13 research outputs found

    eyeSelfie: Self Directed Eye Alignment using Reciprocal Eye Box Imaging

    Get PDF
    Eye alignment to the optical system is very critical in many modern devices, such as for biometrics, gaze tracking, head mounted displays, and health. We show alignment in the context of the most difficult challenge: retinal imaging. Alignment in retinal imaging, even conducted by a physician, is very challenging due to precise alignment requirements and lack of direct user eye gaze control. Self-imaging of the retina is nearly impossible. We frame this problem as a user-interface (UI) challenge. We can create a better UI by controlling the eye box of a projected cue. Our key concept is to exploit the reciprocity, "If you see me, I see you", to develop near eye alignment displays. Two technical aspects are critical: a) tightness of the eye box and (b) the eye box discovery comfort. We demonstrate that previous pupil forming display architectures are not adequate to address alignment in depth. We then analyze two ray-based designs to determine efficacious fixation patterns. These ray based displays and a sequence of user steps allow lateral (x, y) and depth (z) wise alignment to deal with image centering and focus. We show a highly portable prototype and demonstrate the effectiveness through a user study.Vodafone Americas FoundationUnited States. Army Research OfficeDeshpande Center for Technological Innovatio

    Perceptually Optimized Visualization on Autostereoscopic 3D Displays

    Get PDF
    The family of displays, which aims to visualize a 3D scene with realistic depth, are known as "3D displays". Due to technical limitations and design decisions, such displays create visible distortions, which are interpreted by the human vision as artefacts. In absence of visual reference (e.g. the original scene is not available for comparison) one can improve the perceived quality of the representations by making the distortions less visible. This thesis proposes a number of signal processing techniques for decreasing the visibility of artefacts on 3D displays. The visual perception of depth is discussed, and the properties (depth cues) of a scene which the brain uses for assessing an image in 3D are identified. Following the physiology of vision, a taxonomy of 3D artefacts is proposed. The taxonomy classifies the artefacts based on their origin and on the way they are interpreted by the human visual system. The principles of operation of the most popular types of 3D displays are explained. Based on the display operation principles, 3D displays are modelled as a signal processing channel. The model is used to explain the process of introducing distortions. It also allows one to identify which optical properties of a display are most relevant to the creation of artefacts. A set of optical properties for dual-view and multiview 3D displays are identified, and a methodology for measuring them is introduced. The measurement methodology allows one to derive the angular visibility and crosstalk of each display element without the need for precision measurement equipment. Based on the measurements, a methodology for creating a quality profile of 3D displays is proposed. The quality profile can be either simulated using the angular brightness function or directly measured from a series of photographs. A comparative study introducing the measurement results on the visual quality and position of the sweet-spots of eleven 3D displays of different types is presented. Knowing the sweet-spot position and the quality profile allows for easy comparison between 3D displays. The shape and size of the passband allows depth and textures of a 3D content to be optimized for a given 3D display. Based on knowledge of 3D artefact visibility and an understanding of distortions introduced by 3D displays, a number of signal processing techniques for artefact mitigation are created. A methodology for creating anti-aliasing filters for 3D displays is proposed. For multiview displays, the methodology is extended towards so-called passband optimization which addresses Moiré, fixed-pattern-noise and ghosting artefacts, which are characteristic for such displays. Additionally, design of tuneable anti-aliasing filters is presented, along with a framework which allows the user to select the so-called 3d sharpness parameter according to his or her preferences. Finally, a set of real-time algorithms for view-point-based optimization are presented. These algorithms require active user-tracking, which is implemented as a combination of face and eye-tracking. Once the observer position is known, the image on a stereoscopic display is optimised for the derived observation angle and distance. For multiview displays, the combination of precise light re-direction and less-precise face-tracking is used for extending the head parallax. For some user-tracking algorithms, implementation details are given, regarding execution of the algorithm on a mobile device or on desktop computer with graphical accelerator

    Situated Displays in Telecommunication

    Get PDF
    In face to face conversation, numerous cues of attention, eye contact, and gaze direction provide important channels of information. These channels create cues that include turn taking, establish a sense of engagement, and indicate the focus of conversation. However, some subtleties of gaze can be lost in common videoconferencing systems, because the single perspective view of the camera doesn't preserve the spatial characteristics of the face to face situation. In particular, in group conferencing, the `Mona Lisa effect' makes all observers feel that they are looked at when the remote participant looks at the camera. In this thesis, we present designs and evaluations of four novel situated teleconferencing systems, which aim to improve the teleconferencing experience. Firstly, we demonstrate the effectiveness of a spherical video telepresence system in that it allows a single observer at multiple viewpoints to accurately judge where the remote user is placing their gaze. Secondly, we demonstrate the gaze-preserving capability of a cylindrical video telepresence system, but for multiple observers at multiple viewpoints. Thirdly, we demonstrated the further improvement of a random hole autostereoscopic multiview telepresence system in conveying gaze by adding stereoscopic cues. Lastly, we investigate the influence of display type and viewing angle on how people place their trust during avatar-mediated interaction. The results show the spherical avatar telepresence system has the ability to be viewed qualitatively similarly from all angles and demonstrate how trust can be altered depending on how one views the avatar. Together these demonstrations motivate the further study of novel display configurations and suggest parameters for the design of future teleconferencing systems

    Biosignalų požymių regos diskomfortui vertinti išskyrimas ir tyrimas

    Get PDF
    Comfortable stereoscopic perception continues to be an essential area of research. The growing interest in virtual reality content and increasing market for head-mounted displays (HMDs) still cause issues of balancing depth perception and comfortable viewing. Stereoscopic views are stimulating binocular cues – one type of several available human visual depth cues which becomes conflicting cues when stereoscopic displays are used. Depth perception by binocular cues is based on matching of image features from one retina with corresponding features from the second retina. It is known that our eyes can tolerate small amounts of retinal defocus, which is also known as Depth of Focus. When magnitudes are larger, a problem of visual discomfort arises. The research object of the doctoral dissertation is a visual discomfort level. This work aimed at the objective evaluation of visual discomfort, based on physiological signals. Different levels of disparity and the number of details in stereoscopic views in some cases make it difficult to find the focus point for comfortable depth perception quickly. During this investigation, a tendency for differences in single sensor-based electroencephalographic EEG signal activity at specific frequencies was found. Additionally, changes in eye tracker collected gaze signals were also found. A dataset of EEG and gaze signal records from 28 control subjects was collected and used for further evaluation. The dissertation consists of an introduction, three chapters and general conclusions. The first chapter reveals the fundamental knowledge ways of measuring visual discomfort based on objective and subjective methods. In the second chapter theoretical research results are presented. This research was aimed to investigate methods which use physiological signals to detect changes on the level of sense of presence. Results of the experimental research are presented in the third chapter. This research aimed to find differences in collected physiological signals when a level of visual discomfort changes. An experiment with 28 control subjects was conducted to collect these signals. The results of the thesis were published in six scientific publications – three in peer-reviewed scientific papers, three in conference proceedings. Additionally, the results of the research were presented in 8 conferences.Dissertatio

    Foveation for 3D visualization and stereo imaging

    Get PDF
    Even though computer vision and digital photogrammetry share a number of goals, techniques, and methods, the potential for cooperation between these fields is not fully exploited. In attempt to help bridging the two, this work brings a well-known computer vision and image processing technique called foveation and introduces it to photogrammetry, creating a hybrid application. The results may be beneficial for both fields, plus the general stereo imaging community, and virtual reality applications. Foveation is a biologically motivated image compression method that is often used for transmitting videos and images over networks. It is possible to view foveation as an area of interest management method as well as a compression technique. While the most common foveation applications are in 2D there are a number of binocular approaches as well. For this research, the current state of the art in the literature on level of detail, human visual system, stereoscopic perception, stereoscopic displays, 2D and 3D foveation, and digital photogrammetry were reviewed. After the review, a stereo-foveation model was constructed and an implementation was realized to demonstrate a proof of concept. The conceptual approach is treated as generic, while the implementation was conducted under certain limitations, which are documented in the relevant context. A stand-alone program called Foveaglyph is created in the implementation process. Foveaglyph takes a stereo pair as input and uses an image matching algorithm to find the parallax values. It then calculates the 3D coordinates for each pixel from the geometric relationships between the object and the camera configuration or via a parallax function. Once 3D coordinates are obtained, a 3D image pyramid is created. Then, using a distance dependent level of detail function, spherical volume rings with varying resolutions throughout the 3D space are created. The user determines the area of interest. The result of the application is a user controlled, highly compressed non-uniform 3D anaglyph image. 2D foveation is also provided as an option. This type of development in a photogrammetric visualization unit is beneficial for system performance. The research is particularly relevant for large displays and head mounted displays. Although, the implementation, because it is done for a single user, would possibly be best suited to a head mounted display (HMD) application. The resulting stereo-foveated image can be loaded moderately faster than the uniform original. Therefore, the program can potentially be adapted to an active vision system and manage the scene as the user glances around, given that an eye tracker determines where exactly the eyes accommodate. This exploration may also be extended to robotics and other robot vision applications. Additionally, it can also be used for attention management and the viewer can be directed to the object(s) of interest the demonstrator would like to present (e.g. in 3D cinema). Based on the literature, we also believe this approach should help resolve several problems associated with stereoscopic displays such as the accommodation convergence problem and diplopia. While the available literature provides some empirical evidence to support the usability and benefits of stereo foveation, further tests are needed. User surveys related to the human factors in using stereo foveated images, such as its possible contribution to prevent user discomfort and virtual simulator sickness (VSS) in virtual environments, are left as future work.reviewe

    Stereoscopic 3D user interfaces : exploring the potentials and risks of 3D displays in cars

    Get PDF
    During recent years, rapid advancements in stereoscopic digital display technology has led to acceptance of high-quality 3D in the entertainment sector and even created enthusiasm towards the technology. The advent of autostereoscopic displays (i.e., glasses-free 3D) allows for introducing 3D technology into other application domains, including but not limited to mobile devices, public displays, and automotive user interfaces - the latter of which is at the focus of this work. Prior research demonstrates that 3D improves the visualization of complex structures and augments virtual environments. We envision its use to enhance the in-car user interface by structuring the presented information via depth. Thus, content that requires attention can be shown close to the user and distances, for example to other traffic participants, gain a direct mapping in 3D space

    Blickpunktabhängige Computergraphik

    Get PDF
    Contemporary digital displays feature multi-million pixels at ever-increasing refresh rates. Reality, on the other hand, provides us with a view of the world that is continuous in space and time. The discrepancy between viewing the physical world and its sampled depiction on digital displays gives rise to perceptual quality degradations. By measuring or estimating where we look, gaze-contingent algorithms aim at exploiting the way we visually perceive to remedy visible artifacts. This dissertation presents a variety of novel gaze-contingent algorithms and respective perceptual studies. Chapter 4 and 5 present methods to boost perceived visual quality of conventional video footage when viewed on commodity monitors or projectors. In Chapter 6 a novel head-mounted display with real-time gaze tracking is described. The device enables a large variety of applications in the context of Virtual Reality and Augmented Reality. Using the gaze-tracking VR headset, a novel gaze-contingent render method is described in Chapter 7. The gaze-aware approach greatly reduces computational efforts for shading virtual worlds. The described methods and studies show that gaze-contingent algorithms are able to improve the quality of displayed images and videos or reduce the computational effort for image generation, while display quality perceived by the user does not change.Moderne digitale Bildschirme ermöglichen immer höhere Auflösungen bei ebenfalls steigenden Bildwiederholraten. Die Realität hingegen ist in Raum und Zeit kontinuierlich. Diese Grundverschiedenheit führt beim Betrachter zu perzeptuellen Unterschieden. Die Verfolgung der Aug-Blickrichtung ermöglicht blickpunktabhängige Darstellungsmethoden, die sichtbare Artefakte verhindern können. Diese Dissertation trägt zu vier Bereichen blickpunktabhängiger und wahrnehmungstreuer Darstellungsmethoden bei. Die Verfahren in Kapitel 4 und 5 haben zum Ziel, die wahrgenommene visuelle Qualität von Videos für den Betrachter zu erhöhen, wobei die Videos auf gewöhnlicher Ausgabehardware wie z.B. einem Fernseher oder Projektor dargestellt werden. Kapitel 6 beschreibt die Entwicklung eines neuartigen Head-mounted Displays mit Unterstützung zur Erfassung der Blickrichtung in Echtzeit. Die Kombination der Funktionen ermöglicht eine Reihe interessanter Anwendungen in Bezug auf Virtuelle Realität (VR) und Erweiterte Realität (AR). Das vierte und abschließende Verfahren in Kapitel 7 dieser Dissertation beschreibt einen neuen Algorithmus, der das entwickelte Eye-Tracking Head-mounted Display zum blickpunktabhängigen Rendern nutzt. Die Qualität des Shadings wird hierbei auf Basis eines Wahrnehmungsmodells für jeden Bildpixel in Echtzeit analysiert und angepasst. Das Verfahren hat das Potenzial den Berechnungsaufwand für das Shading einer virtuellen Szene auf ein Bruchteil zu reduzieren. Die in dieser Dissertation beschriebenen Verfahren und Untersuchungen zeigen, dass blickpunktabhängige Algorithmen die Darstellungsqualität von Bildern und Videos wirksam verbessern können, beziehungsweise sich bei gleichbleibender Bildqualität der Berechnungsaufwand des bildgebenden Verfahrens erheblich verringern lässt

    Augmented Reality Assistance for Surgical Interventions using Optical See-Through Head-Mounted Displays

    Get PDF
    Augmented Reality (AR) offers an interactive user experience via enhancing the real world environment with computer-generated visual cues and other perceptual information. It has been applied to different applications, e.g. manufacturing, entertainment and healthcare, through different AR media. An Optical See-Through Head-Mounted Display (OST-HMD) is a specialized hardware for AR, where the computer-generated graphics can be overlaid directly onto the user's normal vision via optical combiners. Using OST-HMD for surgical intervention has many potential perceptual advantages. As a novel concept, many technical and clinical challenges exist for OST-HMD-based AR to be clinically useful, which motivates the work presented in this thesis. From the technical aspects, we first investigate the display calibration of OST-HMD, which is an indispensable procedure to create accurate AR overlay. We propose various methods to reduce the user-related error, improve robustness of the calibration, and remodel the calibration as a 3D-3D registration problem. Secondly, we devise methods and develop hardware prototype to increase the user's visual acuity of both real and virtual content through OST-HMD, to aid them in tasks that require high visual acuity, e.g. dental procedures. Thirdly, we investigate the occlusion caused by the OST-HMD hardware, which limits the user's peripheral vision. We propose to use alternative indicators to remind the user of unattended environment motion. From the clinical perspective, we identified many clinical use cases where OST-HMD-based AR is potentially helpful, developed applications integrated with current clinical systems, and conducted proof-of-concept evaluations. We first present a "virtual monitor'' for image-guided surgery. It can replace real radiology monitors in the operating room with easier user control and more flexibility in positioning. We evaluated the "virtual monitor'' for simulated percutaneous spine procedures. Secondly, we developed ARssist, an application for the bedside assistant in robotic surgery. The assistant can see the robotic instruments and endoscope within the patient body with ARssist. We evaluated the efficiency, safety and ergonomics of the assistant during two typical tasks: instrument insertion and manipulation. The performance for inexperienced users is significantly improved with ARssist, and for experienced users, the system significantly enhanced their confidence level. Lastly, we developed ARAMIS, which utilizes real-time 3D reconstruction and visualization to aid the laparoscopic surgeon. It demonstrates the concept of "X-ray see-through'' surgery. Our preliminary evaluation validated the application via a peg transfer task, and also showed significant improvement in hand-eye coordination. Overall, we have demonstrated that OST-HMD based AR application provides ergonomic improvements, e.g. hand-eye coordination. In challenging situations or for novice users, the improvements in ergonomic factors lead to improvement in task performance. With continuous effort as a community, optical see-through augmented reality technology will be a useful interventional aid in the near future

    Proceedings experiencing light 2009 : international conference on the effects of light on welbeing

    Get PDF
    no abstrac

    Proceedings experiencing light 2009 : international conference on the effects of light on welbeing

    Get PDF
    no abstrac
    corecore