10,737 research outputs found

    Organisational Memetics?: Organisational Learning as a Selection Process

    Get PDF
    Companies are not only systems created and controlled by those who manage them but also self-organising entities that evolve through learning. Whereas an organism is a creation of natural replicators, genes, an organisation can be seen as a product of an alternative replicator, the meme or mental model, acting, like a gene, to preserve itself in an Evolutionary Stable System. The result is an organisation which self organises around a set of unspoken and unwritten rules and assumptions. Biological evolution is stimulated by environmental change and reproductive isolation; the process of punctuated equilibrium. Corporate innovation shows the same pattern. Innovations in products and processes occur in groups isolated from prevailing mental norms. Successful organic strains possess a genetic capability for adaptation. Organisations which wish to foster learning can develop an equivalent, mental capability. Unlike their biological counterparts they can exert conscious choice and puncture the memetic codes that seek to keep them stable; the mental models of individuals, and the strategies, paradigms and unwritten rules at the company level

    Honing and Framing Ourselves (Extreme Subjectivity and Organizing)

    Get PDF
    The present backlash of neo-neopositivism has been academically justified either with a biological or evolutionary ideologies. How did academic intellectuals respond? First, by developing a concept of professional self-identity and institutional peer-control and making it independent of empirical and third-party verification Both these concepts are purely formal and allow for an autonomous self-regulation of a professional community minimizing external influences. Honing ourselves is about the self-reflection of the academic intellectuals who are caught in the networks and hierarchies of the emergent industrial, academic and public organizations Second, by continuous critical re-engineering of the Enlightenment project in the post-communist, post-liberal, complex world on the edge of chaos, in which the retreat of the state and the emergence of complex networks has diminished the role of national culture as the basic frame and blueprint for socialization. Third, by an attempt to form a democratic community of academic citizens. Will a loose collection of researchers and teachers ever rise to the level of principled citizens of a scientific community

    Applications of parallel computing in robotics problems

    Get PDF
    "December 2013.""A Thesis presented to the Faculty of the Graduate School University of Missouri In Partial Fulfillment Of the Requirements for the Degree Master of Science."Thesis advisor: Dr. Guilherme N. DeSouza.Many typical robotics problems involve search in high-dimensional spaces, where real-time execution is hard to be achieved. This thesis presents two case studies of parallel computation in such robotics problems. More specifically, two problems of motion planning-the Inverse Kinematics of robotic manipulators and Path Planning for mobile robots-are investigated and the contributions of parallel algorithms are highlighted. For the Inverse Kinematics problem, a novel and fast solution is proposed for general serial manipulators. This new approach relies on the computation of multiple (parallel) numerical estimations of the inverse Jacobian while it selects the current best path to the desire con- figuration of the end-effector. Unlike other iterative methods, our method converges very quickly, achieving sub-millimeter accuracy in 20.48ms in average. We demonstrate such high accuracy and the real-time performance of our method by testing it with six different robots, at both non-singular and singular configurations, including a 7-DoF redundant robot. The algorithm is implemented in C/C++ using a configurable number of POSIX threads, and it can be easily expanded to use many-core GPUs. For the Path Planning problem, a solution to the problem of smooth path planning for mobile robots in dynamic and unknown environments is presented. A novel concept of Time-Warped Grids is introduced to predict the pose of obstacles on a grid-based map and avoid collisions. The algorithm is implemented using C/C++ and the CUDA programming environment, and combines stochastic estimation (Kalman filter), Harmonic Potential Fields and a Rubber Band model, and it translates naturally into the parallel paradigm of GPU programing. The proposed method was tested using several simulation scenarios for the Pioneer P3- DX robot, which demonstrated the robustness of the algorithm by finding the optimum path in terms of smoothness, distance, and collision-free either in static or dynamic environments, even with a very large number of obstacles.Includes bibliographical references (pages 70-78)

    Multi-authored monograph

    Get PDF
    Unmanned aerial vehicles. Perspectives. Management. Power supply : Multi-authored monograph / V. V. Holovenskiy, T. F. Shmelova,Y. M. Shmelev and oth.; Science Editor DSc. (Engineering), T. F. Shmelova. – Warsaw, 2019. – 100 p. - ISBN 978-83-66216-10-5.У монографії аналізуються можливі варіанти енергопостачання та управління безпілотними літальними апаратами. Також розглядається питання прийняття рішення оператором безпілотного літального апарату при управлінні у надзвичайних ситуаціях. Рекомендується для фахівців, аспірантів і студентів за спеціальностями 141 - «Електроенергетика, електротехніка та електромеханіка», 173 - «Авіоніка» та інших суміжних спеціальностей.The monograph analyzes the possible options for energy supply and control of unmanned aerial vehicles. Also, the issue of decision-making by the operator of an unmanned aerial vehicle in the management of emergencies is considered.

    Status and Future Perspectives for Lattice Gauge Theory Calculations to the Exascale and Beyond

    Full text link
    In this and a set of companion whitepapers, the USQCD Collaboration lays out a program of science and computing for lattice gauge theory. These whitepapers describe how calculation using lattice QCD (and other gauge theories) can aid the interpretation of ongoing and upcoming experiments in particle and nuclear physics, as well as inspire new ones.Comment: 44 pages. 1 of USQCD whitepapers

    Computer simulations, mathematics and economics

    Get PDF
    Economists lise different kinds of computer simulation. However, there is little attention on the theory of simulation, which is considered either a technology or an extension of mathematical theory or, else, a way of modelling that is alternative to verbal description and mathematical models. The paper suggests a systematisation of the relationship between simulations, mathematics and economics. In particular, it traces the evolution of simulation techniques, comments some of the contributions that deal with their nature, and, finally, illustrates with some examples their influence on economie theory. Keywords: Computer simulation, economie methodology, multi-agent programming techniques.

    Modelling implementation of E-Commerce Strategy

    Get PDF

    From heart beats to health recipes: The role of fractal physiology in the Ancestral Health movement

    Get PDF
    The human body—an amazing biological system that scales up fractally from its cellular building blocks—exhibits an incredible ability to self heal. Why then, are chronic diseases and degeneration on the rise in the population? Why are we sicker, more obese, and more depressed and stressed than ever before in human history? Why can’t we heal? The answers to these questions may lie in our ancestry, and modern departure from the human ecological niche. The ability to heal requires proper spatio-temporal inputs—nutrition, sleep, stress, activity, and socialization—in order for cellular signaling to occur properly across semi-permeable cell membranes. We first review key steps in the evolutionary history of multicellular life, focusing on the fundamental role of cell-cell interactions. Next, we present this as an important framework by which to understand how the entrainment of physiological signals in homeostatic mechanisms reveals new insights into the processes of disease. Examples are drawn from the evolution of metabolism, nutrition, and respiration in multicellular life. We argue that disease processes result from a mismatch between the physiological inputs an individual receives and their optimal amount and fractal distribution as determined by an individual’s ancestry. A comparative analysis is a useful tool by which to illuminate deep homologies that reveal a mechanistic account for disease processes. This cell-molecular approach provides a useful contrast to the traditional reductionist approach to disease exemplified by the human genome project. As an example, we describe how cell-cell communication drives the ontogeny and phylogeny of physiology, producing the tissues, organs, and organ systems that hierarchically serve human physiology on various levels. Modern society, with its disconnected and stress-riddled lifestyle, is increasingly failing to provide the proper inputs for healthy gene expression and physiological function. Thus, the answers to our modern health woes—physical, mental, and social—may lie in acknowledging the powerful roles that our past has played in shaping our bodies. Finding ways to provide the proper inputs of the human ecological niche in the modern day may lead to significant, perhaps staggering improvements in our health and wellness. The fractal mathematics underpinning these dynamics also serves as a metaphor for the Ancestral Health Movement, which is currently arising as a multi-cultural, multi-national grass-roots pluralistic phenomenon
    corecore