S),

s a t i s f i a b l e (1)) .

s a t i s f i a b l e (I) :-
I I i s I - 1,
s e t o f (C, (g e n e r a t e d (I I , A) , i s _ v i o l a t e d (A , C)) , S) ,
(S = [] ; e n f o r c e _ s e t (I , S) ,

12 i s I + 1,
s a t i s f i a b l e (1 2)) .

i s _ v i o l a t e d (A , C) :-
(s i m p l i f i e d _ i n s t a n c e (A , C) ; d e l t a (A , L) , s i m p l i f i e d _ i n s t a n c e (L , C)) ,
n o t C.

e n f o r c e _ s e t (_, []) .
e n f o r c e _ s e t (I , [H | T]) :-

H, !, e n f o r c e _ s e t (I , T) .
e n f o r c e _ s e t (I , [H | T]) :-

e n f o r c e (I , H) , e n f o r c e _ s e t (I , T) .

501

e n f o r c e (_ , t r u e) :- !.
e n f o r c e (_ , f a l s e) :-

!, f a i l .
e n f o r c e (_ , n o t A) :-

!, f a i l .
e n f o r c e (I , A a n d B) :-

!, e n f o r c e (I , A) , e n f o r c e (I , B) .
e n f o r c e (I , A o r B) :-

!, (e n f o r c e (I , A) ; e n f o r c e (I , B)) .
e n f o r c e (I , e x i s t s (V a r s , R , Q)) :-

R, e n f o r c e (I , Q) .
e n f o r c e (I , e x i s t s (V a r s , R , Q)) :-

!, n e w _ c o n . s t a n t s (V a r s) , e n f o r c e (I , R a n d Q) .
e n f o r c e (I , f o r a l l (V a r s , R , Q)) :-

!, s e t o f (Q , (R a n d n o t Q) , S) , e n f o r c e _ s e t (I , S) .
e n f o r c e (I , A) .:-

a s s u m e (A) , a s s u m e (g e n e r a t e d (I , A)) .

a s s u m e (X) :- a s s e r t (X) .
a s s u m e (X) :- r e t r a c t (X) , !, f a i l .

5. An Example

In this chapter we discuss how satisfiability would be checked by our method if applied to the follow

ing example set of rules and constraints:

Rules:

member(X,Y) <- leads(X,Y)

Constraints:
(1) VX [- . employee(X) v 3Y (department(Y) and member(X,Y))]
(2) VX [-1department(X)v3Y (employee(Y)Aleads(Y,X))]
(3) V X Y [- , member(X,Y) v V Z h leads(Z,Y) v subordinate(X,Z))]
(4) VX -iSubordinate(X,X)
(5) 3X employee(X)

This example serves at the same time as an explanation of integrity maintenance techniques as described

in chapter 3.

Level 0: Initially, only constraint (5) is violated. It is enforced by generating a new constant V and

asserting

employee(a)

Level 1 : The only constraint violated by this insertion is (1) . Enforce its simplified instance 3Y

[department(Y)Amember(a,Y)] by generating a new constant 'b' and asserting

department(b)

member(a,b)

502

Level 2: Insertion of department(b) violates constraint (2); the simplified instance to be enforced is 3Y

[employee(Y)Aleads(Y,b)]. There are two alternative ways how to enforce it:

Ist alternative: Evaluate the restricting literal employee(Y) over the available facts. Enforce

the resulting instance by asserting

leads(a,b)

Level 3: Constraint (3) is relevant to this insertion, but two simplified instances of it

have to be considered:

VX [- i member(X,b) v subordinate(X,a)]

VZ [- i leads(Z,b) v subordinate(a,Z)]

the latter because of the induced update member(a,b). Enforcement of both requires to

insert

subordinate(a,a)

which directly contradicts constraint (4). No recovery is possible! Backtrack to the

last choice point inside level 2 and retract leads(a,b) and subordinate(a,a) on the way

back.

2nd alternative: Generate a new constant 'c' and insert

employee(c)

leads(c,b)

Level 3: The only simplified instance of constraint (1) that is relevant to employee(c)

is 3Y [department(Y)Amember(c,Y)]. This instance is satisfied because member(c,b)

is derivable from leads(c,b). Insertion of leads(c,b) results in two violated instances

like in the first subcase. Both can be enforced by insertion of

subordinate(c,c)

only, which again is contradictory to constraint (4). No choice remains. On back-

tracking all facts are retracted and the procedure fails.

The example set has been shown to be unsatisfiable. Finite satisfiability could be achieved by, e.g.,

rransforrning constraint (3) into VXY f-»member(X,Y) v leads(X,Y) v VZ (...)].

6. Conclusion

An integrity maintenance method and a procedure for checking constraint satisfiability have been

proposed. Prolog implementations of both methods have been described.

Our approach to integrity maintenance permits to do more at compile time than other proposals in the

literature. Two successive phases, a preparatory one - that does not access the base of facts - and a purely

503

evaluative one are distinguished. Since the constraints are altogether handed over to the database, evalua

tion can fully benefit from query optimization techniques. We have proposed a meta-interpreter for

simulating query evaluation in the updated database before any update is actually performed. This meta-

interpreter can rely on any database query evaluator and handle recursive rules, provided the considered

query evaluator has this capacity.

The satisfiability checking method extends an original proof procedure with integrity maintenance

techniques. It is complete for unsatisfiability and for finite satisfiability. Besides detecting undesirable

situations, such as contradicting rules and constraints, it also permits to recognize the acceptable cases,

i.e., rules and constraints which admit a finite model. As far as we know, this is the first time that a

practicable procedure is proposed, although the need for such a method has been noticed in the literature.

Though remarkably short, the Prolog programs given in this paper are fairly efficient. They appear to be

useful in the following respect:

• In Prolog-DBMS couplings:
Such couplings permit to fully implement the approach described in this paper. In particular,
the updated database can be efficiently simulated by means of a meta-interpreter.

• In conventional DBMS:
Indeed, no coupling with Prolog is needed for the phase without fact access. The meta-
interpreter written in Prolog can be used as a specification of an extension to the database
query evaluator.

• In Prolog main memory databases:
Experiments made show that the time saved by the reduction techniques of the integrity
maintenance method is significant as soon as base relations contain a few dozen of tuples.
Conceivable domains of apphcation are Single user databases and expert Systems.

Promising efficiency has been observed when testing the satisfiability checking procedure on well-

known benchmark examples from the theorem-proving literature. However, this has to be completed with

further experiments with deductive database applications. Examples of constraints discussed nowadays in

the database literature appear to be very simple with respect to satisfiability checking. As far as integrity

maintenance is concerned, further work should be devoted to the constraint evaluation phase. Most of the

optimization techniques proposed tili now are concerned with conjunctive queries. Since constraints have

often a more general syntax, optimization methods for general formulas seem to be desirable.

7. Acknowledgement

We would like to thank Herve Gallaire and Jean-Marie Nicolas as well as our colleagues at ECRC for

providing us with a very stimulating research ambience. The work reported in this article has benefited a

lot from it.

504

8. References

[APT 87] Apt, K.R., Blair, H. and Walker, A.
Towards a theory of declarative knowledge.
In Minker, J. (editor), Proc. Workshop on Deductive Databases and Logic

P r o g r a m m i n g . Aug., 1987.

[BLAU 81] Blaustein, B.T.
Enforcing database assertions: Techniques and applications.
PhD thesis, Harvard Univ., 1981.

[BOCC 86] Bocca, J.
On the evaluation strategy of EDUCE.
In Proc. A C M - S I G M O D Conf. on M a n a g e m e n t o f D a t a . May, 1986.

[BRY 86] Bry, F. and Manthey, R.
Checking consistency of database constraints: A logical basis.
In Proc. 12th VLDB Conf. Aug., 1986.

[BRY 87] Bry, F.
M a i n t a i n i n g integrity of deductive databases.
Int. Rep. KB-45, ECRC, July, 1987.

[DECK 86] Decker, H.
Integrity enforcement on deductive databases.
In Proc. I s t I n t . Conf. on E x p e r t Database Systems. Apr., 1986.

[KOWA 87] Kowalski, R., Sadri, F. and Soper, P.
Integrity checking in deductive databases.
In Proc. 13th VLDB Conf. Sept., 1987.

[KUHN 67] Kuhns, IL .
Answering questions by Computers - A logical study.
Rand Memo RM 5428 PR, Rand Corp., Santa Monica, Calif., 1967.

[KUNG 84] Kung, C.H.
A temporal f r a m e w o r k for Information Systems specification and v e r i f i c a t i o n .
PhD thesis, Univ. of Trondheim, Norway, 1984.

[LASS 87] Lassez, C , McAloon, K. and Port, G.
Stratification and Knowledge Base Management.
In Proc. 4th I n t . Conf. on Logic P r o g r a m m i n g . May, 1987.

[LING 87] Ling, T.
Integrity constraint checking in deductive databases using the Prolog not-predicate.
D a t a & Knowledge E n g i n e e r i n g 2, 1987.

[LLOY 86] Lloyd, J.W. and Topor, R.W.
I n t e g r i t y constraint checking i n stratified databases.
Technical Report 86/5, Univ. of Melbourne, May, 1986.

[MANT 87a] Manthey, R. and Bry, F.
A hyperresolution-based proof procedure and its implementation in PROLOG.
In Morik, K. (editor), Proc. GWAI-87 (G e r m a n Workshop on A r t i f i c i a l I n t e l l i g e n c e) .

Sept., 1987.
Springer Verlag IFB 152.

[MANT 87b] Manthey, R. and Bry, F.
S A T C H M O : a theorem prover implernented i n Prolog.
Technical Report KB-21, ECRC, Nov., 1987.
(submitted to CADE 88).

505

[NICO 79] Nicolas, J.-M.
Logic for improving integrity checking i n r e l a t i o n a l databases.
Technical Report, ONERA-CERT, Toulouse, France, Feb., 1979.
Also in Acta Informatica 18, 3, Dec. 1982.

[SMUL 68] Smullyan, R.M.
First-order logic.
Springer Verlag, 1968.

[VIEI 87] Vieille, L.
A database-complete proof procedure based on SLD-resolution.
In Proc. 4th I n t . Conf. on Logic P r o g r a m m i n g . May, 1987.

