710 research outputs found

    Improving Air Interface User Privacy in Mobile Telephony

    Full text link
    Although the security properties of 3G and 4G mobile networks have significantly improved by comparison with 2G (GSM), significant shortcomings remain with respect to user privacy. A number of possible modifications to 2G, 3G and 4G protocols have been proposed designed to provide greater user privacy; however, they all require significant modifications to existing deployed infrastructures, which are almost certainly impractical to achieve in practice. In this article we propose an approach which does not require any changes to the existing deployed network infrastructures or mobile devices, but offers improved user identity protection over the air interface. The proposed scheme makes use of multiple IMSIs for an individual USIM to offer a degree of pseudonymity for a user. The only changes required are to the operation of the authentication centre in the home network and to the USIM, and the scheme could be deployed immediately since it is completely transparent to the existing mobile telephony infrastructure. We present two different approaches to the use and management of multiple IMSIs

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Authentication protocol for an IoT-enabled LTE networks

    Get PDF
    The Evolved Packet System-based Authentication and Key Agreement (EPS-AKA) protocol of the long-term evolution (LTE) network does not support Internet of Things (IoT) objects and has several security limitations, including transmission of the object’s (user/device) identity and key set identifier in plaintext over the network, synchronization, large overhead, limited identity privacy, and security attack vulnerabilities. In this article, we propose a new secure and efficient AKA protocol for the LTE network that supports secure and efficient communications among various IoT devices as well as among the users. Analysis shows that our protocol is secure, efficient, and privacy preserved, and reduces bandwidth consumption during authentication

    Security of IoT in 5G Cellular Networks: A Review of Current Status, Challenges and Future Directions

    Get PDF
    The Internet of Things (IoT) refers to a global network that integrates real life physical objects with the virtual world through the Internet for making intelligent decisions. In a pervasive computing environment, thousands of smart devices, that are constrained in storage, battery backup and computational capability, are connected with each other. In such an environment, cellular networks that are evolving from 4G to 5G, are set to play a crucial role. Distinctive features like high bandwidth, wider coverage, easy connectivity, in-built billing mechanism, interface for M2M communication, etc., makes 5G cellular network a perfect candidate to be adopted as a backbone network for the future IoT. However, due to resource constrained nature of the IoT devices, researchers have anticipated several security and privacy issues in IoT deployments over 5G cellular network. Off late, several schemes and protocols have been proposed to handle these issues. This paper performs a comprehensive review of such schemes and protocols proposed in recent times. Different open security issues, challenges and future research direction are also summarized in this review paper
    • …
    corecore