2,853 research outputs found

    On the quality of VoIP with DCCP for satellite communications

    Get PDF
    We present experimental results for the performance of selected voice codecs using DCCP with CCID4 congestion control over a satellite link. We evaluate the performance of both constant and variable data rate speech codecs for a number of simultaneous calls using the ITU E-model. We analyse the sources of packet losses and additionally analyse the effect of jitter which is one of the crucial parameters contributing to VoIP quality and has, to the best of our knowledge, not been considered previously in the published DCCP performance results. We propose modifications to the CCID4 algorithm and demonstrate how these improve the VoIP performance, without the need for additional link information other than what is already monitored by CCID4. We also demonstrate the fairness of the proposed modifications to other flows. Although the recently adopted changes to TFRC specification alleviate some of the performance issues for VoIP on satellite links, we argue that the characteristics of commercial satellite links necessitate consideration of further improvements. We identify the additional benefit of DCCP when used in VoIP admission control mechanisms and draw conclusions about the advantages and disadvantages of the proposed DCCP/CCID4 congestion control mechanism for use with VoIP applications

    Optimizing Service Differentiation Scheme with Sized-based Queue Management in DiffServ Networks

    Get PDF
    In this paper we introduced Modified Sized-based Queue Management as a dropping scheme that aims to fairly prioritize and allocate more service to VoIP traffic over bulk data like FTP as the former one usually has small packet size with less impact to the network congestion. In the same time, we want to guarantee that this prioritization is fair enough for both traffic types. On the other hand we study the total link delay over the congestive link with the attempt to alleviate this congestion as much as possible at the by function of early congestion notification. Our M-SQM scheme has been evaluated with NS2 experiments to measure the packets received from both and total link-delay for different traffic. The performance evaluation results of M-SQM have been validated and graphically compared with the performance of other three legacy AQMs (RED, RIO, and PI). It is depicted that our M-SQM outperformed these AQMs in providing QoS level of service differentiation.Comment: 10 pages, 9 figures, 1 table, Submitted to Journal of Telecommunication

    A network resource availability model for IEEE802.11a/b-based WLAN carrying different service types

    Get PDF
    The electronic version of this article is the complete one and can be found online at: http://jwcn.eurasipjournals.com/content/2011/1/103. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Operators of integrated wireless systems need to have knowledge of the resource availability in their different access networks to perform efficient admission control and maintain good quality of experience to users. Network availability depends on the access technology and the service types. Resource availability in a WLAN is complex to gather when UDP and TCP services co-exist. Previous study on IEEE802.11a/b derived the achievable throughput under the assumption of inelastic and uniformly distributed traffic. Further study investigated TCP connections and derived a model to calculate the effective transmission rate of packets under the assumption of saturated traffic flows. The assumptions are too stringent; therefore, we developed a model for evaluating WLAN resource availability that tries to narrow the gap to more realistic scenarios. It provides an indication of WLAN resource availability for admitting UDP/TCP requests. This article presents the assumptions, the mathematical formulations, and the effectiveness of our model

    A Utility-based QoS Model for Emerging Multimedia Applications

    Get PDF
    Existing network QoS models do not sufficiently reflect the challenges faced by high-throughput, always-on, inelastic multimedia applications. In this paper, a utility-based QoS model is proposed as a user layer extension to existing communication QoS models to better assess the requirements of multimedia applications and manage the QoS provisioning of multimedia flows. Network impairment utility functions are derived from user experiments and combined to application utility functions to evaluate the application quality. Simulation is used to demonstrate the validity of the proposed QoS model

    Mitigating the impact of packet reordering to maximize performance of multimedia applications

    Get PDF
    We propose a solution to mitigate the performance degradation and corresponding Quality of Experience (QoE) reduction caused by packet reordering for multimedia applications which utilise unreliable transport protocols like the Datagram Congestion Control Protocol (DCCP). We analytically derive the optimum buffer size based on the applications data rate and the maximum delay tolerated by the multimedia application. We propose a dynamically adjustable buffer in the transport protocol receiver which uses this optimum buffer size. We demonstrate, via simulation results, that our solution reduces the packet loss rate, increases the perceived bandwidth and does not increase jitter in the received applications packets while still being within the application's delay limits, therefore resulting in an increased QoE of multimedia applications
    corecore