179,119 research outputs found

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    Structuring visual exploratory analysis of skill demand

    No full text
    The analysis of increasingly large and diverse data for meaningful interpretation and question answering is handicapped by human cognitive limitations. Consequently, semi-automatic abstraction of complex data within structured information spaces becomes increasingly important, if its knowledge content is to support intuitive, exploratory discovery. Exploration of skill demand is an area where regularly updated, multi-dimensional data may be exploited to assess capability within the workforce to manage the demands of the modern, technology- and data-driven economy. The knowledge derived may be employed by skilled practitioners in defining career pathways, to identify where, when and how to update their skillsets in line with advancing technology and changing work demands. This same knowledge may also be used to identify the combination of skills essential in recruiting for new roles. To address the challenges inherent in exploring the complex, heterogeneous, dynamic data that feeds into such applications, we investigate the use of an ontology to guide structuring of the information space, to allow individuals and institutions to interactively explore and interpret the dynamic skill demand landscape for their specific needs. As a test case we consider the relatively new and highly dynamic field of Data Science, where insightful, exploratory data analysis and knowledge discovery are critical. We employ context-driven and task-centred scenarios to explore our research questions and guide iterative design, development and formative evaluation of our ontology-driven, visual exploratory discovery and analysis approach, to measure where it adds value to usersā€™ analytical activity. Our findings reinforce the potential in our approach, and point us to future paths to build on

    A Web Smart Space Framework for Intelligent Search Engines

    Get PDF
    A web smart space is an intelligent environment which has additional capability of searching the information smartly and efficiently. New advancements like dynamic web contents generation has increased the size of web repositories. Among so many modern software analysis requirements, one is to search information from the given repository. But useful information extraction is a troublesome hitch due to the multi-lingual; base of the web data collection. The issue of semantic based information searching has become a standoff due to the inconsistencies and variations in the characteristics of the data. In the accomplished research, a web smart space framework has been proposed which introduces front end processing for a search engine to make the information retrieval process more intelligent and accurate. In orthodox searching anatomies, searching is performed only by using pattern matching technique and consequently a large number of irrelevant results are generated. The projected framework has insightful ability to improve this drawback and returns efficient outcomes. Designed framework gets text input from the user in the form complete question, understands the input and generates the meanings. Search engine searches on the basis of the information provided

    Finding the right answer: an information retrieval approach supporting knowledge sharing

    Get PDF
    Knowledge Management can be defined as the effective strategies to get the right piece of knowledge to the right person in the right time. Having the main purpose of providing users with information items of their interest, recommender systems seem to be quite valuable for organizational knowledge management environments. Here we present KARe (Knowledgeable Agent for Recommendations), a multiagent recommender system that supports users sharing knowledge in a peer-to-peer environment. Central to this work is the assumption that social interaction is essential for the creation and dissemination of new knowledge. Supporting social interaction, KARe allows users to share knowledge through questions and answers. This paper describes KAReļæ½s agent-oriented architecture and presents its recommendation algorithm

    Whole-Chain Recommendations

    Full text link
    With the recent prevalence of Reinforcement Learning (RL), there have been tremendous interests in developing RL-based recommender systems. In practical recommendation sessions, users will sequentially access multiple scenarios, such as the entrance pages and the item detail pages, and each scenario has its specific characteristics. However, the majority of existing RL-based recommender systems focus on optimizing one strategy for all scenarios or separately optimizing each strategy, which could lead to sub-optimal overall performance. In this paper, we study the recommendation problem with multiple (consecutive) scenarios, i.e., whole-chain recommendations. We propose a multi-agent RL-based approach (DeepChain), which can capture the sequential correlation among different scenarios and jointly optimize multiple recommendation strategies. To be specific, all recommender agents (RAs) share the same memory of users' historical behaviors, and they work collaboratively to maximize the overall reward of a session. Note that optimizing multiple recommendation strategies jointly faces two challenges in the existing model-free RL model - (i) it requires huge amounts of user behavior data, and (ii) the distribution of reward (users' feedback) are extremely unbalanced. In this paper, we introduce model-based RL techniques to reduce the training data requirement and execute more accurate strategy updates. The experimental results based on a real e-commerce platform demonstrate the effectiveness of the proposed framework.Comment: 29th ACM International Conference on Information and Knowledge Managemen
    • ā€¦
    corecore