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A Uniform Approach to Constraint Satisfaction 
and Constraint Satisfiability in Deductive Databases 

Frangois Bry, Hendrik Decker and Rainer Manthey 
E C R C , Arabellastr. 17, D - 8 0 0 0 München 8 1 , West Germany 

ABSTRACT I n t e g r i t y maintenance methods have been definedfor preventing Updates f r o m 
violating integrity constraints. Depending on the update, the füll check for constraint satisfac
tion is reduced to checking certain instances ofsome relevant constraints only. In thefirst part 
ofthe paper new ideas a r e proposed for enhancing the efficiency of such a method. T h e second 
part is devoted to checking constraint satisfiability, i.e., whether a database exists i n which a l l 
constraints a r e simultaneously satisfied. A satisfiability checking method is presented that 
employs integrity maintenance techniques. Simple Prolog programs a r e given that serve both 
as specifications as w e l l as a basis for a n efficient implementation. 

1 . Introduction 

Integrity maintenance methods are intended to guarantee that all integrity constraints remain satisfied 

after an update, provided they have been satisfied before. In general, not all constraints are relevant to an 

update but only certain instances of some of them. This depends on which relations are updated. It is 

sufficient to check whether relevant instances are satisfied in order to guarantee satisfaction of the füll 

constraint set after the update. Since this basic principle for efficient constraint checking was first 

described in [NICO 79] and [BLAU 81], several authors have proposed extensions for the deductive case, 

e.g., [DECK 86], [LLOY 86], [KOWA 87] and [LING 87]. In the first part of this paper we present a 

method that is based on principles common to all proposals mentioned, but introduces several new ideas. 

We propose to perform the computation of relevant constraint instances independently from any access to 

the fact base. Fact access is entirely delayed to the evaluation phase and may thus benefit from optimiza-

tion Steps performed during query evaluation. Furthermore we propose to simulate evaluation of con

straints over the updated database by means of a simple meta-interpreter. This approach permits to 

handle recursive rules, provided the database query-answering System has this capacity (e.g., [VIEI 87]). 
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Apart from preventing constraint violations caused by fact or rule Updates, one has to detect inconsis-

tencies when updating the constraint set as well. If a newly introduced constraint is not satisfied in the 

current database, one can try to enforce it by means of further Updates to the factual part of the database. 

However, any attempt to do so will fail, if the new constraint is not compatible with the already existing 

ones. Such situations can be characterized by the logical concept of finite satisfiability. A set of formulas 

is finitely satisfiable if there is at least one finite model that satisfies all formulas in the set. Formulas that 

are not finitely satisfiable either have no model at all, or all models are infinite and thus not suitable for 

database purposes. In presence of deduction rules, these logical deficiencies may be due to inherent con-

tradictions between rules and constraints as well. Thus constraint violations observed after a rule update 

possibly indicate that constraints and rules are no longer finitely satisfiable after the modification. 

In contrast to constraint satisfaction which is a decidable property, finite satisfiability of constraints is 

only semi-decidable, i.e., every algorithm for checking this property may run forever if applied to con

straint sets that contain certain "axioms of infinity". In [BRY 86] we have discussed this problem in more 

detail, and have investigated various possible approaches to it. In this paper we propose a method for 

checking constraint satisfiability that is closely related to the way constraint satisfaction is handled. The 

method is based on a proof procedure that we have recently presented to the theorem proving Community 

as well [MANT 87a, MANT 87b]. If applied to a given set of rules and constraints, the method systemati-

cally tries to construct a finite set of facts such that all constraints are satisfied in the resulting database. 

If the procedure succeeds in doing so, a finite model of rules and constraints has been found and finite 

satisfiability has been demonstrated. The construction process can be viewed as a sequence of successive 

Updates, each of them possibly causing constraint violations that can be efficiently checked by means of 

the techniques mentioned above. The violated constraint instances determined this way are used for deriv-

ing the next Updates necessary to enforce the violated instance. Only few authors have tili now been 

concemed with constraint satisfiability. In [KUNG 84] a method is proposed that relies on the same basic 

principle as ours, but is not complete for finite satisfiability and considerably less efficient. The approach 

of [LASS 87] is efficiently applicable for propositional rules only. 

Besides introducing methods for checking both properties, constraint satisfaction as well as constraint 

satisfiability, we would like to show that Prolog is a very convenient programming language for the im-

plementation of these methods. We therefore include short Prolog programs in the paper, that on the one 

hand serve as specifications, on the other hand can be efficiently applied in practice. This is particularly 

important as several Prolog-DBMS couplings are now available (e.g., [BOCC 86]) that allow to use 

Prolog for database querying as well. 



490 

2. Definitions 

A deductive database D consists of three finite sets: a set F of facts, a set R of rules, and a set I of 

integrity constraints. A fact is a ground atom. A rule is an expression H<— B, where the head H is a 

positive literal and the body B is a literal or a conjunction of (positive or negative) literals. The only terms 

occurring in a rule are constants and variables. We assume every rule to be range-restricted, i.e., every 

variable occurring in H, or in a negative literal in B occurs in a positive literal in B as well. 

Constraints are function-free, closed first-order formulas with restricted quantification, i.e., quantified 

(sub)formulas have one of the forms 

3X 1 . . .X n [ A J A ^ A A ^ Q ] 

V X 1 . . . X n [ - n A 1 v . . . v - 1 A m v Q ] 

where Aj , A m are atoms such that every variable X { occurs in at least one Aj, and where Q is either 

true or false, or some formula in which some or all Xj are free. In the Prolog programs quantified for

mulas are represented as 

e x i s t s ( [ X I , . . . , X n ] , ( A I a n d . . . a n d Am),Q) 
f o r a l l ( [ X I , . . . , X n ] , ( A I a n d . . . a n d Am),Q) 

assuming that a n d and or have been declared as Prolog infix Operators. Furthermore we assume that 

integrity constraints are expressed in the following normalized form: 

• Formulas are rectified, i.e., no two quantifiers in a formula introduce a same variable. 

• The scope of each quantifier is reduced as much as possible (miniscope form). 

• Implications and equivalences are expressed by means of logical connectives A , V , and - i , and 

negations occur in front of atoms only (negation normal form). 

• V is distributed over A . 

These forms are assumed for obtaining more concise definitions throughout the paper. Negation normal 

form, e.g., allows to speak directly about complementary literals instead of having to use polarities, and in 

miniscope form governing relationships between variables and scopes of quantifiers coincide. As far as 

the expressive power is concemed, neither the restricted quantification form nor the above normalization 

impose significant restrictions. Note in particular that an expression in relational calculus corresponds to a 

formula with restricted quantification. 

The semantics of integrity constraints - as of queries in general - are defined according to a canonical 

Interpretation in which the true atoms are exactly those that are explicit in F or derivable from F and R. In 

order to be able to uniquely determine the canonical Interpretation, we restrict R to be stratified in the 

sense of [APT 87]. Constraints are satisfied in D if they are satisfied in the canonical Interpretation as-

sociated with FuR. 
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3. Integrity Maintenance 

Let single-fact Updates be represented by literals, a positive literal indicating insertion, a negative 

literal indicating deletion. Throughout this chapter, let U denote a ground single-fact update to a database 

D and let U(D) denote the updated database. 

Definition 1 : 

If U is a positive literal explicit in D, the updated database U(D) is identical with D. If U is a 

positive literal not explicit in D, U(D) is D augmented with U. 

If U is a negative literal - i A and if A is explicit in D, then U(D) is D without the fact A. If U is 

a negative literal - i A and if A is not explicit in D, then U(D) is identical with D. 

The truth value of certain formulas - like, e.g., VX p(X) or BX -ip(X) - depends on the database 

domain as a whole. Evaluation of such formulas therefore requires that the domain is explicitly stored or 

computed. This can be extremely inefficient. In order to avoid this problem, the class of domain 

independent or definite formulas [KUHN 67] has been proposed: A formula C is domain independent if 

and only if its truth value does not depend on any domain element other than those occurring in the 

relations that are explicitly mentioned in C. For the efficiency of integrity maintenance methods, it is very 

desirable that all constraints are domain independent. This permits to evaluate only those constraints in 

which updated relations occur. Formulas with restricted quantifications are domain independent. 

Definition 2: 

A constraint C is relevant to an update U iff the complement of U is unifiable with a literal in C. 

For constraints with restricted quantifications it is even sufficient to evaluate only certain simplified in

stances of constraints relevant to an update, in order to prove that these constraints are satisfied in the 

updated database. 

Definition 3: 

Let C be an integrity constraint relevant to U. A simplified instance of C is obtained as follows: 

Let L denote a literal in C unifiable with the complement of U. Let a denote a most general 

unifier (mgu) of L and U, and let x denote the restriction of c to those universally quantified 

variables that are not govemed by an existentially quantified variable. 

a. partially instantiate C by applying x 

b. simplify the partial instance Ct by 

- dropping quantifiers for variables grounded by T 

- replacing Lx by false, in case L x is identical with the complement of U, and even-

tually applying absorption laws (like, e.g., false v F s F) 

x is called the defining Substitution of the simplified instance. 
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Consider the integrity constraint: 

( V V X H p P O v q C X ) ] 

The simplified instance of Cj associated with the update p(a) is q(a). It is indeed sufficient to evaluate 

q(a) in order to ensure that Cj remains satisfied in the updated database. The simplified instance of 

C 2 : VXY -,p(X,Y)v[3Zq(X,Z)A-,s(Y,Z,a)] 

associated with the update -iqCc^c^) is 

VY ^p(c 1;*)v[3Zq(c 1,Z)A-is(Y,Z fa)] 

The defining Substitution binds X to Cj. Instances of Cj binding X to anyother constant are not affected 

by the considered update. Note that the existentially quantified variable Z must remain unbound in the 

simplified instance. Several examples are discussed in [NICO 79] in which this technique was first 

described. 

More than one simplified instance can be obtained from a same integrity constraint. This happens 

when the complement of U is unifiable with more than one literal in the constraint. 

3.1. Relational Databases 

Integrity maintenance for relational databases (i.e., databases without deduction rules) is based on the 

following result: 

Proposition 1 : [NICO 79] 

All constraints are satisfied in U(D) iff they are satisfied in D and every simplified instance of a 

constraint relevant to U is satisfied in U(D). 

In Prolog, the integrity maintenance principle stated in this proposition can be easily implemented as 

follows. Assume constraints to be stored as Prolog facts i n t e g r i t y _ c o n s t r a i n t ( I d , C, V ) , where 

C is the constraint, I d is its unique identifier and V the list of universally quantified variables in C that are 

not governed by an existential one. Furthermore assume that for every literal L in a constraint C a fact 

r e l e v a n t ( I d , L) has been precomputed, where I d denotes the identifier associated with C. 
Simplified instances of constraints that are relevant to U can be generated through backtracking by means 

of: 

s i m p l i f i e d _ i n s t a n c e ( U , S I ) :-
r e l e v a n t ( I d , U ) , 
i n t e g r i t y _ c o n s t r a i n t ( I d , C l , V ) , 
c o m p l e m e n t ( U , UC) 
i n s t a n t i a t e ( C l , U C ) , 
i n t e g r i t y _ c o n s t r a i n t ( I d , C 2 , V ) , 
s i m p l i f y ( C 2 , U C , S I ) . 
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complement(not A,A) :- !. 
complement (A, not A) . 

i n s t a n t i a t e ( f o r a l l ( _ , F 1 , F 2 ) , U C ) :-
! , (complement(UC,U) , i n s t a n t i a t e ( F l , U ) ; i n s t a n t i a t e ( F 2 , U C ) ) . 

i n s t a n t i a t e ( e x i s t s ( _ ,F1,F2), UC) :-
! , ( i n s t a n t i a t e(Fl,UC) ; i n s t a n t i a t e ( F 2 , U C ) ) . 

i n s t a n t i a t e ( F l and F2,UC) :-
! , ( i n s t a n t i a t e(Fl,UC) ; i n s t a n t i a t e ( F 2 , U C ) ) . 

i n s t a n t i a t e ( F l or F2,UC) :-
! , ( i n s t a n t i a t e(Fl,UC) ; i n s t a n t i a t e ( F 2 , U C ) ) . 

i n s t a n t i a t e ( L , L ) . 

Code for the predicate s i m p l i f y is not given here because it is simple but unsubstantial. The par-

tial instantiation is obtained as follows: Calling i n s t a n t i a t e (C1,UC) instantiates all variables of 

C l , particularly those in V. Since variables in V are bound, the subsequent call 

integr i ty__constraint ( I d , C 2 , V) returns the desired partial instance C2 respecting the bindings 

given to v before. The set S of instances to be evaluated over the updated database is obtained by calling 

s e t o f(SI, s i m p l i f i e d _ i n s t a n c e(U, S I ) , S ) . 

3.2. Deductive Databases: Principles 

In presence of deduction rules, an explicit update may induce further logical changes of the database. 

Induced Updates correspond to facts that are either true after the update but not before, or false after the 

update but true before. They can be characterized as follows: 

Definition 4: 

Let L denote a ground literal and A a ground atom. 

A (-i A, resp.) is directly induced by L over U(D) iff 

- there is a deduction rule A' <— B such that B contains a literal L* unifiable with L 

(the complement of L, resp.); let % denote a mgu of L and L' 

- A = (A'T)o, 

where o is an answer Substitution returned by evaluating (B\L')x in U(D) 

(B\L' denotcs B without L \ true if B = L') 

- A (~i A, resp.) evaluates to false (true, resp.) in D (in U(D), resp.) 

A literal is induced by L over U(D) iff it is directly induced by L over U(D) or by a literal 

induced by L over U(D). Every literal induced by U over U(D) is an update induced by U. 

P r o p o s i t i o n 1 c a n b e e x t e n d e d to d e d u c t i v e d a t a b a s e s b y c o n s i d e r i n g a l l c o n s t r a i n t s r e l e v a n t to i n d u c e d 

U p d a t e s t o o : 
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Proposition 2; 

AU constraints are satisfied in U(D) iff they are satisfied in D and every simplified instance of a 

constraint relevant to U or relevant to an update induced by U is satisfied in U(D). 

[Proof: (sketched) The property follows easily from Proposition 1 by reduction to the relational 

case. Consider the canonical interpretation of D as a relational database. Treat the induced 

Updates as explicit Updates to this database.] 

If integrity maintenance is straightforwardly performed according to Proposition 2 the following 

would be done: Induced Updates are successively computed. As soon as a constraint is relevant to such an 

update, the corresponding simplified instance is evaluated in the updated database. The methods 

described in [DECK 86] and [KOWA 87] are of this kind. This approach suffers from two drawbacks. 

First, all induced Updates are computed, even those for which no constraint is relevant. This is for ex-

ample the case with an update p(a,b) in presence of the deduction rule r(X) <—q(X,Y)Ap(Y,Z) if the predi-

cate r does not occur positively in any constraint. The overhead is considerable if there are a lot of q(X,a)-

facts. Second, evaluating all simplified instances independently of each other prevents from applying cer

tain optimizations that a global evaluation would permit. Especially the detection of redundant subqueries 

can be very useful in this context. Consider for example the following constraint: 

C{: VX [-iStudent(X)v-,enrolled(X,cs)vattends(X,ddb)] 

Assume that there is a deduction rule enrolled(X,cs) «- student(X) expressing that all students are enrolled 

in C o m p u t e r science. The u p d a t e student(jack) yields the following simplified i n s t a n c e 

S f — t enrolled (jack,cs) v attends(jack,ddb) 

The induced update enrolled(jack,cs) leads to a simplified instance 

S2: - i student(jack) v attends(jack,ddb) 

Evaluating and S 2 independently requires to evaluate the subquery attends(jack,ddb) twice. A global 

evaluation, however, could be expected to avoid this redundancy when simultaneously evaluating both 

instances. Such redundancies, although a bit artificial in this simple example, appear rather frequently in 

case of transactions consisting of more than one single-fact update. 

Instead of applying Proposition 2 straightforwardly, we propose an alternative approach that does not 

exhibit the above-mentioned drawbacks. This approach does not interleave generation of induced Updates 

and evaluation of simplified instances, but clearly separates two phases: a preparatory one, that does not 

access the base of facts, and a pure evaluation phase. In the first phase, potential Updates are computed, 

that represent possible ground induced Updates. From potential Updates and constraints, expressions 

called update constraints are generated. In a second stage, all update constraints are evaluated. Facts are 

accessed only during evaluation. 
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Definition 5: 

Let L be a literal and A an atom (both not necessarily ground). 

A (-1A, resp.) directly depends on L iff 

- there is a deduction rule A' <—B such that B contains a literal L' unifiable with L 

(the complement of L, resp.) 

- A = A'x, where x is a mgu of L' and L (the complement of L, resp.) 

A depends on L if and only if A directly depends on L or on a literal that depends on L. Every 

literal which depends on U is a potential update induced bv U. 

Every induced update is an instance of a potential update, depending on the facts stored in the database. If 
for example the database contains a deduction rule r(X)«-p(X,Y )Aq(Y,Z) then r(X) ( - i r ( X ) , resp.) is a 
potential update induced by q(a,b) (-iq(a,b), resp.). Note that potential Updates are defined without con-
sidering any answer S u b s t i t u t i o n , as opposed to induced Updates. There may be potential Updates no 
instance of which is an induced update. 

Let 'delta' denote a meta-predicate such that delta(U,L) holds if and only if L is satisfied in U(D), but 

not in D. Similarly, let new(U,F) denote the evaluation of the formula F over the updated database U(D). 

Definition 6: 

For every constraint C relevant to a literal L the universal closure of the formula 

-idelta(U,Lx)vnew(U,s(C)) is an update constraint for L, where s(C) denotes a simplified in

stance of C wrt L with defining Substitution x. 

Update constraints can be used for integrity maintenance on the basis of the following result: 

Proposition 3: 

All constraints are satisfied in U(D) iff they are satisfied in D and every update constraint for U 

or for a potential update induced by U is satisfied in U(D). 

[Proof: (sketched) By Definitions 3 and 4, all induced Updates are instances of potential in

duced Updates. From this remark and from the definition of update constraints, it follows that a 

simplified instance of a constraint relevant to an induced update is necessarily the right hand 

side of an instance of an update constraint, the left hand side of which is an induced update. The 

proposition follows.] 

A concept similar to that of a potential update can be found in [LLOY 86]. However, the method 

proposed in that article does not distinguish between 'new' and 'delta'. Instead of evaluating expressions 

of the form -idelta(U,L) v new(U,s(C)), they evaluate formulas corresponding to ~.new(U,L) v 

new(U,s(C)), in our terminology. The resulting loss in efficiency is often considerable. The method 

described here for single-fact Updates has been defined for more general Updates, such as transactions and 

conditional Updates [BRY 87]. Rule Updates can be treated like c o n d i t i o n a l Updates. However, when 

defining induced or p o t e n t i a l U p d a t e s one has to r e s p e c t m o d i f i c a t i o n s to the rule set as well. 
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3.3. Deductive Databases: Implementation 

3.3.1. Computation of update constraints 

According to Definition 5, assume that for every deduction rule A<—B and every literal L in B the 

facts d i r e c t l y _ d e p e n d e n t ( L , A , R ) and d i r e c t l y _ d e p e n d e n t ( L C , n o t A, R) have been 

computed, where LC is the complement of L and R denotes B\L. The 'dependent' relationship between 

literals can be represented in terms of d i r e c t l y _ d e p e n d e n t through 

d e p e n d e n t ( L , U ) :-
d i r e c t l y _ d e p e n d e n t ( L , U , _ ) . 

d e p e n d e n t ( L , U) :-
d i r e c t l y _ d e p e n d e n t ( L , L I , _ ) , d e p e n d e n t ( L I , U ) . 

The set P of potential Updates induced by U is obtained by calling: 

s e t o f ( L , d e p e n d e n t ( L , U ) , P) 

In order to stop the generation of potential Updates in presence of recursive rules, it is necessary to discard 

subsumed literals while constructing the set. If the rules are not recursive, this subsumption test is 

desirable for avoiding redundancies. For every simplified instance SI of C wrt L a Prolog fact 

u p d a t e _ _ c o n s t r a i n t ( L I , ( n o t d e l t a (U, L I ) o r new (U, S I ) ) ) can be computed by back-

tracking over 

r e l e v a n t ( I d , L ) , 
s i m p l i f i e d _ _ i n s t a n c e ( L , S I ) , 

a s s e r t ( u p d a t e _ c o n s t r a i r r t ( L , ( n o t d e l t a (U,L) o r n e w ( U , S I ) ) ) ) 

The set S of queries to be evaluated on the updated database is now obtained by calling: 
s e t o f (UC, ( u p d a t e _ c o n s t r a i n t ( U , U C ) ; 

d e p e n d e n t ( L , U ) , u p d a t e _ c o n s t r a i n t ( L , U C ) ) , S ) 

Since it can be determined without querying the facts, this set can be precompiled as well. 

3.3.2. S i m u l a t i o n ofthe updated State 

Assume that deduction rules H « - B are stored as meta-facts r u l e ( H < - B ) . Let the predicate 

e v a l u a t e represent a call to the database query evaluator. Assume in addition that explicitly stored 

facts can be accessed by means of a predicate e x p l i c i t . The meta-predicate 'new' permitting to simu-

late the evaluation of formulas in the updated database before the update is actually performed can be 

implemented as follows: 
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n e w ( U , t r u e ) . 
new (U, n o t A) :-

!, n o t n e w ( U , A) . 
n e w ( U , A a n d B) :-

!, n e w ( U , A ) , n e w ( U , B ) . 
new(U,A) :-

U = n o t V, !, 
( e x p l i c i t (A) , n o t (A = V) 

; r u l e ( A < - B ) , n e w ( U , B ) ) . 
new(U,A) :-

n o t (ü = n o t V ) , !, 
( e x p l i c i t ( A ) ; A = U 

; r u l e ( A < - B ) / n e w ( U , B ) ) . 

Simulating the updated database with new does not require any specific query evaluator. Although 

new occurs in bodies of clauses defining it, it is worth noting that new is not recursive as long as no 

deduction rules of the database are recursive. This applies as well to the procedure d e l t a defined below. 

In presence of recursive rules it is necessary to dispose of a query evaluator able to handle recursion in 

order to correctly evaluate new and d e l t a . The other Solutions proposed in the literature either require 

the implementation of an additional query evaluator [KOWA 87], or do not handle recursion [LING 87]. 

3.3.3. I m p l e m e n t a t i o n of'delta' 

By definition, delta(U,F) could be implemented by new (U, F) , evaluate (not F ) . However, 

this direct implementation would in general be extremely inefficient. It would evaluate formulas not 

relevant to an update twice, once through the meta-predicate 'new*, once in the non-updated database. As 

opposed to that, the following implementation of 'delta' that closely follows Definition 4 exploits that any 

induced update is necessarily a descendent of the update literal. 

d e l t a ( U , U ) :-
U = n o t A, 
n o t e v a l u a t e ( U ) , n e w ( U , U ) . 

d e l t a ( U , U ) :-
n o t (U = n o t A ) , 
n o t e v a l u a t e ( U ) . 

d e l t a ( U , A ) :-
A = n o t B, 
d i r e c t l y _ d e p e n d e n t ( L , A , R ) , d e l t a ( U , L ) , n e w ( U , R ) , 
n o t e v a l u a t e ( A ) , n e w ( U , A ) . 

d e l t a ( U , A ) :-
n o t (A = n o t B ) , 
d i r e c t l y _ d e p e n d e n t ( L , A , R ) , d e l t a ( U , L ) , n e w ( U , R ) , 
n o t e v a l u a t e ( A ) . 

Instead of completely interpreting every delta-expression inside an update constraint, one can as well 

imagine various degrees of precompilation or macro expansion of delta-calls. This would result in replac-

ing certain delta-expressions by an expression that consists of calls to new and e v a l u a t e . 

We point out that it is not necessary to dispose of a coupling between Prolog and the DBMS in order 

to generate update constraints. The respective program refers to rules, constraints and to the update only, 

but not to facts. As opposed, the procedures new and d e l t a call the database query-evaluator. Provided 
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the DBMS is efficiently coupled with Prolog, e.g. [BOCC 86], this approach permits to rely on the 

database query-evaluator. 

4. Checking constraint satisfiability 

In this chapter we will outline a procedure that, if applied to a set of constraints and rules, systemati-

cally attempts to construct a finite set of facts such that all constraints are satisfied in the resulting 

"database". This sample database is temporary and independent from the set of facts held on secondary 

storage. The procedure is complete for finite satisfiability as well as for unsatisfiability. If the procedure 

terminates successfully, finite satisfiability of rules and constraints has been shown, whereas failure in-

dicates unsatisfiability. In case all models of the constraints and rules under consideration are infinite the 

construction process will not terminate. Because of the semi-decidability of both properties, such cases 

cannot be avoided, The procedure is based on two main principles: 

1. enforcement of violated constraints by means of fact insertions into the sample database so 
far constructed 

2. determination of constraints violated by an insertion by means of techniques introduced in 
the previous chapter 

Initially, the set of facts to be constructed is empty. It is well possible that all constraints are already 

satisfied in a database without facts. This is the case iff each constraint is a universal formula, i.e., its 

outermost quantifier is V. Because of restricted quantification and due to the assumption that V has been 

distributed over A , every instance of a universal formula is a disjunction, at least one component of which 

is a negative literal. In an empty database all negative facts are true, and thus every universal formula is 

satisfied. This Situation arises, e.g., when all constraints are functional or multi-valued dependencies. 

The remaining constraints, which are not satisfied in a database without facts, are determined and 

successively enforced by addition of new facts. Every enforcement step can be viewed as an update in the 

sense of the previous chapter. Constraint violations caused by these Updates can be determined according 

to the principles discussed and have to be enforced accordingly. Thus integrity checking and database 

update steps alternate until finally either all constraints are satisfied, or every possible enforcement alter

native has led to constraint violations from which no recovery is possible. 

As the sample database which is tentatively constructed is comparatively small, it should completely 

reside in main memory. It is not necessary to take care of separating fact access and update constraint 

determination as proposed for big secondary storage databases. Thus constraint violations can be deter

mined on the basis of Proposition 2, i.e., by using simplified instances of constraints relevant to actually 

induced Updates instead of potential Updates. 

Enforcement of violated constraint instances can be achieved by constructively exploiting the induc-
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tive definition of the semantics of first-order formulas relative to some Interpretation (uniquely 
represented by a set of positive facts F). In order to satisfy a formula C that is violated in F, do the 
following: 

• if C is a conjunction (disjunction), satisfy all (one of) its immediate subformulas 

• i f C i s V X 1 . . . X n [ - , R v Q ] 
(-iR representing the disjunction of negative literals that restricts Xj...X n) satisfy each in
stance Qa such that Ra is satisfied in F 

• ifCis 3 X v . X n [ R A Q ] , 

either satisfy at least one Qa such that Ra is satisfied in F, or satisfy [ R A Q ] X where x instan-
tiates each Xj with a new constant not yet occurring in F 

• if C is a positive literal, add C to F 

Negative literals that are complementary to a fact in F cannot be satisfied without undoing choices made 

previously. 

For completeness reasons we have to assume that for every rule with negative literals in its body an 

additional constraint has been introduced: For every rule 

H f - A j , A N A - . B 1 A . . . A - , B m 

involving free variables X j , X k a constraint 

V X 1 . . . X k [ - . A 1 v . . . v - i A n v B 1 v . . . v B m v H ] 

has to be added. Without this addition certain alternatives that exist for reaching a finite model of the 

constraint set would never be exploited. 

The principle of constructively interpreting the inductive definition of formula semantics is by no 

means new. It has been proposed independently by several logicians in the early days of automated 

theorem proving. Their approach has become known as the tableaux method, which has extensively been 

documented in [SMUL 68]. Our method differs from the original tableaux approach in three points: 

l.Instead of fully instantiating universal formulas over the whole domain, we exploit the 
domain independent-property of restricted quantification that permits to consider only those 
instantiations that are obtained through evaluation of the restricting literals. 

2. In case of existential formulas, the tableaux method considers a Single instance only, 
namely the one obtained through replacing every variable by a newly introduced constant. 
Consequently, the tableaux method is not complete for finite satisfiability. Only if alter-
natively the instances obtained through evaluation of the restricting literals are considered 
too, one can always guarantee that the method stops if finite models exist. 

3. Our choice to determine constraints that have to be enforced next in dependence on the 
most recently introduced facts can be viewed as a special search strategy inside the tableaux 
approach which may considerably reduce its search space. 

While points 1 and 3 are substantial optimizations of the tableaux method, point 2 is an extension of 

it. This extension is indispensable in the database context, but also leads to a more satisfactory termina-

tion behaviour in a theorem proving context. This additional capability has its price: If several constants 

have to be considered for replacing existential variable, the required case analysis might be fairly expen-

sive. Exploiting domain independence - a property the relevance of which has first been recognized in 
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the database area - can be related to tendencies in theorem proving to exploit typed logic. However, 

domain independent formulas, especially those with restricted quantification, are less restrictive than the 

requirement for füll typing. 

An advantage of our approach is its close affinity to Prolog. Like for integrity maintenance, we give 

the basic code for a Prolog implementation making use of predicates introduced in the previous chapter. 

Note that the predicate v i o l a t e d implements the determination of violated constraints wrt to an update 

according to Proposition 2. The predicate new_constants is assumed to bind each element in a list of 

variables to a newly generated constant. Fact insertion is implemented through assertions to the Prolog 

main memory database. Evaluation of constraints is assumed to be done by Prolog. The predicate 

assume performs these assertions and automatically undoes them when backtracking to a previous 

choice point. 

Like in the tableaux method, one has to organize the generation of new facts in a level-saturation 

manner. All constraints violated by the most recent update to the sample database are determined before 

any further Updates are initiated. Such an Organization is necessary in order to avoid cases where the 

database under construction is infinitely extended simply because certain constraints that would allow to 

stop the generation process are never considered. The parameter I attached to most of the Prolog predi

cates given below indicates the respective generation levels. 

s a t i s f i a b l e : -
s e t o f(C, ( i n t e g r i t y _ c o n s t r a i n t ( _ ,C,_) , not C ) , S ) , 
(S = [] ; e n f o r c e _ s e t(0,S), 

s a t i s f i a b l e ( 1 ) ) . 

s a t i s f i a b l e ( I ) :-
I I i s I - 1, 
s e t o f (C, ( g e n e r a t e d ( I I , A ) , i s _ v i o l a t e d ( A , C ) ) , S ) , 
(S = [] ; e n f o r c e _ s e t ( I , S ) , 

12 i s I + 1, 
s a t i s f i a b l e ( 1 2 ) ) . 

i s _ v i o l a t e d ( A , C ) :-
( s i m p l i f i e d _ i n s t a n c e ( A , C ) ; d e l t a ( A , L ) , s i m p l i f i e d _ i n s t a n c e ( L , C ) ) , 
n o t C. 

e n f o r c e _ s e t (_, [ ] ) . 
e n f o r c e _ s e t ( I , [ H | T ] ) :-

H, !, e n f o r c e _ s e t ( I , T ) . 
e n f o r c e _ s e t ( I , [ H | T ] ) :-

e n f o r c e ( I , H ) , e n f o r c e _ s e t ( I , T ) . 
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e n f o r c e ( _ , t r u e ) :- !. 
e n f o r c e ( _ , f a l s e ) :-

!, f a i l . 
e n f o r c e ( _ , n o t A) :-

!, f a i l . 
e n f o r c e ( I , A a n d B) :-

!, e n f o r c e ( I , A ) , e n f o r c e ( I , B ) . 
e n f o r c e ( I , A o r B) :-

!, ( e n f o r c e ( I , A ) ; e n f o r c e ( I , B ) ) . 
e n f o r c e ( I , e x i s t s ( V a r s , R , Q ) ) :-

R, e n f o r c e ( I , Q ) . 
e n f o r c e ( I , e x i s t s ( V a r s , R , Q ) ) :-

!, n e w _ c o n . s t a n t s ( V a r s ) , e n f o r c e ( I , R a n d Q) . 
e n f o r c e ( I , f o r a l l ( V a r s , R , Q ) ) :-

!, s e t o f ( Q , ( R a n d n o t Q ) , S ) , e n f o r c e _ s e t ( I , S ) . 
e n f o r c e ( I , A ) .:-

a s s u m e ( A ) , a s s u m e ( g e n e r a t e d ( I , A ) ) . 

a s s u m e ( X ) :- a s s e r t ( X ) . 
a s s u m e ( X ) :- r e t r a c t ( X ) , !, f a i l . 

5. An Example 

In this chapter we discuss how satisfiability would be checked by our method if applied to the follow

ing example set of rules and constraints: 

Rules: 

member(X,Y) <- leads(X,Y) 

Constraints: 
(1) VX [ - . employee(X) v 3Y (department(Y) and member(X,Y))] 
(2) VX [-1department(X)v3Y (employee(Y)Aleads(Y,X))] 
(3) V X Y [ - , member(X,Y) v V Z h leads(Z,Y) v subordinate(X,Z))] 
(4) VX -iSubordinate(X,X) 
(5) 3X employee(X) 

This example serves at the same time as an explanation of integrity maintenance techniques as described 

in chapter 3. 

Level 0: Initially, only constraint (5) is violated. It is enforced by generating a new constant V and 

asserting 

employee(a) 

Level 1 : The only constraint violated by this insertion is (1) . Enforce its simplified instance 3Y 

[department(Y)Amember(a,Y)] by generating a new constant 'b' and asserting 

department(b) 

member(a,b) 
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Level 2: Insertion of department(b) violates constraint (2); the simplified instance to be enforced is 3Y 

[employee(Y)Aleads(Y,b)]. There are two alternative ways how to enforce it: 

Ist alternative: Evaluate the restricting literal employee(Y) over the available facts. Enforce 

the resulting instance by asserting 

leads(a,b) 

Level 3: Constraint (3) is relevant to this insertion, but two simplified instances of it 

have to be considered: 

VX [ - i member(X,b) v subordinate(X,a)] 

VZ [ - i leads(Z,b) v subordinate(a,Z)] 

the latter because of the induced update member(a,b). Enforcement of both requires to 

insert 

subordinate(a,a) 

which directly contradicts constraint (4). No recovery is possible! Backtrack to the 

last choice point inside level 2 and retract leads(a,b) and subordinate(a,a) on the way 

back. 

2nd alternative: Generate a new constant 'c' and insert 

employee(c) 

leads(c,b) 

Level 3: The only simplified instance of constraint (1) that is relevant to employee(c) 

is 3Y [department(Y)Amember(c,Y)]. This instance is satisfied because member(c,b) 

is derivable from leads(c,b). Insertion of leads(c,b) results in two violated instances 

like in the first subcase. Both can be enforced by insertion of 

subordinate(c,c) 

only, which again is contradictory to constraint (4). No choice remains. On back-

tracking all facts are retracted and the procedure fails. 

The example set has been shown to be unsatisfiable. Finite satisfiability could be achieved by, e.g., 

rransforrning constraint (3) into VXY f-»member(X,Y) v leads(X,Y) v VZ (...)]. 

6. Conclusion 

An integrity maintenance method and a procedure for checking constraint satisfiability have been 

proposed. Prolog implementations of both methods have been described. 

Our approach to integrity maintenance permits to do more at compile time than other proposals in the 

literature. Two successive phases, a preparatory one - that does not access the base of facts - and a purely 
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evaluative one are distinguished. Since the constraints are altogether handed over to the database, evalua

tion can fully benefit from query optimization techniques. We have proposed a meta-interpreter for 

simulating query evaluation in the updated database before any update is actually performed. This meta-

interpreter can rely on any database query evaluator and handle recursive rules, provided the considered 

query evaluator has this capacity. 

The satisfiability checking method extends an original proof procedure with integrity maintenance 

techniques. It is complete for unsatisfiability and for finite satisfiability. Besides detecting undesirable 

situations, such as contradicting rules and constraints, it also permits to recognize the acceptable cases, 

i.e., rules and constraints which admit a finite model. As far as we know, this is the first time that a 

practicable procedure is proposed, although the need for such a method has been noticed in the literature. 

Though remarkably short, the Prolog programs given in this paper are fairly efficient. They appear to be 

useful in the following respect: 

• In Prolog-DBMS couplings: 
Such couplings permit to fully implement the approach described in this paper. In particular, 
the updated database can be efficiently simulated by means of a meta-interpreter. 

• In conventional DBMS: 
Indeed, no coupling with Prolog is needed for the phase without fact access. The meta-
interpreter written in Prolog can be used as a specification of an extension to the database 
query evaluator. 

• In Prolog main memory databases: 
Experiments made show that the time saved by the reduction techniques of the integrity 
maintenance method is significant as soon as base relations contain a few dozen of tuples. 
Conceivable domains of apphcation are Single user databases and expert Systems. 

Promising efficiency has been observed when testing the satisfiability checking procedure on well-

known benchmark examples from the theorem-proving literature. However, this has to be completed with 

further experiments with deductive database applications. Examples of constraints discussed nowadays in 

the database literature appear to be very simple with respect to satisfiability checking. As far as integrity 

maintenance is concerned, further work should be devoted to the constraint evaluation phase. Most of the 

optimization techniques proposed tili now are concerned with conjunctive queries. Since constraints have 

often a more general syntax, optimization methods for general formulas seem to be desirable. 
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