10 research outputs found

    Cross-Modal Data Programming Enables Rapid Medical Machine Learning

    Full text link
    Labeling training datasets has become a key barrier to building medical machine learning models. One strategy is to generate training labels programmatically, for example by applying natural language processing pipelines to text reports associated with imaging studies. We propose cross-modal data programming, which generalizes this intuitive strategy in a theoretically-grounded way that enables simpler, clinician-driven input, reduces required labeling time, and improves with additional unlabeled data. In this approach, clinicians generate training labels for models defined over a target modality (e.g. images or time series) by writing rules over an auxiliary modality (e.g. text reports). The resulting technical challenge consists of estimating the accuracies and correlations of these rules; we extend a recent unsupervised generative modeling technique to handle this cross-modal setting in a provably consistent way. Across four applications in radiography, computed tomography, and electroencephalography, and using only several hours of clinician time, our approach matches or exceeds the efficacy of physician-months of hand-labeling with statistical significance, demonstrating a fundamentally faster and more flexible way of building machine learning models in medicine

    Artificial intelligence projects in healthcare:10 practical tips for success in a clinical environment

    Get PDF
    There is much discussion concerning ‘digital transformation’ in healthcare and the potential of artificial intelligence (AI) in healthcare systems. Yet it remains rare to find AI solutions deployed in routine healthcare settings. This is in part due to the numerous challenges inherent in delivering an AI project in a clinical environment. In this article, several UK healthcare professionals and academics reflect on the challenges they have faced in building AI solutions using routinely collected healthcare data.These personal reflections are summarised as 10 practical tips. In our experience, these are essential considerations for an AI healthcare project to succeed. They are organised into four phases: conceptualisation, data management, AI application and clinical deployment. There is a focus on conceptualisation, reflecting our view that initial set-up is vital to success. We hope that our personal experiences will provide useful insights to others looking to improve patient care through optimal data use

    Rethinking drug design in the artificial intelligence era

    Get PDF
    Artificial intelligence (AI) tools are increasingly being applied in drug discovery. While some protagonists point to vast opportunities potentially offered by such tools, others remain sceptical, waiting for a clear impact to be shown in drug discovery projects. The reality is probably somewhere in-between these extremes, yet it is clear that AI is providing new challenges not only for the scientists involved but also for the biopharma industry and its established processes for discovering and developing new medicines. This article presents the views of a diverse group of international experts on the 'grand challenges' in small-molecule drug discovery with AI and the approaches to address them

    Biomedical Literature Mining and Knowledge Discovery of Phenotyping Definitions

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Phenotyping definitions are essential in cohort identification when conducting clinical research, but they become an obstacle when they are not readily available. Developing new definitions manually requires expert involvement that is labor-intensive, time-consuming, and unscalable. Moreover, automated approaches rely mostly on electronic health records’ data that suffer from bias, confounding, and incompleteness. Limited efforts established in utilizing text-mining and data-driven approaches to automate extraction and literature-based knowledge discovery of phenotyping definitions and to support their scalability. In this dissertation, we proposed a text-mining pipeline combining rule-based and machine-learning methods to automate retrieval, classification, and extraction of phenotyping definitions’ information from literature. To achieve this, we first developed an annotation guideline with ten dimensions to annotate sentences with evidence of phenotyping definitions' modalities, such as phenotypes and laboratories. Two annotators manually annotated a corpus of sentences (n=3,971) extracted from full-text observational studies’ methods sections (n=86). Percent and Kappa statistics showed high inter-annotator agreement on sentence-level annotations. Second, we constructed two validated text classifiers using our annotated corpora: abstract-level and full-text sentence-level. We applied the abstract-level classifier on a large-scale biomedical literature of over 20 million abstracts published between 1975 and 2018 to classify positive abstracts (n=459,406). After retrieving their full-texts (n=120,868), we extracted sentences from their methods sections and used the full-text sentence-level classifier to extract positive sentences (n=2,745,416). Third, we performed a literature-based discovery utilizing the positively classified sentences. Lexica-based methods were used to recognize medical concepts in these sentences (n=19,423). Co-occurrence and association methods were used to identify and rank phenotype candidates that are associated with a phenotype of interest. We derived 12,616,465 associations from our large-scale corpus. Our literature-based associations and large-scale corpus contribute in building new data-driven phenotyping definitions and expanding existing definitions with minimal expert involvement
    corecore