2,291 research outputs found

    Using 3D Hidden Markov Models that explicitly represent spatial coordinates to model and compare protein structures

    Get PDF
    BACKGROUND: Hidden Markov Models (HMMs) have proven very useful in computational biology for such applications as sequence pattern matching, gene-finding, and structure prediction. Thus far, however, they have been confined to representing 1D sequence (or the aspects of structure that could be represented by character strings). RESULTS: We develop an HMM formalism that explicitly uses 3D coordinates in its match states. The match states are modeled by 3D Gaussian distributions centered on the mean coordinate position of each alpha carbon in a large structural alignment. The transition probabilities depend on the spread of the neighboring match states and on the number of gaps found in the structural alignment. We also develop methods for aligning query structures against 3D HMMs and scoring the result probabilistically. For 1D HMMs these tasks are accomplished by the Viterbi and forward algorithms. However, these will not work in unmodified form for the 3D problem, due to non-local quality of structural alignment, so we develop extensions of these algorithms for the 3D case. Several applications of 3D HMMs for protein structure classification are reported. A good separation of scores for different fold families suggests that the described construct is quite useful for protein structure analysis. CONCLUSION: We have created a rigorous 3D HMM representation for protein structures and implemented a complete set of routines for building 3D HMMs in C and Perl. The code is freely available from , and at this site we also have a simple prototype server to demonstrate the features of the described approach

    Improving model construction of profile HMMs for remote homology detection through structural alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Remote homology detection is a challenging problem in Bioinformatics. Arguably, profile Hidden Markov Models (pHMMs) are one of the most successful approaches in addressing this important problem. pHMM packages present a relatively small computational cost, and perform particularly well at recognizing remote homologies. This raises the question of whether structural alignments could impact the performance of pHMMs trained from proteins in the <it>Twilight Zone</it>, as structural alignments are often more accurate than sequence alignments at identifying motifs and functional residues. Next, we assess the impact of using structural alignments in pHMM performance.</p> <p>Results</p> <p>We used the SCOP database to perform our experiments. Structural alignments were obtained using the 3DCOFFEE and MAMMOTH-mult tools; sequence alignments were obtained using CLUSTALW, TCOFFEE, MAFFT and PROBCONS. We performed leave-one-family-out cross-validation over super-families. Performance was evaluated through ROC curves and paired two tailed t-test.</p> <p>Conclusion</p> <p>We observed that pHMMs derived from structural alignments performed significantly better than pHMMs derived from sequence alignment in low-identity regions, mainly below 20%. We believe this is because structural alignment tools are better at focusing on the important patterns that are more often conserved through evolution, resulting in higher quality pHMMs. On the other hand, sensitivity of these tools is still quite low for these low-identity regions. Our results suggest a number of possible directions for improvements in this area.</p

    Unraveling the Thousand Word Picture: An Introduction to Super-Resolution Data Analysis

    Get PDF
    Super-resolution microscopy provides direct insight into fundamental biological processes occurring at length scales smaller than light’s diffraction limit. The analysis of data at such scales has brought statistical and machine learning methods into the mainstream. Here we provide a survey of data analysis methods starting from an overview of basic statistical techniques underlying the analysis of super-resolution and, more broadly, imaging data. We subsequently break down the analysis of super-resolution data into four problems: the localization problem, the counting problem, the linking problem, and what we’ve termed the interpretation problem

    Two for One: Diffusion Models and Force Fields for Coarse-Grained Molecular Dynamics

    Full text link
    Coarse-grained (CG) molecular dynamics enables the study of biological processes at temporal and spatial scales that would be intractable at an atomistic resolution. However, accurately learning a CG force field remains a challenge. In this work, we leverage connections between score-based generative models, force fields and molecular dynamics to learn a CG force field without requiring any force inputs during training. Specifically, we train a diffusion generative model on protein structures from molecular dynamics simulations, and we show that its score function approximates a force field that can directly be used to simulate CG molecular dynamics. While having a vastly simplified training setup compared to previous work, we demonstrate that our approach leads to improved performance across several small- to medium-sized protein simulations, reproducing the CG equilibrium distribution, and preserving dynamics of all-atom simulations such as protein folding events

    Hybrid modeling, HMM/NN architectures, and protein applications

    Get PDF
    We describe a hybrid modeling approach where the parameters of a model are calculated and modulated by another model, typically a neural network (NN), to avoid both overfitting and underfitting. We develop the approach for the case of Hidden Markov Models (HMMs), by deriving a class of hybrid HMM/NN architectures. These architectures can be trained with unified algorithms that blend HMM dynamic programming with NN backpropagation. In the case of complex data, mixtures of HMMs or modulated HMMs must be used. NNs can then be applied both to the parameters of each single HMM, and to the switching or modulation of the models, as a function of input or context. Hybrid HMM/NN architectures provide a flexible NN parameterization for the control of model structure and complexity. At the same time, they can capture distributions that, in practice, are inaccessible to single HMMs. The HMM/NN hybrid approach is tested, in its simplest form, by constructing a model of the immunoglobulin protein family. A hybrid model is trained, and a multiple alignment derived, with less than a fourth of the number of parameters used with previous single HMMs
    • …
    corecore