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Abstract—We propose a solution to mitigate the performance
degradation and corresponding Quality of Experience (QoE) re-
duction caused by packet reordering for multimedia applications
which utilise unreliable transport protocols like the Datagram
Congestion Control Protocol (DCCP). We analytically derive the
optimum buffer size based on the applications data rate and
the maximum delay tolerated by the multimedia application. We
propose a dynamically adjustable buffer in the transport protocol
receiver which uses this optimum buffer size. We demonstrate,
via simulation results, that our solution reduces the packet loss
rate, increases the perceived bandwidth and does not increase
jitter in the received applications packets while still being within
the application’s delay limits, therefore resulting in an increased
QoE of multimedia applications.

Index Terms—transport protocol; reordering; QoE; VoIP;
video;

I. INTRODUCTION AND MOTIVATION

Multimedia applications have an increasingly large share
of the overall Internet traffic [1]. To combat unfair advantage
and increasing Internet congestion introduced when such ap-
plications are transmitted using the UDP protocol, transport
protocols which provide congestion control but no unnecessary
reliability have been proposed such as DCCP [2] and SCTP
[3]. DCCP regulates congestion and is well suited to VoIP and
video applications which require timely delivery of application
packets rather than reliability unbounded by any time limit.

Packet reordering has long been considered as a non
pathological network behaviour [4]. More recent studies have
supported this premise, for instance, the study in [6] finds that
70% of packets are correctly ordered taking into consideration
one specific GEANT backbone and in [7], the authors show
that 40% of the links present in their dataset effectively reorder
packets. The reasons for having out of sequence packets at
the receiver include load balancing, multiple network paths,
dynamic route generation and link bonding [8]. Additionally,
in mobile devices with multiple wireless network interfaces,
handover between different wireless technologies may also
result in out of order packets. In today’s Internet the amount
of out of sequence packets is about 3% − 5% [7]. It has
also been shown by previous studies that in a single stream
transmission, the probability of packet reordering is increased
as the transmission rate increases [8].

We note that congestion control, reliability and in-order
packet delivery are separate issues which can be handled by

transport protocols. Reliable transport protocols such as TCP
inherently include a mechanism to handle out of order packet
delivery. This is done by the in built acknowledgment and
retransmission mechanism and required by the applications
using TCP. However, due to the lack of reliability (which is
not needed), unreliable transport protocols like DCCP miss
the important capability for in-order packet delivery, which
has to be provided by different means. In this paper, we
propose a buffer based mechanism which ensures ordered
packet delivery to the multimedia applications following a
given time threshold. Indeed, although multimedia applications
do not need reliability, their performance could significantly
decrease when they do not have an in-order delivery service.
Furthermore, we show that the use of a reordering buffer also
improves the performance of unreliable congestion-controlled
protocol such as DCCP, which interpret out of order packets
as losses, indicating congestion.

The paper is organised as follows: Section II outlines our
proposal, Section III presents the details of the simulation
setup, parameters and results, Section IV shows the improve-
ments achieved in the QoE for example VoIP and video
applications and we conclude in Section V.

II. DYNAMIC RECEIVER BUFFER

We propose to use a receiver buffer with a dynamically
adjustable size to handle the out of order received packets.
We first present a rationale for our proposal, followed by the
details of buffer data management. Our aim is to minimise
the residual negative effects which such a buffer could have
on the multimedia applications quality, i.e. the increased delay
and jitter.

The proposal focuses on DCCP [2] protocol, which includes
a number of options to enable the type of congestion control
suited to applications requirements. As our interest is in VoIP
and multimedia applications, we choose TFRC based DCCP
Congestion Control IDs CCID3 [9] and CCID4 [10] to evaluate
the effects of reordering. TFRC defines a rate based congestion
control mechanism. After the initial slow-start like period, the
sender will regulate the transmitted rate based on the receiver
feedback. The receiver considers the received packet sequence
numbers to detect losses and estimate the packet loss rate,
indicated by the loss event rate p. This, together with the
estimate of delay and the received data rate, is included in



feedback packets to the DCCP sender. The sender adds the
estimated receiver to sender delay to derive the return trip time
and calculates the data rate for the latest reporting period by
using a combination of the receiver rate and a rate calculated
by the equation (1). This approach is used in order to provide
fairness to TCP flows on the same link.

X =
s

RTT ·
√

p·2
3 +RTO ·

√
p·27
8 · p · (1 + 32 · p2)

(1)

where: s is the packet size in bytes; p is the loss event rate;
RTO is the TCP retransmission timeout value in seconds.

The generic TFRC mechanism described above is used in
the CCID3 type of congestion control. CCID4 [10] differs from
CCID3 in that it is adjusted to small packets sizes appropriate
to VoIP. In place of the actual packet size, CCID4 uses a fixed
packet size of 1460 bytes modified by a header correction
factor. This ensures that the formula based rate from equation
(1) which is directly proportional to the applications packet
size, does not unfairly disadvantage DCCP, by using a common
TCP packet size in place of the actual size of smaller VoIP
packets.

It is worthwhile to highlight the effect of out or order
packets on both the transport protocol mechanisms and to the
applications and some differences between how TCP, UDP and
DCCP handle these packets:

1) When the TCP retransmission timer (RTO) expires, TCP
triggers a Go Back N recovery procedure which could
lead to retransmissions of packets effectively received
(i.e. spurious retransmissions). This case can occur when
TCP considers losses following the reordering of net-
work packets or a significant increase of the RTT (e.g.
in case of a vertical handoff, load balancing, or net-
works misconfiguration). In this particular case, known
as spurious timeout, the acknowledgment packets get
back too late to reset the retransmission timer. These
indications of false losses strongly impact on the overall
performances of TCP in terms of reduced achievable
throughput;

2) UDP has no notion of sequence numbers and out of order
packets are forwarded to the application which, assuming
it has a buffer (which is the case for all VoIP and most
video applications), could reorder and utilise the packets;

3) DCCP’s congestion control mechanism treats reordered
packets as losses, although, similarly to UDP, the out
of order packets are still delivered and may be of
use to the application. However, the packets following
the falsely detected congestion event will arrive at a
lower rate (similarly to TCP). This follows the equation
(1) driven sender rate and, depending on the level of
reordering, could present a serious issue particularly for
video applications. The artificially lowered rate could
lead to losses between the sender side application and
transport, which may not be able to handle the rate
offered by the application.

In order to illustrate the impact of network reordering on
DCCP/CCID3-CCID4, we drive a simple experiment where
we simulate the network reordering effect by desequencing
a number of selected packets with Linux NetEm 1. In this
experiment, we use a single bottleneck link of 1Mbit/s and
uniformly distributed 5% random packets are delayed by a
specified amount of time to create out of order packets (see
NetEm parameters in the second column Table I). No losses
(i.e. due to error link) are artificially introduced during the
experiment. As shown in Table I, the higher the network
reordering ratio, the higher the loss event rate (LER). As is
to be expected based on equation (1), this increase leads to
a decrease of the DCCP throughput (for comparison purpose
the last column of the table gives the throughput obtained no
network reodering is introduced).

Table I
DCCP BITRATE (X ) FOR VARYING RTT AND REORDERING RATE

RTT NetEm Reordering X LER X without
Parameters in Kbit/s network reodering

50ms 25ms +/- 8 935.3 1.66 961.3
100ms 50ms +/- 20 565.1 1.79 959.1
200ms 100ms +/- 40 500.2 1.83 954.5
300ms 150ms +/- 80 153.4 2.45 936.8
400ms 200ms +/- 160 90.6 3.11 941.2

The reduced performance of both transport and applications
supports the validity of the idea of introducing a receiver side
buffer specifically for handling out of order packets. However,
a simplistic addition of a receiver buffer has a potential to
increase the delay and jitter of the received data stream,
therefore negatively impacting the applications QoE, as will be
shown in Section IV. We aim to minimise the QoE degradation
by optimising the buffer size to suit applications characteristics.

A. Sizing the Reorder Buffer with Network Calculus

We propose to implement a buffer to reorder packets before
delivering them to the application. Therefore, we need to
size this buffer as a function of the application constraints.
Indeed, contrary to the elastic applications using the in-order
delivery service provided by TCP, multimedia applications
are characterized by strong delay bounds. For example, VoIP
applications are characterized by a maximum ”mouth-to-ear”
threshold where a delay lower than around 200ms [13] is
necessary to get a good communication quality, while video-
conferencing is known to perform ideally when the delay does
not exceed 100ms [5]. We thus propose to assess the size of
this buffer following a given delay threshold provided by the
application denoted Dmax.

We denote R(t) the rate at which data exits the IP level
and enters the re-ordering buffer and R∗(t) the output rate of
the re-ordering buffer. When the re-order buffer is disabled:
R(t) = R∗(t).

In Fig. 1, L is corresponding to the maximum burst size and
R(t) = λ·t+L. We assume that Dmax , is the maximum delay
tolerated by the application and d(t) be the delay induced by

1http://www.linuxfoundation.org/en/Net:Netem



the reordering queue (d(t) might be considered as negligible as
we only consider small buffer sizes). For the sake of simplicity,
in Figure 1 L = 1 packet and R(t) = 1 pkt/s.
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Figure 1. Arrivals curves R(t) and R∗(t)

As shown, packets 1 and 2 arrive in-order and are transmit-
ted to the application. Then, a rupture in the sequence numbers
occurs when packet 4 arrives. Packet 4 and the following are
enqueued in the reordering buffer until the reception of packet
3. When packet 3 is received, the reordering buffer is flushed
without delay (this explains why R∗(t) is perpendicular to the
x-axis at t = 8).

Problem: knowing R(t), what is the maximum value of the
reordering buffer Q(t) constrained by Dmax ?

Following Fig. 1, we have tan(α) = k
Dmax−d(t) and Q(t) =

k + L, then:

Q(t) = tan(α) · [Dmax − d(t)] + L

= λ ·
[
Dmax − L

λ

]
+ L

= λ ·Dmax

As a matter of fact, λ is equal to X when DCCP-CCID3
is used, then Q(t) becomes:

Q(t) = X ·Dmax (2)

In other words, for a given Dmax, the maximum buffer
size at instant t is given by the product of X and Dmax. It
also means that for a multimedia application characterized by a
peak rate Rpeak, we can size at the beginning of the connection
Q(t) to Rpeak ·Dmax.

B. Reorder Buffer for Unreliable Transport Protocols

Our proposal is in many ways similar to a flexible buffer
common in VoIP and streaming video applications. It is
applicable to DCCP or any other unreliable transport protocol
which has the capability to detect the order of received data
packets using e.g. sequence numbers.

Multimedia packets, on being received by the transport
protocol receiving side, are, in the early stages when the initial
applications data is being received, directed to a receiver buffer
rather than passed on to the application. The buffer is filled
up to the current maximum buffer size defined by equation (2)
before the forwarding of data frames to the application begins.

The buffer is kept full at all times, and the received packets
are accessed in regular intervals, as determined by the standard
DCCP protocol. The buffer is scanned for the next packet,
according to the required sequence number and forwarded from
the buffer to the DCCP mechanism and the application.

Every incoming packet is assigned a relative position in the
queue based on the maximum and minimum sequence number
of existing packets in the buffer. Out of order packets based on
their early or late arrival fill up the respective gaps in the queue.
Dequeuing process simply selects a packet from the head of
the queue which is the most relevant in order packet for the
application. If an out of order packet which corresponds to the
next-in-sequence packet is not available in the buffer at the
time it is expected by the DCCP mechanism, it is considered
lost and will contribute to the DCCP loss event rate.

III. VERIFICATION AND ANALYSIS

We have implemented our proposal within the DCCP trans-
port protocol in the ns-2 simulator [11]. In all the simulations
we use a simple dumbbell topology, with the DCCP sender and
receiver connected with two routers which introduce reordering
in the data packet stream. The reordering is achieved in the
same way as described in the example shown in Table I. We
vary the amount of delay on randomly selected packets, based
on a uniform distribution, to create reordered packets. Using
a uniform distribution is considered sufficient for the purpose
of the initial evaluation, although we plan to consider other
distributions in future work. We vary the applications data rate
and RTT values and the percentage of reordered packets.

Our initial ns-2 implementation includes a fixed size buffer
which we choose in the following way. For a video application,
we assume the overall acceptable delay to be 100msec, con-
sistent with [12] and a commonly used constant video rate of
1Mbit/sec. For the VoIP application, we choose two commonly
used voice codecs, G.711 and G.729, with corresponding
data rates (including IP and transport protocol overhead) or
80kbit/sec and 24kbit/sec. The QoE for VoIP applications [13]
indicates the critical one way delay to be around 200ms,
which if increased will more significantly impact the quality
compared to delays below that value. As introducing the buffer
will increase the already existing delay on the route between
the sender and receiver, we allow for the buffer to contribute a
Dmax of 100msec to voice delay and 50msec to video delay.
We note the most common delay on the Internet being around
50 msec [17]. Considering the average packet sizes of 500bytes
for a H.264 video packet [5], 200 byes for G.711 and 60 bytes
for G.729, we derive the maximum buffer size of 12 packets
for video and 5 packets for VoIP.



A. Simulation Results

We perform a series of simulations to demonstrate the
benefits of our proposal. We vary the reordering rate, RTT and
buffer size and record the relevant DCCP parameters and the
receiver side jitter. On the DCCP receiver side we also monitor
the received rate and loss event rate and on the sender side we
monitor the DCCP perceived RTT values. To enable thorough
experiments, we have modified the ns-2 implementation [15]
of the TCP test suite defined in [16] to handle DCCP with
and without a reordering buffer. TCP specific parameters of
course could not be monitored, however most of the generic
parameters (e.g. RTT and throughput) have equivalent values
for DCCP, although they may be derived in a different way.

To highlight the difference between the simulation results
obtained using configurations with and without the reordering
buffer, we define the efficiency ratio ε for a parameter z as
follows:

ε(z) =
zb

znb + zb

where zb is the parameter value obtained by simulations
which include the reordering buffer and znb is the corre-
sponding parameter value resulting from simulations with no
reordering buffer. For all experiments, when :
• ε(z) = 0.5: both schemes obtain the same performance;
• ε(z) > 0.5: the values obtained by the reordering buffer

are higher than without reordering buffer;
• ε(z) < 0.5: the values obtained by the reordering buffer

are lower than without reordering buffer.
We simulate an ideal application which will use the available
data rate i.e. transmit the maximum amount of data using
DCCP/CCID3 on a 1Mbit/sec bandwidth limited link. We
present a subset of the derived efficiency ratio results for the
same range of RTT and reorder buffer values, but choosing
one reordering rate of 5% consistent with [7]. Figure 2 shows
the resulting efficiency ratio for throughput, Figure 3 for the
DCCP loss event rate and Figure 4 for the receiver side jitter.

The jitter, as shown Figure 4, obtained by both schemes
is similar, i.e. the reordering buffer does not impact the jitter
values in the received multimedia stream. We can observe that
the losses are lower with the reordering buffer (see Figure
3). As a consequence, the resulting performance in terms
of throughput is improved (see Figure 2). The throughput
improvements range from small for a buffer size of 2 and low
RTT (100-150msec) to a substantial 0.85 for a buffer size of 7.
It is interesting to observe how the increased RTT reduces the
reactivity of DCCP and amplifies the negative consequence of
the reordered packets on the DCCP rate control mechanism.
We note, as per the presented analysis of potential maximum
buffer length values, that all the simulated buffer size values are
lower than the estimated maximum buffer size of 12 packets
for video. Additionally, that for a buffer size of 5 packets
which has been considered the maximum for VoIP, we have
an improvement (a throughput efficiency ratio of 0.6) even for
the lowest simulated RTT value of 100msec.
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Figure 2. Throughput efficiency ratio
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IV. APPLICATIONS QUALITY IMPROVEMENTS

QoE for multimedia applications is most commonly rep-
resented by the value of the Mean Opinion Score (MOS).
In changing network conditions, MOS is derived using an
objective evaluation methodology, the E-Model, defined both
for voice [13] and video [14] applications.

For voice applications, the E-Model’s R factor quality
metrics is computed based on the delay Id and equipment
impairments Ie, the latter being related to the specific voice
codec’s quality and ability to handle losses:

R = 94.2− Id − Ie

with:

Id = 0.024d+ 0.11(d− 177.3)U(d− 177.3)

where U is a unity function: U(x) = 0 if x < 0 and 1
otherwise.



Video quality metrics Vq is calculated using parameters
which similarly relate to the video codec, however with a direct
relationship defined for the frame and bit rates which can be
varied, and to packet loss rate. We note that [14] only specifies
QoE calculation for H.264 video codec being displayed on
specific screen sizes.

Vq = 1 + Icodingexp

(
PplV

DPplV

)
where Icoding represents the basic video quality related to

the coding distortion under a combination of video bit rate and
frame rate, the packet loss robustness factor DPplV relates to
codec robustness to packet loss and PplV represents the loss
rate. Streaming video quality only degrades with delay greater
than 100 msec [12].

MOS values in the range of 5–1 respectively represent
Excellent, Good, Fair, Poor and Bad quality. [13] and [14]
define the corresponding R factor and Vq values.

We show example MOS values for VoIP and video appli-
cations using DCCP with and without the reordering buffer.
We note that both voice and video applications may have
a buffer to handle jitter and optionally reorder packets. To
calculate MOS, we use simulation results for the DCCP rate
available to the application and consider the additional delay
introduced by either the DCCP or the application buffer. If out
of order packets are not ordered by either of the buffers, they
are considered lost by the application and included in MOS
calculation.

Table II shows MOS for G.711 and G.729 voice codecs on a
network with a 5% reorder rate, a 100 msec RTT and a buffer
size of 5. It can be observed that buffering and reordering
the data in either the transport protocol or the application has
similar positive impact on the QoE of a voice conversation. We
note that, due to low data rate of VoIP, the decreased DCCP
rate is still high enough not to cause data losses.

Table II
MOS VALUES FOR G.711 AND G.729 VOICE CODECS

Options used G.711 G.729
DCCP buffer 4.33 3.96

DCCP, no buffer; voice buffer 4.33 3.96
DCCP, no buffer; no voice buffer 3.87 3.27

Video applications have a higher data rate compared to
VoIP and packet reordering resulting in a lower achievable
DCCP rate may significantly impact the quality. Table III
shows the MOS values for a H.264 codec video stream with
a 5% reorder rate, 100 msec RTT and a buffer size of 12. We
note the simulation results with the rate available to the video
application being 898kbit/sec for our proposal and 314kbit/sec
for standard DCCP. For a fair evaluation, we assume that the
video application may have the capability to adjust the codec
rate based on DCCP sender rate. Therefore, there are three
cases: our proposal; standard DCCP with a rate adjustable
video codec including an application buffer; and standard
DCCP with a video buffer but no rate adjustment.

Table III
MOS VALUES FOR H.264 VIDEO CODEC

Options used MOS 4.2” screen
DCCP-buffer 4.19

DCCP-no buffer; video buffer, rate adjustment 2.76
DCCP-no buffer; no video buffer, no rate adjustment too low to calculate

It can be observed that the proposed transport protocol
buffer has the potential to greatly increase the applications
QoE and that, in the least favourable scenario when a low
rate application is used, it will produce quality similar to
the standard DCCP protocol. When used with video, it will
significantly improve an otherwise unacceptably low quality.

V. CONCLUSION

We have analysed the performance degradation issues
caused by packet reordering in unreliable transport protocols
like DCCP and in multimedia applications. To combat these
issues, we have proposed and evaluated the performance
improvements achievable by a flexible receiver buffer imple-
mented within a transport protocol. Our results show that this
buffer allows to both increase the performance of the transport
protocol and the QoE of the multimedia applications’ user. We
are currently considering to implement this scheme within the
DCCP-TP [18] implementation.
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