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Abstract

Comfortable stereoscopic perception continues to be an essential area of research.
The growing interest in virtual reality content and increasing market for head-
mounted displays (HMDs) still cause issues of balancing depth perception and
comfortable viewing. Stereoscopic views are stimulating binocular cues — one
type of several available human visual depth cues which becomes conflicting cues
when stereoscopic displays are used. Depth perception by binocular cues is based
on matching of image features from one retina with corresponding features from
the second retina. It is known that our eyes can tolerate small amounts of retinal
defocus, which is also known as Depth of Focus. When magnitudes are larger, a
problem of visual discomfort arises.

The research object of the doctoral dissertation is a visual discomfort level.
This work aimed at the objective evaluation of visual discomfort, based on physi-
ological signals. Different levels of disparity and the number of details in stereo-
scopic views in some cases make it difficult to find the focus point for comfortable
depth perception quickly. During this investigation, a tendency for differences in
single sensor-based electroencephalographic EEG signal activity at specific fre-
quencies was found. Additionally, changes in eye tracker collected gaze signals
were also found. A dataset of EEG and gaze signal records from 28 control sub-
jects was collected and used for further evaluation.

The dissertation consists of an introduction, three chapters and general con-
clusions. The first chapter reveals the fundamental knowledge ways of measuring
visual discomfort based on objective and subjective methods. In the second chapter
theoretical research results are presented. This research was aimed to investigate
methods which use physiological signals to detect changes on the level of sense of
presence. Results of the experimental research are presented in the third chapter.
This research aimed to find differences in collected physiological signals when a
level of visual discomfort changes. An experiment with 28 control subjects was
conducted to collect these signals.

The results of the thesis were published in six scientific publications — three
in peer-reviewed scientific papers, three in conference proceedings. Additionally,
the results of the research were presented in 8 conferences.



Reziume

Virtualios realybés turiniui perZitréti skirti atvaizdavimo irenginiai praktikoje nau-
dojami mazai ne dél aukstos juy kainos ar nepakankamos vaizdo kokybés, o nere-
tai dél daznai sukeliamo regos diskomforto. Regos diskomforto lygis yra indivi-
dualus kiekvienam naudotojui, todé¢l reikalingos techninés priemonés, leidZiancios
aptikti pirmuosius regos diskomforto poZymius naudojant virtualiosios realybés
akinius. Rinkoje jau pasirodé virtualiosios realybés akiniai su integruota akiy
sekimo jranga, taip pat akiniy gamintojai bendradarbiauja su elektroencefalogramy
nuskaitymo irenginius gaminan¢iomis imonémis. Tac¢iau néra sukurti biidai regos
diskomfortui aptikti naudojant akiy aktyvumo ar elektroencefalogramy registra-
vimo irenginius. Siekiant aptikti akiy diskomforta salygojancias situacijas vaizdo
perziiiros metu, disertacijoje sprendziama vaizdo pojtciy kiekybinio jvertinimo
problema.

Sios disertacijos tyrimo objektas yra paieska i¥matuojamy kiekybiniy para-
metry, kurie leisty atpaZinti, kada Zmogus stebi vaizdus neitempdamas akiy jude-
sius valdancius raumenis, atskirti, kada vaizdo gylio suvokimui akys yra tinkamoje
padeétyje, o kada gylio suvokimui tinkamos akiy padéties ilgai nepavyksta rasti.
Darbas skirtas prisidéti vystant objektyvaus regos diskomforto jvertinimo meto-
dus, remiantis fiziologiniais matavimais. Skirtingas matomy objekty gylis ir de-
taliy skaicius stereovaizduose neleidZia aiSkiai suvokti matomo objekto atstumo
erdvéje, arba atstumo suvokimui reikia ilgesnio laiko nei jprastai. Tyrimo metu
buvo nustatyti poZymiai, i$skirti i§ elektroencefalogramos, naudojant vienu elek-
trodu matuota signala, kurie leidZia atpazinti vartotojo regos diskomforta. Taip pat
buvo pasitlyti poZymiai leidZiantys taikyti akiy sekimo irenginius stereoskopiniy
vaizdy sukeltam regos diskomfortui jvertinti. Duomenims surinkti buvo atliktas
eksperimentas matuojant 28 savanoriy fiziologinius signalus, gautus stereoskopinio
turinio stebéjimo metu.

Disertacija sudaro jvadas, trys skyriai ir bendrosios iSvados. Pirmajame sky-
riuje apibréziama regos diskomforto problema, nagriné¢jami metodai skirti regos
diskomforto matavimui, remiantis objektyviais ir subjektyviais matavimais. Antra-
jame skyriuje pateikiami teoriniy tyrimy rezultatai. Siais tyrimais buvo analizuo-
jami metodai, kurie naudoja fiziologinius matavimy rezultatus, norint aptikti patir-
tos kokybés pokyti vizualaus turinio stebé¢jimo metu. TreCiajame skyriuje yra
pateikti eksperimentinio tyrimo rezultatai. Buvo tikimasi, kad surinktuose sig-
naluose galima iSskirti poZymius, kurie leis atskirti skirtinga regos diskomforta
sukelianc¢ius vaizdus.

Pagrindiniai disertacijos rezultatai paskelbti 6 mokslinése publikacijose — trys
i§ ju atspausdintos recenzuojamuose mokslo Zurnaluose, trys konferencijy me-
dZiagoje. Rezultatai vieSinti 8 mokslininky konferencijose.
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Notations

Abbreviations

ANOVA Analysis of variance

bpm Beats per minute

Co Comfortable

DPM Depth Perception Moment

ECG Electrocardiogram

EEG Electroencephalogram

ERP Event-related potential

ICA Independent Component Analysis
MdUn Mildly uncomfortable

SoP Sense of presence

SSVEP Steady-state visually evoked potential
Un Uncomfortable

VCo Very comfortable

VUn Very uncomfortable

wICA Wavelet Independent Component Analysis
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Introduction

Problem Formulation

This thesis is focusing on the problem of quantitative evaluation of individual vi-
sual discomfort levels. During a natural view our perception of depth is achieved
by acquiring visual information through binocular vision. Distance between our
eyes lets us to perceive a depth of the 3D objects. The problem arises during sus-
tained visual perception of unnatural stereoscopic content.

When a person is watching stereoscopic content a bipolar gaze is necessary
to perceive a depth of the content. However, to produce stereoscopic view natu-
ral laws are violated, e.g., the disparity between two views gives a possibility to
support better depth perception. The disparity between image objects helps to dis-
tinguish similar objects situated at different distances from the viewer. However,
high disparities are related to the higher visual discomfort levels and may cause
the eye fatigue during extended stereoscopic perception time.

In order to solve this problem an experiment were conducted to collect physi-
ological data during the consumption of the stereoscopic content. It was expected
that the measured physiological signals would be affected by different visual com-
fort levels since natural mechanisms of binocular vision are violated with the usage
of artificial stereoscopic cues.



2 INTRODUCTION

Relevance of the Thesis

A field of visualization in 1987 was declared as a strategic direction by the National
Science Foundation (NSF) of the USA (Johnson et al. 2005). During the last 30
years, a successful developments were made. However, according to NSF chal-
lenges in the field of visualization remains, such as: 1) view-dependent problems
for the user, 2) image-based rendering, 3) multiresolution, 4) importance-based,
5) adaptive resource-aware algorithms. These problems should be solved based on
specific requirements for the content.

When analyzing future perspectives of the systems of 3D visualization there
are several studies for the perspectives and development of the field. According to
the Grand View Research, global visualization and 3D rendering software market
size was valued USD 952.4 million in 2016 and is projected to reach USD 5.63 Bn
by 2025 (Grand View Research, 2018). A study published by PnS Market Research
reported that visualization market is projected to reach USD 3.84 Bn by 2023 (PnS
Market Research, 2017).

The importance of this problem is supported by the increased attention to the
head-mounted displays, such as VR glasses and immersive visual content (e.g.,
360-degree video records). A stereoscopy effect is achieved by presenting an in-
dividual view for each eye. The disparity between two views gives a possibility to
support better depth perception. The disparity between image objects helps to dis-
tinguish similar objects situated at different distances from the viewer. However,
high disparities are related to the higher visual discomfort levels and may cause
the eye fatigue during extended stereoscopic perception time (Read, Bohr 2014;
Solimini 2013).

The Object of the Research

The research object of the doctoral dissertation is quantitative parameters, obtained
using electroencephalogram, electrocardiogram and eye-tracking data.

Obtained parameters were analyzed to find a difference in visual comfort level
during stereoscopic perception. The level of visual comfort, acquired using mean
opinion scores was used as a reference.

The Aim of the Thesis

The aim of the thesis is to develop means of objectively measuring visual comfort
by investigating effects of brain activity and gaze signals on different levels of
stereoscopic stimuli.



The Objectives of the Thesis

In order to solve the stated problem and reach the aim of the thesis the following
objectives were formulated:

1. To investigate the audiovisual content’s influence on the measured physio-
logical signals at a different sense of presence levels.

2. To investigate electroencephalogram signals when stereoscopic stimuli with
different visual discomfort levels is presented and propose features to de-
tect visual discomfort level.

3. To investigate gaze signals when stereoscopic stimuli with different visual
discomfort levels is presented and propose features to detect visual dis-
comfort level.

Research Methodology

Investigation in this dissertation is divided into two parts. In the first part, us-
ing physiological signals, features were extracted and compared with subjective
evaluations of the sense of presence level (SoP). Physiological signals used in this
research were acquired by Perrin er al. (2016). During this experiment a group of
20 volunteers consumed three different levels of audiovisual stimuli, while their
physiological signals were measured.

In the second part of the investigation features extracted from physiological
signals were statistically compared to find significant differences, which would in-
dicate a level of visual discomfort. Physiological signals were collected from the
subjects consuming stereoscopic stimuli with five different levels of visual dis-
comfort. In the experiment a total of 120 stereoscopic images were shown to 28
volunteers. Brain activity and gaze signals were measured during the experiment.
For the reference of visual discomfort level, subjective measurements, such as vi-
sual discomfort level, using five grade scale and stable depth perception time, were
collected.

Scientific Novelty of the Thesis

1. Changes in high beta power spectrum density, extracted from the temporal
and parietal lobes of the electroencephalogram signal and estimated heart
rhythm using electrocardiogram are proposed as features to detect different
sense of presence level.



4 INTRODUCTION

2. Pupil size, focus point, binocular disparity, crossed disparity features ex-
tracted from gaze signals are proposed as features to detect different visual
discomfort level.

3. Ratio of « and 5}, spectrum density extracted from the frontal lobe of the
electroencephalogram signal is proposed as a feature, which can indicate
different level of visual discomfort.

Practical Value of the Research Findings

Results of the research are to be used to replace mean opinion scores when eval-
uating a level of visual discomfort for the user. Features extracted from the users
physiological signals are individual, and can represent personal experience when
consuming stereoscopic content, and eventually feeling the visual discomfort.

New consumer friendly eye tracking and brain activity measuring devices are
entering the market annually. Recently released virtual reality headset (VIVE PRO
2019) includes an integrated eye-tracker. Therefore, eye-tracker obtained features,
proposed in this thesis, can be applied to this device to detect visual discomfort
level in virtual reality environment. Additionally, frontal lobe is a probable location
for the virtual reality headset with embedded electroencephalogram sensor, and in
this work features were proposed, which can indicate a level of visual discomfort
from the frontal lobe brain activity signals.

The Defended Statements

1. Bh and B frequency band is a feature to evaluate Sense of Presence from
electroencephalogram signals, measured near Parietal (left or right) and
Occipital (left or right) regions.

2. 8-13 Hz and 21-30 Hz spectral power ratio of electroencephalogram sig-
nal, measured at the frontal lobe is a feature to detect a level of visual
discomfort if using an analysis frame from 2 to 7 s before the moment of
depth perception.

3. The number of focus points is a feature to detect a level of visual discom-

fort if using an analysis frame of 2 s before the moment of depth percep-
tion.

4. The pupil size can be used as a feature to detect a level of visual discomfort,
when analysing a time frame from stimulus shown to the moment of depth
perception. However, when using 5 s analysing a time frame binocular
disparity must be used.



Approval of the Research Findings

The results of the research were published in six scientific publications — three in
peer-reviewed scientific papers, three in conference proceedings. Additionally, the
results of the research were presented in following conferences:

« International Conference Computing in Cardiology, 2015, Nice, France;

o Three Young Scientist Conferences Science — Future of Lithuania, 2016—
2018, Vilnius, Lithuania;

« International Conference Electrical, Electronic and Information Sciences
(eStream), 2017, Vilnius, Lithuania;

« International Conference Advances in Information, Electronic and Elec-
trical Engineering AIEEFE, 2017, Riga, Latvia;

« Two International Conferences Data Analysis Methods for Software Sys-
tems, 2017-2018, Druskininkai, Lithuania;

Structure of the Dissertation

The dissertation consists of an introduction, three chapters and general conclu-
sions. The volume of the dissertation is 106 pages, in which are given: 28 figures
and 21 tables. Additionally, 158 items are cited in the dissertation.
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Literature Survey of Visual
Discomfort Detection

In this chapter, the overview of the current research on the topic of the disserta-
tion and field of visual discomfort are presented. The rendering of stereoscopic
images may have different set-ups which have a direct influence on the comfort of
visual perception and ability to focus on the object of interest in the image. If there
would be possible to estimate the comfort level during individual stereoscopic per-
ception, various virtual camera separation parameters may be adjusted (Shao et al.
2016) to avoid visually uncomfortable scenes in the rendered video stream. Virtual
camera separation, used during the rendering of stereoscopic views, depending on
the scene, causes different image disparities followed by too much or too little-
perceived depth on a target display.
Depending on the field of the studies (medical, technological, etc.), terminologies
for visual fatigue and discomfort differ; presented definitions can be ambiguous.
For example, terms such as fatigue, strain, and asthenopia are coexisting in the
literature, but their differences are unclear. In their works Lambooij et al. (2009,
2007) did excellent work in providing cross-fields definitions for fatigue and dis-
comfort. They define fatigue as a decrease in the performance of the human visual
system as an outcome of physiological tension or stress occurring from excessive
exertion (Lambooij et al. 2007).

The research results, presented in this chapter are presented at international
“AlIEEE” (Riga, 2017), “DAMSS” (Druskininkai, 2018) and national “Science —
Future of Lithuania” (Vilnius, 2016) scientific conferences.



8 1. LITERATURE SURVEY OF VISUAL DISCOMFORT DETECTION

1.1. Visual Fatigue and Visual Discomfort

The assessment of visual discomfort can be performed in two ways: using subjec-
tive means or objective means. During the subjective assessment, visual stimuli
are presented to a group of viewers, and during the experiment (or after it) subjects
are asked to fill the questionnaire about their impression on different stereo images
or long-lasting video. The objective measurements require observing the body re-
sponse during stereoscopic perception of differently rendered stereoscopic images.
The most widely used tools to follow the body response in the research field are
eye-tracking devices (Bernhard et al. 2014; latsun et al. 2015; Lin, Kao 2018) and
brain scanning devices (Fischmeister, Bauer 2006; Frey et al. 2016; Moon, Lee
2017). However, other means to measure visual discomfort are also investigated,
e.g., Lee et al. 2016 showed it is possible to measure visual discomfort using facial
expressions.

Barkowsky et al. (2011); Zhou et al. (2017) in their research showed that adap-
tation mechanisms from the visual system are sometimes known to improve its
performances, yet the adaptation itself may as well induce fatigue: both decreases
and increases in performances of the visual system may be related to visual fatigue.
As for visual discomfort, it is perceived instantaneously, while fatigue is induced
after a given duration of effort. Finally, how fatigue relates to discomfort is still an
open question (Lambooij et al. 2009). These observations show the need for fur-
ther efforts in defining visual fatigue and discomfort, to notably account for both
worsening and improving effects, as well as temporal aspects Urvoy et al. (2013).

Typically, questionnaires are used to assess the presence of symptoms for fa-
tigue and discomfort. In Kennedy ef al. (1993), Kennedy proposed a questionnaire
assessing simulator sickness. As visual fatigue, discomfort and simulator sickness
share common symptoms; this questionnaire was soon adapted by Howarth and
Costello for more general purposes (Howarth, Costello 1997). Now these ques-
tionnaires are also used in VR field (Fernandes, Feiner 2016). Discomfort, in
particular, is often evaluated with subjective scales (Song et al. 2016; Yano et al.
2002).

Objective tests can also be conducted in order to assess the presence of fa-
tigue. In their work Lambooij et al. (2007), for instance, measure the tear film
breakup time to determine the dryness of the eye. Experimental designs assessing
visual fatigue usually follow one of two approaches: (1) following a visual task,
the presence of symptoms is assessed along with the perceived degree of fatigue
(Dettmann, Bullinger 2018; Gupta et al. 2013; Yano et al. 2002); (2) fatigue is
voluntarily induced through demanding and repeated visual tasks which allows for
symptoms identification Wann et al. (2014).
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1.1.1. Objective Signs of Visual Discomfort

There is a large number of objective and subjective signs for visual fatigue (Urvoy
et al. 2013), such as dried mucus of the eyes, tears around the eyelid, changes in
blinking rate (Jaschinski er al. 1996), and reduction of the speed of eye movements
(Saito 1992). Researchers particularly focused their efforts on the near vision triad
(accommodation, vergence, and pupillary response): even in 2D displays, numer-
ous studies reviewed by Klamm, Tarnow (2015) showed that visual fatigues tran-
siently induces accommodation and vergence disorders.

The pupil size and its changes are affected by visual fatigue as well. In Wang
et al. (2015), showed that pupillary disorders were more frequent among a group
of patients suffering from asthenopia than in a group of unaffected patients. In
Murata ef al. (2001); Uetake et al. (2000), the perceived fatigue reported by the
observers, after visualization of 60 min of 2D video sequences, correlated with a
reduction of the pupil diameter. In their work, Ukai, Howarth (2008) showed that
in 30% of cases, patients experiencing visual fatigue show an abnormal exagger-
ation of the rhythmic contraction (myosis) and dilation (mydriasis) of the pupil,
independent of changes in illumination or in fixation of the eyes, called hippus
(Bouma, Baghuis 1971). Finally, a study by Ando et al. (2002) showed that the
pupillary light reflex is less controlled in a group of patients suffering from mild
autonomous dysfunctions.

While visual fatigue manifests itself through ocular disorders, it also induces
cerebral and psychological disorders such as headaches (Ando et al. 2002). Fur-
thermore, studies notably showed that the visualization of 3D stereoscopic se-
quences may further delay event-related potentials (ERPs) such as P100 (at 100
ms) (Ando et al. 2002) and P700 (at 700 ms) (Frey et al. 2016). These observa-
tions tend to demonstrate that visual fatigue also affects cognitive processes from
the human visual system. More specifically, cognitive fatigue with 3D stereoscopic
stimuli may affect stereopsis, the process by which left and right views are fused
into a single percept featuring depth information. The performance of the binocu-
lar fusion is usually assessed by the fusion range: the interval of retinal disparities
for which it is possible to fuse left and right retinal images.

In Lambooij et al. (2007), authors correlated short-term visual fatigue, induced
by the reading of a 3D stereoscopic text (Wilkins test) to an increase of the fusion
range. Inversely, several studies correlated long-term fatigue, induced by the visu-
alization of 60 min of 3D stereoscopic stimuli to a reduction of the fusion range
Emoto et al. (2005, 2004); Hua (2017); baseline fusion range was restored after 5
to 10-min rest. Similarly to ocular deficiencies, the fusion range may be used to
identify persons susceptible to visual fatigue Lambooij et al. (2009): persons with
small fusion range reported more visual fatigue symptoms.
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It is believed that physiology not only contributes to the success of individual
experiments, but that it can be instrumental in furthering the field of multimedia
research. In the existing literature, internal cognitive processes and experiences are
widely hypothesised towards definitions of terms such as quality and SoP. Physi-
ological methods can help to improve understanding and validating these internal
processes in the media consumer. Toward this end, one strength of physiologi-
cal measurements that should be exploited is the detection of target stimuli that
would stay undetected in self-reporting experiments, for instance, through early
pre-conscious brain activity components. Capturing such effects can be expected
to have a profound impact in the context of extensive media consumption, where
distortion may not be actively perceived but may have a long-term effect on overall
SoP including, for instance, visual fatigue. Careful experimental design is needed
to identify physiological thresholds for the objective evaluation of the SoP and
visual discomfort.

1.1.2. Psychophysical Methods

To build sufficient psychophysiological evidence in support of identifying the var-
ious factors impacting SoP and to enable effective algorithm development it is
essential to have adequate psychophysiological data. It is argued that such evi-
dence needs to be created collectively and made openly accessible to the research
community. An overview of some already available databases is presented in
Perrin et al. (2016) published two extensive databases from their study on mul-
timodal Quality of Experience assessment of immersive media. Koelstra et al.
(2012) present DEAP, a multimodal data set for the analysis of human affective
states when watching a video and Zheng, Lu (2015) provide the SJTU Emotion
EEG Dataset (SEED) from their study on emotion recognition when viewing a
video. Probably the most extensive range of databases exists for gaze tracking
recordings. Winkler, Subramanian (2013) surveyed 28 gaze tracking databases for
image and video applications and provided an excellent overview of their charac-
teristics. While these data sets are highly relevant for the research community, they
give only small pieces of the overall puzzle. Significantly, more data sets need to
be made publicly available to fully understand all the factors influencing SoP En-
gelke et al. (2017). In that regard, systematic methodologies are also required to
make compatible and integrate physiological data of different databases to allow
for effective analytics and hypothesis testing.

1.1.3. Saliency Maps for Visual Discomfort Detection

Following a somewhat different approach, latsun et al. (2015) developed a model
for predicting discomfort based on eye tracking data: fixations, blinks and fo-
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cus. They found that discomfort strongly correlated with spatial saliency, mo-
tion intensity and disparity range. Cho, Kang (2014) used object salience derived
from region-based algorithms. Then they extracted features including disparity,
motion, contrast, spatial complexity of salient objects and brightness and binoc-
ular asymmetries degree between left and right image to construct their model.
The features were fed into an support vector regression model to predict discom-
fort. Several models have used saliency maps to improve discomfort prediction,
but it is also true that discomfort drives attention. Jiang et al. (2016) proposed
a 3D saliency model which explicitly accounts for visual discomfort. They com-
bined color saliency, texture saliency and spatial compactness with global disparity
contrast to train a comfort prediction function which classifies scenes into High-
Comfortable and Low-Comfortable Visual Scenes and used this information to
generate a saliency map based on viewing comfort. Kim et al. (2014) add a pre-
dicted discomfort score to other saliency attributes such as motion, disparity and
texture, in order to create a refined 3D saliency map.

1.2. Eye Measurement Based Visual Discomfort
Detection

Psychological and physiological processes: At any instance in time, the human
eye is exposed to an abundant amount of visual information. Attentional mecha-
nisms in the human visual system are fundamental to reducing the complexity of
scene analysis. There are distinguished between bottom-up and top-down atten-
tion. Bottom-up attention is reflexive, signal driven, and independent of a particu-
lar task. Top-down attention is driven by higher level cognitive factors and external
influences such as contextual effects, viewing task, and personal experience. Both
attentional mechanisms guide eye movements to the most relevant information in
a given context. Gaze tracking is deployed to capture these eye movements and
the underlying attentional mechanisms. It is noted that gaze tracking records only
overt visual attention (shifting of the eyes to a stimulus) but not covert visual atten-
tion (mental shift of attention), which can be measured using EEG (Engelke et al.
2017).

1.2.1. Gaze Tracking

Eye trackers are integrated into experiments to capture overt visual attention dur-
ing visual stimulus observation. Modern eye trackers are non-invasive video based
systems with an infra-red camera, typically installed under a stimulus screen, that
measure corneal reflections to determine the direction of gaze. Some eye trackers
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come with a head rest and are installed at the location of the observer. In real-
world experiments, head mounted eye trackers are used to record gaze behaviour
in 3-dimensional space. In any case, the eye tracker has to be carefully time-
synchronised with the stimulus presentation to accurately capture eye movements.
This is particularly important if accuracy at the speed of saccadic eye movements
is needed (Harezlak et al. 2014). To assure spatial accuracy, eye trackers have to be
carefully calibrated to each individual observer using pre-defined calibration pat-
terns. For long experiments, the calibration often needs to be repeated to maintain
high spatial accuracy. Spatial accuracy usually diminishes towards the periphery
of the visual field for which reason it is important to carefully take into account
the visual angle of the presented stimulus.

Eye movements are recorded at frequencies starting typically from 50 Hz and
going beyond 1000 Hz for high-end devices. The resulting raw gaze patterns are
usually rather inconclusive and therefore need post-processing into more meaning-
ful fixation density maps (Engelke et al. 2009). Typical analysis of eye tracking
data includes determining fixation location, duration, and order. In the context of
SoP it is critical to also compare two fixation density maps, for instance, between
distorted and reference stimuli. Some of the most commonly used comparison
metrics include the Kullback-Leibler divergence, area under the ROC curve, nor-
malised scanpath saliency, and Pearson linear correlation coefficient. These met-
rics capture different aspects of the eye tracking data and are often used conjointly
(Engelke et al. 2017).

Gaze tracking has been extensively investigated in the context of visual SoP
assessment, the rationale being that eye gaze is directed not only by the natural con-
tent but also by potential induced distortions. The relative interplay of these and
the resulting gaze behavior is conjectured to have a major impact on the overall
SoP. While the potential benefit of recording gaze behavior has been widely rec-
ognized by the research community, the conclusions drawn from individual studies
vary considerably. Covering the entire spectrum of the prior art exceeds the scope
of this article and the interested reader is referred to recent survey articles Engelke
et al. (2011); Le Callet, Niebur (2013).

Several studies have investigated the relationship between overt visual atten-
tion in distorted and undistorted visual stimuli and the related impact on overall
quality perception. In Engelke et al. (2010b), the impact of content saliency rel-
ative to distortion location was investigated for H.264 coded video with localized
packet loss distortions. It was shown that distortions located in salient regions have
a significantly higher impact on quality perception as compared to distortions in
non-salient regions. This is partly attributed to a shift of attention needed in case of
non-salient region distortions whereas distortions in salient regions are perceived
more severely.
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Global compression distortions were found by Le Meur et al. (2010a) to not
alter viewing patterns considerably. Liu et al. (2013) showed that differences in
observers’ viewing behavior depends strongly on the image content. The more dis-
tinct a salient region, the higher the agreement between observers, and the larger
the performance gain when including eye tracking data into objective quality met-
rics. Importantly, Lee e al. (2009) reported that audio is a strong attractor of visual
attention, and should therefore not be disregarded, but its interplay with the visual
stimulus should be accounted for.

Eye tracking data is often integrated into image and video quality metrics to
further improve their quality prediction performance. Ninassi et al. (2007) in-
tegrated fixation density maps into several quality metrics to predict JPEG and
JPEG2000 distortions, but no improvements were found for the considered met-
rics. Based on the fixation density maps and positive outcomes in Engelke et al.
(2010b), Engelke et al. (2010a) integrated spatial saliency weighting into a video
quality metric, TetraVQM (Barkowsky et al. 2009), successfully improving the
metric’s prediction accuracy. The task given to the observer is also known to influ-
ence gaze behavior and it is generally agreed that the integration of task-free eye
tracking data into quality prediction models is more successful than when using
eye tracking data obtained during quality assessment task (Le Meur et al. 2010b;
Liu, Heynderickx 2011). While the value of task-free eye tracking data is widely
accepted and several databases have been made publicly available, Engelke et al.
(2013) compared three databases and found that differences amongst their fixation
density maps were small with low impact on the integration into quality metrics.

In summary, the value of eye tracking data for studying visual SoP is widely
agreed upon and integration into computational models was generally found to be
more successful for video rather than image applications, local rather than global
distortions, and task-free rather than task-driven eye tracking data. Despite this
field being well explored, further research is needed to fully understand the interac-
tion between overt visual attention to audiovisual content and induced distortions.

1.2.2. Pupillometry

Tasks involving cognitive processing cause short-onset latency (100-200 ms) tran-
sient pupil dilation that peaks after a few hundred milliseconds and then rapidly
reverts following task completion. Pupil responses have been shown for cogni-
tive load and reasoning, memory, visual attention, and language processing (Trani,
Verhaeghen 2018).

In constant low-light conditions, pupil dilation has long been known to involve
the activation of the locus coeruleus and its neuromodulatory influence through
norepinephrine signaling pathways. More recently it was shown using extracellular
recordings and stimulation in locus coeruleus with simultaneous monitoring of
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pupil diameter fluctuations that there is a causal functional relationship (Aston-
Jones, Cohen 2005; Joshi et al. 2016; Varazzani et al. 2015).

The locus coeruleus makes widespread projections and functional inter actions
with many brain regions from cortex and cerebellum to other brainstem structures
and spinal cord. It contributes ascending pathways responsible for arousal and
engagement with novel environmental stimuli, e.g., optimizing the levels of ex-
ploration versus exploitation in adaptive behavior, and is implicated in cognition,
emotional processing, perceptual rivalry and memory retrieval. This is not the ex-
clusive site of activity coupled to the pupil. For instance, the pupillary light-reflex
via the iris sphincter muscle is served via distinct parasympathetic pathways, and
connections between the eye and other modulating brain structures are not com-
pletely understood. However, it is known that both sympathetic and parasympa-
thetic nervous system activation affects the radial dilator muscles of the pupil and
muscles in the iris, leading to pupil dilation as sympathetic activation increases
and constriction with activation decrease and an opposing response for parasym-
pathetic activity Thompson, Kardon (2006); Yoshitomi et al. (1985).

Key parameters for collecting pupillometry data are speed, resolution and ac-
curacy of eye tracking. Sufficient temporal resolution and precision are required
to track the time course of change on the order of milliseconds and synchronise
with external task-related stimuli. Eye tracking systems vary from tens of hertz to
several kilohertz for high-speed systems used to acquire other events like microsac-
cades, small involuntary eye movements that occur during fixation. Increased im-
age resolution and repeated trials averaging enables sensitive tracking of pupillary
size changes up to hundredths of a millimeter (Engelke et al. 2017).

Image processing algorithms can be used to reliably track pupil location and
diameter as eye movements occur. Although pupil dilations have a higher signal
to noise ratio relative to other measurements like EEG, noise and artifacts can
contaminate the signal. These artifacts, such as eye blinks, can be removed in
post-hoc analysis using techniques such as independent component analysis (ICA)
identification. Other sources of noise can arise during large head movements, so
in some experimental contexts head stabilization techniques such as chin rests, or
head tracking algorithms, are employed (Partala, Surakka 2003).

Once pupil responses during repeated task-related trials are imaged, the diam-
eter metric can be processed in a variety of ways. Artifact removal and filtering
to smoothen traces or reduce noise can improve signal fidelity depending on the
application. Based on the type of task being conducted, measurements of tonic
(windowed) overall average pupil diameter or phasic (time-varying) responses can
be extracted. Phasic responses can be useful because the time series contains the
peak minimum or maximum pupillary change, the time at which these events oc-
cur relative to the task, and consequently the acceleration or rate of change leading
to the maximum effect observed (Partala, Surakka 2003).
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Pupillometry has not been used extensively in primary SoP studies, but shows
promise as a non-invasive physiological measurement due to pupil diameter corre-
lations with processing load, memory, emotion, and arousal (Beatty 1982). Early
studies demonstrated that simple memory recall of increasing numbers of digits in
a sequence corresponds to increasing pupil size (Kahneman, Beatty 1966). Pupil
dilation has also been shown to vary with the strength of memories during re-
trieval in a paired-association task [67], a further indication of processing load.
Retrieval of emotional memories triggers LC activation and corresponding pupil-
lary responses (Van Rijn et al. 2012), something that may bear relevance to emo-
tional versus neutral states elicited by enhanced QoE. Pupillometry shows that
graded LC-NE responses follow evolving strategies for a gambling task with an
evolving payoff structure (Jepma, Nieuwenhuis 2011). Effects have also been ob-
served in the context of visual processing. For instance, visual search tasks using
distractors that increase difficulty of target recognition lead to increases in pupil
diameter (Porter et al. 2007). Further, pupillometry has been used to probe lin-
guistic processing, and increased syntactic complexity or effortful listening leads
to pupil dilation (Zekveld et al. 2010). Given the importance of intelligibility in
SoP quantification, this suggests a meaningful way to assess heightened cognitive
load that may accompany difficulty in understanding language in various types of
content consumption.

1.3. Neurophysiology Based Visual Discomfort
Detection

Electroencephalography (EEG) is a minimally invasive physiological measurement
of voltage changes at the scalp arising from electrical activity of neuronal ensem-
bles that underlie cognitive states and experience (Urigiien, Garcia-Zapirain 2015).
Physiological measurements have been studied for many decades with Hans Berger
credited as the first to record EEG in humans (Berger 1929) in 1924. While the
precise links between EEG and psychological phenomena are incompletely under-
stood, several relations are widely accepted.

1.3.1. Event-Related Potential Based Detection

Event-related potentials (ERP), large scale electrical events related to high and
low-level sensory and cognitive processing, have been thoroughly characterised.
Event related potentials consist of stereotypic changes in electrical activity usu-
ally evoked by time-locked sensory stimuli and related cognitive events. They are
characterized by their time-dependent amplitude according to a common nomen-
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clature, with the first letter referring to the polarity of a particular component and
subsequent number(s) indicating latency (in ms) or relative position in the order
of components. For example, the well-known P300 component exhibits a posi-
tive peak around 300ms after stimulus onset. The amplitude of its subcomponent
P3b is known to increase with decreased expectation of a stimulus, thus indicat-
ing the novelty of a stimulus. Other event-related potentials have been shown to
be involved with object representation and memory operations in a variety of task
behaviors.

1.3.2. Spectral Based Detection

Chen et al. Cho, Kang (2014) investigated visual fatigue for 2DTV and 3DTV
viewing using 16-channel EEG measurements. Significant decreases in gravity
frequency and power spectral entropy, related to alertness level decline, were ob-
served in several brain regions after extended 3DTV viewing. Based on these find-
ings and psychophysical responses, an accurate evaluation model for 3DTV fatigue
was established. A related study Chen et al. (2013) compared the 2D/3D changes
of energy values in four spectral bands («, 3, 0, §) with four fatigue-related param-
eters. All bands except the 6 rhythm changed significantly when subjects viewed
3DTV. In particular, the energy decreased in « and 3 frequency bands while §
activity increased significantly. All four fatigue related parameters showed a sig-
nificant increase, with the highest increase More comprehensive reviews on using
EEG in QoE research can be found in Arndt er al. (2016); Bosse et al. (2016) pa-
pers.

1.4. Multimodal and Other Methods

There is a trend of physiological measurements being integrated into modern com-
puting devices, such as heart rate monitors in smart watches and gaze trackers in
tablet computers. The wide adoption in mass consumer markets indicates that this
trend will continue for the years to come and even move on to more advanced
technologies like smart glasses and other wearables. This may provide an opportu-
nity for continuous SoP monitoring in minimally invasive ways and in the natural
environment of the users.

With the advent of advanced media technologies and related immersive and
interactive experiences it is expected that overall visual discomfort cannot be mea-
sured with any one physiological modality alone. It is more likely that combining
measurements from multiple, complementary physiological modalities will im-
prove inference across a wider range of cognitive processes and thus lead to a
deeper insight into the experience of the user. In this section some multimodal
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approaches that aim to capture high-level visual discomfort concepts such as en-
gagement, immersion, and sense of presence are presented.

1.4.1. Steady-State Visually Evoked Potentials

Another neurophysiological response to temporally isolated stimuli is the steady-
state visually evoked potential (SSVEP) (Norcia et al. 2015). While event-related
potentials are typically observed in response to surprising or novel stimuli, SSVEP
are observed in response to sustained, periodic stimuli. The response to this kind of
stimulation is usually stable in amplitude and phase as suggested by its name. Sen-
sory drive elicited by such periodic stimuli results in increased narrowband EEG
spectral power at the tagged stimulus frequency in corresponding sensory areas
of the brain. SSVEP are typically described by their amplitude, phase and spatial
channel distribution (for the tagged frequency and its associated harmonic compo-
nents) (Norcia et al. 2015). Neural oscillations due to synchronization of neuronal
ensembles are measurable as peaks in the power spectrum of the EEG. Such rhyth-
mic activity has been linked to a large number of psychological processes.

1.4.2. Electrocardiography

Electrocardiography (ECG) is a time-varying measure reflecting the ionic current
flow produced by the cardiac fibres contracting and relaxing with each heartbeat
cycle. A single normal period of the ECG can be approximately associated with the
peaks and troughs of the canonical ECG waveform. A wide range of variables are
often extracted from ECG measurements with heart rate and heart rate variability
being among the most common. In the context of multimedia, these are thought to
relate to excitement, fatigue and discomfort (Castellar et al. 2014; Drachen et al.
2010; Kroupi et al. 2014).

ECG measurements have recently been investigated in the context of multime-
dia assessment, often in conjunction with neurophysiological measures like EEG.
Kroupi et al. (2014) investigated perceived SoP for 2D and 3D multimedia stimuli,
and specifically a “Sensation of Reality”, based on ECG, EEG, and respiration rate.
ECG and EEG were found to be predictive of this high level visual discomfort phe-
nomenon, with EEG being more accurate. Barreda—Angeles et al. (2014); Bryant,
Oliver (2009) studied visual discomfort for stereoscopic 3D on viewers’ emotions.
While self-reporting did not reveal any effects of visual discomfort, physiological
measures in terms of heart rate measured through ECG, dermal activity and facial
electromyography were found to strongly correlate with visual discomfort.
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1.5. First Chapter Conclusions and Formulation of
the Thesis Objectives

1. A trend of wearable devices with integrated physiological measurements
provides an opportunity for continuous SoP monitoring in minimally inva-
sive ways and in the natural environment of the users.

2. Studies to date mainly focus on experimental paradigms where participants
still perform self-reporting in addition to physiological measurements. Re-
search focused on the estimation of conscious responses and measurement
of the consumer state may lead to more truthful results as the media ex-
perience is less disturbed. Therefore, physiological measurement devices
need to be as non-intrusive as possible.

3. Previous studies have demonstrated that physiological measurements pro-
vide valuable insight into SoP of advanced media technologies. Some
measures, such as EEG and gaze tracking, are well established in the ex-
isting body of research, while the other measures have been comparatively
less thoroughly explored in the context of SoP.

4. Neurophysiological measures as well as eye measurements are typically
deployed as primary sources of information. In general, there is a consen-
sus that multimodal approaches are needed to fully understand this field
of advanced media technologies. It is argued that physiology should be
used to learn more about the internal cognitive processes to mitigate our
assumptions about the quality formation process in humans. The increased
body of research as well as recent efforts towards standardization will lead
closer to this goal.

5. In practice, the 3D value chain brings numerous artifacts and constraints
that impair the results. Shooting, compression and transmission artifacts,
for instance, introduces impairments that are known to generate discom-
fort. However, there are a few guidelines that, if respected, can limit the
occurrence of discomfort or fatigue. While there is a small number of
comparative studies between 3D displaying technologies, it appears that
active and passive, LCD-based and projection-based technologies perform
similarly.

Two hypotheses were formulated as a result of the performed literature survey:

1. Different sense of presence levels can be detected from measured physio-
logical signals after the audiovisual content is presented to the user.

2. By using features obtained from the electroencephalogram, measured with
consumer oriented device or a gaze tracker it is possible to detect visual
discomfort when stereoscopic content is presented to the user.
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In order to test proposed hypotheses the following objectives were formulated:

1.

2.

To investigate the audiovisual content’s influence on the measured physio-
logical signals at a different sense of presence levels.s

To investigate electroencephalogram signals when stereoscopic stimuli with
different visual discomfort levels is presented and propose features to de-
tect visual discomfort level.

. To investigate gaze signals when stereoscopic stimuli with different visual

discomfort levels is presented and propose features to detect visual dis-
comfort level.






Theoretical Research of Sense of
Presence Detection

In this chapter results of the theoretical research are presented. This research aimed
to find how different levels of SoP affect brainwave activity and heart rhythm. For
this purpose, a dataset published by Perrin ef al. (2016) was used. This dataset is
composed of physiological signals, particularly: EEG, ECG and respiratory sig-
nals, which were measured during three sessions, during which subjects were con-
suming audiovisual content with a different level of SoP. Authors of the paper,
through subjective measurements, showed that each device configuration induces
a distinct level of SoP.

In the first section materials and methods used in the research will be dis-
cussed, such as physiological signals database, how signals were collected, what
was subjective measurements were conducted. In the subsections of this chapter,
methods for processing these signals will be discussed. In the second section, the
results of the research will be given. This section is divided into two subsections
as well, the first subsection contains results of the investigation with ECG signals,
and the second subsection contains results of the investigation using EEG signals.
The third section contains a discussion of the results. Conclusions are presented in
the final section.

The research results, presented in this chapter are published in three papers
(Abromavicius 2017; Abromavicius et al. 2017; Serackis et al. 2015) and announced
at international “CINC” (Nice, 2015), “eSTREAM” (Vilnius, 2017) and national
“Science — Future of Lithuania” (Vilnius, 2017) scientific conferences.

21
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2.1. Materials and Methods of Sense of Presence
Detection

In this section, the dataset which was used in our study will be discussed. Addition-
ally, methods for the statistical feature analysis are proposed in this section. The in-
vestigated dataset was collected and made publicly available by Perrin et al. (2016).
Detailed information about methods which were applied for the signal preprocess-
ing and feature extraction of ECG and EEG signals will be described in the fol-
lowing subsections.

A contribution of this section is a systematic approach for the feature extrac-
tion from the ECG and EEG signals. Physiological signals were acquired while
conducting an experiment, which investigated correlations between SoP as experi-
enced and explicitly assessed by the subjects. General structure of the experiment
is illustrated in Fig. 2.1. Different levels of sense of presence are induced using
three devices. 20 Subjects subjectively evaluated the stimuli, while their physio-
logical signals were measured. In order to find the most beneficial approach for
the feature extraction, it is important to have sufficient information about the cho-
sen dataset. Main details of the methodology of the experiment, description of the
stimuli, equipment used for the acquisition of the physiological signals, informa-
tion about the participants and subjective assessment procedure are described in
this section. However, detailed information about the dataset can be found in the
original paper by Perrin et al. (2016).

Inducing SoP

—'[ iPhone

9 trial
sequences

20 subjects

[ ECG ]‘-

Measuring
[ EEG }— physiological

[ Respiratory ]-—

Fig. 2.1. Structure of the experiment. More detailed illustration of a trial is
given in Fig. 2.2

Obtaining

subjective
evaluations

signals
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A total of 20 subjects participated in the study; their age was varying from 18
to 25 years (21 in average with a 2.2 standard deviation). Ten were males, ten — fe-
males. All subjects passed visual acuity and color vision tests, which are described
in Birch (1997); ITU-R BT.500-13. Subjects were given oral and written instruc-
tions and signed a consent form before the experiment. Additionally, subjects had
a training session to get familiar with the assessment procedure.

Ten video sequences were used for producing the dataset. Nine sequences
were used as stimuli and one for training the subjects. Sequences were selected
using spatial and temporal perceptual information, described in ITU-T Rec. P.910.
Therefore, three sequences contain a high level of motion and a low level of de-
tail, five sequences contains a low level of detail and a little motion, and two test
sequences contain a little motion and a high level of detail.

In the experiment, different levels of SoP were induced using three different
devices. The low level of SoP was induced using the iPhone5 (iPhone 5 specifi-
cation). The iPad4 (iPad 4th specification) was used to induce the middle level
of SoP. The high level of SoP was induced using the 56-inch 4K quality monitor
(SRM-L560 specification). Stereo audio signals were used for the iPad and iPhone,
and 5.1 surround audio signals were used for the monitor. Viewing distances for
each device was set according to ITU-R BT.2022 guidelines. In order to reduce
noise in the recorded EEG signals, all devices were in a fixed position in front of
the subjects.

The experiment consisted of three sessions, for each level of SoP. Nine stimuli
were presented using the same device during each session. The training phase, the
set up of physiological signals acquisition devices and a session lasted approxi-
mately one hour. In order to avoid any statistical bias between levels of SoP and
fatigue of the subjects, sessions were organized on separate days. In total, each
subject participated in 27 trials and evaluated 27 stimuli. The order of the trials
was randomized for each subject. An example of a trial is illustrated in Fig. 2.2.
A trial consists of a baseline phase, a stimulus period and a voting phase. Dur-
ing the baseline phase, which lasts 10 seconds, subjects were asked to focus on a
white cross on the screen. Afterward, a stimulus was shown. Physiological signals
were recorded during the baseline phase and stimulus period. After the stimulus
period, subjects were asked to evaluate the stimulus on a 9-point scale. Subjective
assessment procedure was based on the ITU-T Rec. P.910 methodology.

The analysis of the subjective ratings, conducted by Perrin et al. (2016), showed
that each device induces a different level of SoP. In average, the sense of pres-
ence brought to subjects by the UHDTYV is higher when compared to the iPad and
iPhone. However, confidence intervals of the subjective ratings overlapped. Addi-
tionally, physiological signals (EEG, ECG, and respiration) were recorded for each
test condition, i.e., a combination of device and content. The recorded physiologi-
cal signals and subjective ratings were made publicly available.
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Vote
[ Baseline phase ][ Video stimulus ][ Voting phase ]
|
10s ~60 s 30s

Fig. 2.2. Example of a trial (Perrin et al. 2016)

Collected physiological signals (ECG and EEG) were analyzed in this inves-
tigation. This section contains description of the analysis and feature extraction
methods. The results of the analysis are given in the next section. The goal of this
investigation was to find features, extracted from the physiological signals, which
are statistically different for each level of SoP. Using the ECG signals heartbeat
annotations for each trial were obtained and analyzed. Thus, a heart rate of the
subjects consuming different level of SoP was compared. Methods used for the
preprocessing and feature extraction from the ECG signals are described in the
2.1.1 subsection. Using EEG signals power density spectrum of the brain activity
was obtained and analyzed. Methods employed for the preprocessing and feature
extraction from the EEG signals are described in the 2.1.2 subsection.

Obtained features were analyzed using one-way analysis of variance (ANOVA).
One-way ANOVA test is used to assess the statistical group differences of the ob-
tained features. ANOVA uses F-tests to statistically test the equality of means,
by measuring a ratio of group variances. A result of ANOVA analysis — a sum
of squares, degrees of freedom, mean squares, F-value and p-value. The F-value
which is the ratio of mean squares between groups to mean squares within groups
indicates the degree of group difference. A probability (p-value) is in inverse pro-
portion to the F-value, and it means the error probability when the group differ-
ence is not significant, i.e., indicating a risk in a percentage of concluding that a
difference exists when there is no actual difference. A threshold for significance is
denoted as alpha significance level; generally, when the p-value is below 0.03, it is
considered as the significance level in statistics. Moreover, a sum of squares, de-
grees of freedom and mean squares are interim parameters used to calculate values
of F and p, and they could not reflect the group difference intuitively (Freund, Lit-
tell 1981; Guyon, Elisseeff 2003; Mertler, Reinhart 2016). Based on the guidelines
by Cohen (2011), the alpha significance level in our experiment was set to 0.05.
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2.1.1. Electrocardiogram Signals Preprocessing and Peak
Detection

A goal of this research was to investigate an effect on a heart rate with three differ-
ent levels of SoP. Heart rate was extracted from an ECG signal using Pan-Tompkins
algorithm, then the statistical parameters for three different levels of SoP were cal-
culated. Results were investigated using statistical analysis tools. In this subsection
methods used for the feature extraction and preprocessing of the ECG signal are
presented.

ECG signals investigated in this experiment were recorded by Perrin et al.
(2016) using two standard ECG electrodes placed on the lower right rib cage and
the upper left clavicle. A sample of a collected ECG signal is shown in Fig. 2.3.
A heart rate from the ECG signal can be calculated using RR intervals, which can
be easily detected in the signals without significant abnormalities. RR interval is
a duration between two consecutive heartbeats measured at their R wave peaks.
Thus a heart rate is an inverse of RR interval, which, in our research, was averaged
for the episodes of 60 seconds. An ECG signal frame with nine R wave peaks is
shown in the bottom graph of Fig. 2.3. A test sequence includes a baseline period
and stimulus. Stimulus begins at the 0 s mark.
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Fig. 2.3. Electrocardiogram signal of a test sequence: a) raw electrocardiogram
signal; b) its frame of 6 seconds
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ECG signals were filtered using Savitzky-Golay filter (Savitzky, Golay 1964).
Savitzky-Golay filtering can be thought of as a generalized moving average. Filter
coefficients are derived by performing an unweighted linear least squares fit using
a polynomial of a given degree. For this reason, a Savitzky-Golay filter is also
called a digital smoothing polynomial filter or a least squares smoothing filter. A
higher degree polynomial makes it possible to achieve a high level of smoothing
without attenuation of data features. The Savitzky-Golay filtering method is often
used with frequency data or with peak data (Bronzino 1999; Oppenheim, Schafer
2014; Semmlow, Griffel 2014).

For frequency data, the method is effective at preserving the high-frequency
components of the signal. For peak data, the method is effective at preserving
higher moments of the peak such as the line width. By comparison, the moving
average filter tends to filter out a significant portion of the signal’s high-frequency
content, and it can only preserve the lower moments of a peak such as a centroid.
However, Savitzky-Golay filtering can be less successful than a moving average
filter at rejecting noise (Lascu, Lascu 2008).

According to the guidelines provided by Krishnan, Seelamantula (2013) and
experimental results of our data Savitzky-Golay filter was designed with the poly-
nomial order of 8 and frame size of 31. A power supply noise was filtered using
second-order notch filter with Q-factor set to 30. A sampling rate of the ECG sig-
nal was 250 Hz. Signals were divided to intervals of 70 seconds: 10 s of baseline
period and 60 s of stimulus period. A filtered ECG signal is shown in Fig. 2.4. A
test sequence includes a b aseline period and stimulus. Stimulus begins at the 0 s
mark.

The slope of the R wave is a common signal feature used to locate the QRS
complex in many QRS detectors. The Pan-Tompkins algorithm (Pan, Tompkins
1985) was used on the denoised ECG signal for the detection of the QRS complex.
It analyzes the slope, amplitude, and width. Fig. 2.5 shows an ECG signal with
heartbeat annotations, which are marked using a circle. A test sequence includes a
baseline period and stimulus. Stimulus begins at the 0 s mark.

The algorithm consists of four steps. In the first step, the low pass and high
pass filters form a bandpass filter, which reduces noise in the ECG signal. In the
second step, to distinguish QRS complexes from low-frequency ECG components
such as the P and T waves, the signal is passed through a differentiator to highlight
the high slopes. The third step is the squaring operation, which places stress on
the higher values that are mainly present because of QRS complexes. Then, the
squared signal passes through a Moving-Window Integrator of the desired length,
which is typically around 150 ms. Using adaptive detection thresholds, refrac-
tory period and a search back for missed beats a smooth peak ECG cycle is ob-
tained (Luz et al. 2016).



2. THEORETICAL RESEARCH OF SENSE OF PRESENCE DETECTION 27

| I I
me.’ \ | pa r u

—
[\
[
oS O
|

Voltage, mV
N
S
S O

ame
f

T A YTy l Al
-400 L | | | | | 1 1 |
-10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60
time, s
a)
T
1200 b
e | | T N N T
2 500} 1 N N N f
&? H‘ I “ \‘ H ‘ \‘ ‘\ \H\
R O O U R P N T N
; e “w”N‘““‘f‘m‘ Ly ‘L/\””J e [ N A L
-400’\ L L L L L L L I 1 1 1 [
2 -15 -1 -05 0 05 1 1.5 2 25 3 35 4
time, s
b)

Fig. 2.4. Electrocardiogram signal of a test sequence: a) filtered
electrocardiogram signal; b) its frame of 6 seconds

The refractory period and energy threshold parameters were adjusted manually
according to the obtained data. The refractory period for the algorithm was set to
250 ms, it was not modified from the default value. However, the energy threshold
for the detector was reduced to 0.35 (arbitrary units). 10% of randomly selected
ECG signals were inspected visually, the algorithm successfully detected all of
the heartbeats in the visually inspected data. The algorithm detected 83 heartbeats
after the baseline period. Thus, a heart rate of a subject during the trial was 83 bpm.

2.1.2. Electroencephalogram Signal Preprocessing and
Analysis

The goal of this research was to investigate an effect on a brainwave activity with
three different levels of SoP. Brainwave activity was extracted from an EEG signal,
the statistical parameters for three different levels of SoP were calculated. Results
were investigated using statistical analysis tools. In this section methods used for
the feature extraction and preprocessing of the EEG signal are presented.

An EEG signal has a frequency content ranging from 0.01 to around 100 Hz
and varies from a few microvolts to approximately 100 1V, but the amplitude may
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be well above this, especially when corrupted by non-cerebral activity. The slow
components around 0.01 Hz correspond to slow cortical potentials that in clinical
routine are usually filtered out (Urigiien, Garcia-Zapirain 2015). When investigat-
ing the effects of SoP, Gamma waves (30-100 Hz) usually are not investigated for
various reasons, such as the high possibility of mismeasurement (Whitham et al.
2008, 2007; Yuval-Greenberg et al. 2008). Additionally, the energy of background
EEG is more concentrated in the lower range of the spectrum (Daly et al. 2012).
In fact, its frequency content is known to present a decay inversely proportional to
the frequency (1/f%, with « approximately 1) (Goncharova et al. 2003; Urigiien,
Garcia-Zapirain 2015; Vos et al. 2010).

1200 b
>
£ 800
)
& 400
§ 0 | "r‘wlv‘lrlwlw‘r‘rArLHw'vr"u'w”nlﬁwkrh{' AR
-400 Il I \1 Il Il L L L L L L L L 7
-10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60
time, s
a)
T T T
1200 |- 8
®
1 11

T T
| |

‘ | ‘ A A ~ | A
Lo L Lo L e N L L/

0

(=3

(==}
T

‘ | ‘
‘ ‘
e DN L

—400’\ I I I I I I I I L L L L
2 -5 -1 05 0 05 1 15 2 25 3 35 4

i
H
|
I

Voltage, mV
N
()
o O

Fig. 2.5. Electrocardiogram signal of a test sequence: a) filtered
electrocardiogram signal with heartbeat annotations; b) its frame of 6 seconds

Artifacts are undesired signals that may introduce changes in the measure-
ments and affect the signal of interest. While the ideal way of working with an EEG
signal is to avoid the occurrence of artifacts when recording (Minguillon et al. 2017)
the EEG signal is unfortunately often contaminated with various physiological fac-
tors other than cerebral activity, which are typically not of interest. For instance,
cardiac activity, ocular movements, eye blinks and muscular activity are among
the most common kinds of artifacts (Daly et al. 2013, 2012; Muthukumaraswamy
2013; Sood et al. 2013; Urigiien, Garcia-Zapirain 2015).
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An EGIs Geodesic EEG System 300 was used to record, amplify, and digitize
the EEG signals. The EEG data were obtained from 256 electrodes placed at the
standard positions on the scalp. The duration of each episode was 1 min. EEG
signals were sampled at 250 Hz. This dataset was acquired by Perrin et al. (2016).
Electrodes with impedances higher than 50 2 were removed from further pro-
cessing. Afterward, the episodes were filtered using 4—order digital Butterworth
bandpass filter with cutoff frequencies between 0.01 Hz and 40 Hz. The EEG Sig-
nals were referenced the Cz electrode and re-referenced to the common average.
Each episode had a baseline period of 10 s recorded. This period was used to per-
form a baseline correction and later it was removed from the further processing
and analysis. To eliminate the presence of artifacts wavelet ICA (wICA) method
(Castellanos, Makarov 2006) was used, two default parameters were modified: a
threshold multiplier was reduced to 0.5 and fastICA algorithm (Hyvarinen 1999;
Hyvirinen, Oja 2000) was used for the extraction of ICA components.

Spectral analysis of the EEG signal was carried out using multi-taper Fourier
transform (Thomson 1982). The method uses orthogonal windowing functions,
known as Slepian tapers, and then computes a weighted average of the obtained
spectra (Gramfort ef al. 2014). Using a set of tapers rather than a spectral win-
dow, or a unique data taper, allows us to reduce the variance of a spectral estimate
(Haykin et al. 2005). Spectral analysis was performed on the entire episode of
video stimuli (60 s). For the efficient use of the fast-Fourier transform algorithm
signals were zero-padded. Therefore, investigated EEG signals were zero padded
to 2'4 or 16384 samples. Spectral analysis has been applied using the Fieldtrip
toolbox (Oostenveld et al. 2011).

Power spectral density was calculated for five frequency bands: theta (4—
7 Hz), alpha (8-12 Hz), beta low (13-16 Hz), beta middle (17-20 Hz) and beta
high (21-29 Hz). Median power of each frequency band range was used to rep-
resent frequency bands. EEG electrodes were manually clustered into ten regions
of the brain for the analysis: left and right frontal, left and right central, left and
right parietal, left and right occipital, left and right temporal ones (Andreassi 2010;
Idris et al. 2014). Thus, for each subject, a total of 50 features were extracted to
represent tendencies in terms of power for each brain region and frequency band.

2.2. Results of Sense of Presence Detection

In this section, the results of the theoretical investigation of the Sense of Presence
Detection are provided. This section is divided into two subsections. The first sub-
section contains the results of the heart rate investigation. The second subsection
contains the results of the brain activity investigation. Results are discussed in the
following section.



30 2. THEORETICAL RESEARCH OF SENSE OF PRESENCE DETECTION

2.2.1. Results of the Heart Rate Investigation

In this subsection results of the investigation of the heart rhythm with different
levels of SoP are described. Heart rhythm was measured in bpm. Average heart
rate for each session, ANOVA results, as well as box plot, are presented in the
remaining of this subsection.

Average heart rate was calculated using RR intervals of the detected heart-
beats; afterwards, a calculated heart rate was averaged over nine trials, then across
20 subjects. Therefore, in total 180 of observations were used to calculate average
heart rate for each level of SoP. As a result, one-way ANOVA was conducted using
a total of 540 observations with three groups.

Table 2.1 shows the average heart rate for each level of SoP. Subjects consum-
ing the low level of SoP had an average heart rate of 70.80 bpm and the standard
deviation was 5.59 bpm. The average heart rate of the subjects consuming the mid-
dle level of SoP was 69.04 bpm and having the standard deviation of 5.58 bpm.
The average heart rate during the high level SoP session was 67.85 bpm and the
standard deviation was 6.23 bpm. Presented values were rounded to two digits
after the decimal point.

Table 2.1. Average heart rate during consumption of three different levels of sense of
presence, with respective standard deviation. Results were rounded to two digits after
the decimal point. Results are presented in beats per minute

Level of SoP Low Medium  High
Mean heart rate, bpm 70.80 69.04 67.85
Standard deviation, bpm 5.59 5.58 6.23

One-way ANOVA was used to investigate the effect of the heart rate on differ-
ent levels of SoP. ANOVA results are shown in Table 2.2. ANOVA was conducted
between: low and middle; middle and high; low and high; low, middle and high
levels of SoP. A significant difference (significance level was 0.05) of a heart rate
were found between low, middle and high levels of SoP (p = 0.032). Also, a
significant difference in heart rate was found between low and high levels of SoP
(p = 0.008). However, heart rate of the subjects was not significantly different
between low and medium (p = 0.15) and between medium and high (p = 0.249)
levels of SoP.

Box plot of the ANOVA results is shown in the Figure 2.6. Black circle mark-
ers denote the average values of each investigated SoP group. Horizontal lines
denote medians of the SoP groups.
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Table 2.2. ANOVA results of each group. Significant values are highlighted
(p < 0.05). Results were rounded to three digits after the decimal point

Level of SoP F statistic p-value
Low and medium 2.09 0.150
Medium and high 1.34 0.249
Low and high 7.03 0.008
Low, medium and high 3.47 0.032
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Fig. 2.6. Box plot of a heart rate collected during three different levels of sense
of presence. Black circle marks the average value of each session. Each sense of
presence level consisted of 180 observations during, involving 20 subjects and
nine sessions

A difference between median values of low-level (70.97 bpm) and middle-
level (71.32 bpm) SoP groups is 0.35 bpm. However, a difference between their
average values is 1.76 bpm. Moreover, median value of middle-level SoP is higher
than low-level SoP group. Median value of high-level SoP is 68.57 bpm and aver-
age value 67.85 bpm. The low-level group of SoP has three outliers, the middle-
level group has no outliers, and the high-level SoP group has eight outliers, which
all are above the upper adjacent.

2.2.2. Results of the Brain Activity Investigation

In this subsection results of the investigation of the brain activity with different
levels of SoP are described. Brain activity was measured for ten regions using
spectral analysis, distributing brain activity into five frequency bands, specifically:
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theta, alpha, beta Low, beta middle, and beta high. Power spectral density of EEG
signal during the consumption of different levels of SoP and ANOVA results are

presented in this subsec

tion.

Power spectral density was estimated for ten different regions: the left and
right frontal, parietal, central, temporal and occipital regions. Each investigated
region is illustrated in separate subfigures, shown in Fig. 2.7. The low level of SoP
is represented using red color, the medium level of SoP is represented using green

color, and the high level of SoP is represented using blue color.
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Fig. 2.7. Illustration of the power spectral density estimated using
electroencephalogram signal during the consumption of three different levels of
sense of presence. Brain activity of: a) frontal region; b) parietal region; c)
central region; d) temporal region; e) occipital region

ANOVA analysis, comparing the effect of different level of SoP on the brain
activity was carried out to the 50 brain band and region combinations. Each com-
bination consisted of 540 observations (three sessions, twenty subjects, and nine
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trails). Results are shown in Table 2.3. Presented values were rounded to three dig-
its after the decimal point, significant values (p < 0.05) were highlighted, values
less than 0.001 are presented as “<0.001”.

Table 2.3. ANOVA results of electroencephalogram signals with significance level
a = 0.05, bold font denotes significant values. Results were rounded to three digits
after the decimal point

Frequency band Theta Alpha Beta low Betamiddle Beta high
Left | <0.001 <0.001 0.091 <0.001 0.283
Frontal
Right | 0.004 0.014 0.005 0.026 0.104
. Left | <0.001 0.002 <0.001 0.191 0.041
Parietal ]
Right | <0.001 0.009 <0.001 0.680 <0.001
Left | 0.004 <0.001 0.770 0.230 0.334
Central .
Right | 0.045 <0.001 0.367 0.981 0.352
Left | <0.001 0.182 <0.001 0.726 <0.001
Temporal .
Right | <0.001 0.009 <0.001 0.466 <0.001
.. Left | 0.027 <0.001 0.739 0.751 0.789
Occipital .
Right | 0.011 <0.001 0.968 0.717 0.448

Based on the results of the statistical analysis, there is no significant difference
(p > 0.05) in the beta high activity of the frontal region. However, this study have
found a significant difference (p < 0.05) in theta, alpha, beta low and middle
bands, except of the frontal left region in beta low frequencies where the p-value
was 0.09, though the left frontal region showed lower p-values (p < 0.001) than
those of the right region in theta, alpha, and mid beta frequencies.

Regarding the parietal region a significant difference (p < 0.05) was found in
theta, alpha, beta low and beta high frequency bands, yet no significant difference
(p > 0.1) was found in the beta middle oscillations of the parietal region.

Moreover, this study found that the different level of SoP significantly changes
activity in theta and alpha bands of the central region (p < 0.05), but no significant
difference (p > 0.2) was found in the beta oscillations.

The temporal region in theta, beta low and beta high-frequency band activity
showed a significant difference (p < 0.001) when changing the level of SoP. Also,
a significant difference (p = 0.009) was found in alpha band brain activity of the
right temporal region. However, no significant difference was found in beta middle
oscillations (p > 0.4) of the temporal region and alpha oscillations (p = 0.18) of
the left temporal region.
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Regarding the occipital region, there was a significant difference in alpha,
and theta frequency bands found (p < 0.01) with the change SoP level and no
significant difference (p > 0.4) in beta bands (low, medium and high).

2.2.3. Discussion of the Results

In this chapter, the relationship between different levels of SoP and the heart ac-
tivity, measured using ECG signal, was investigated. Average heart rate calcu-
lated using ECG signals was analyzed, and significant changes were found when
users were consuming content with different levels of SoP. ANOVA results re-
vealed significant difference (p = 0.008) between low and high level of SoP. How-
ever, ANOVA did not show a significant difference in heart rate between low and
medium or high and medium levels of SoP. It suggests that evaluating the level
of SoP objectively is difficult, only profoundly separated levels of SoP shows a
significant difference in the heart rate.

Moreover, this study showed, that average heart rate decreases when subjects
are consuming content with higher levels of SoP. However, heart rate during the
consumption of high level SoP had the highest standard deviation and eight out-
liers, all above upper adjacent. In comparison, the standard deviation of the heart
rate was lower when medium and low SoP level content was consumed. Further-
more, only the low level of SoP had three outliers, while the medium level of SoP
had no outliers. Thus, this effect may be interpreted in terms of user experience:
as the level of SoP is getting higher, the consumed content tends to be more re-
alistic and lifelike, therefore affecting subjects more prominently, raising a heart
rate when consuming thrilling or stimulating content, and reducing heart rate when
consuming relaxing, peaceful content.

Furthermore, in this study, the relationship between a different level of SoP
and brain activity, measured using EEG signal, was investigated. A spectrum of
EEG signals was analyzed, and significant changes were found in 6 power for all
investigated brain regions, specifically: the frontal, parietal, central, temporal and
occipital. In literature, it is proposed that # activity is related to the arousal and
sensorimotor processing and its mechanisms to keep track the location within the
environment. Also, it is linked to mechanisms of memory and learning. Thus,
higher levels of SoP should induce different 6 activity. However, this study has not
found distinct regions of the theta activity with the respect of the SoP level.

In addition, a significant difference was found in o band activity of the frontal,
parietal, central, occipital and right temporal regions. In literature o waves were
shown to indicate brain activation during emotional processes, it implies that a
higher level of SoP can induce greater emotional involvement.

Finally, a significant difference was found in f; power of the frontal right,
parietal and temporal regions. S, activity showed a significant difference in the
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frontal region. 3, oscillations are linked with enchanted mental activity. /3, band
activity is associated with high levels of arousal, cognitive fatigue. Thus, results
show that changes in (3, power of the temporal and parietal lobe might indicate
cognitive fatigue due to the different level of SoP.

2.3. Conclusions of Chapter 2

1. According to the investigation, the electrocardiogram and electroencephalo
gram signal based features can be used for the SoP level detection of the
presented audiovisual content.

2. Results of the heart rate investigation showed that the estimated heart rate
from the electrocardiogram signal can be used as a feature to distinguish
between low and high SoP level when there are three SoP levels of an
audiovisual content presented to the user.

3. According to the brain activity investigation, power density spectrum of
the electroencephalogram signal in the § frequency range should be di-
vided into subranges of /3, S and (3 in order to use [ frequency range

based features to distinguish between an audiovisual content with three
SoP levels.

4. Based on the results of the statistical analysis, an electroencephalogram
based features can be used to distinguish between three levels of SoP when
a user is presented with an audiovisual content. Such features are:

4.1. the relative o power of the frontal, parietal, central, occipital and right
temporal regions;

4.2. the relative 3; power of the frontal right, parietal or temporal regions;

4.3. the relative 5, power of the frontal region;

4.4. the relative 3y, power of the temporal or parietal regions.






Experimental Research of Visual
Comfort Detection

In this chapter the results of the second and third tasks are presented. The experi-
mental research of visual discomfort detection using features obtain by measuring
physiological signals are presented. This research aimed at finding how stereo-
scopic images with a different level of visual comfort affects brain activity and
pupillometric features. Brain activity was measured as an EEG signal using a
consumer-grade device, from the frontal lobe. Pupillometric features were esti-
mated from gaze data, obtained using an eye tracker. Stereoscopic images used in
this research were collected by Jung ef al. (2013). Authors of the paper, through
subjective measurements, showed that images have significantly different levels of
visual comfort. In this experiment, the IVY LAB database (Jung et al. 2013) was
extended with annotated single-sensor EEG data and gaze data collected from 28
control subjects. Additionally, subjects indicated a time of depth perception for
each image and reevaluated the visual discomfort of the stereoscopic images.

The research results, presented in this chapter are published in three papers
(Abromavicius et al. 2018; Abromavicius, Serackis 2018; Abromavicius, Serackis
2017;) and presented at international “DAMSS” (Druskininkai, 2017) and national
“Science — Future of Lithuania” (Vilnius, 2018) scientific conferences.
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3.1. Objectives of the Experiment

This investigation aimed at identifying a set of visual comfort-related features,
which could be estimated using an eye-tracking device and a consumer-grade EEG
sensing device. Research results on subjective evaluation of stereoscopic images,
taken from IVY LAB 3D image database (Jung et al. 2014, 2013), were analyzed
in several works (Shao et al. 2017; Xu et al. 2018; Zhang et al. 2016). In recent
years, subjective evaluation was used as a reference for the development of objec-
tive assessment methods, based on the human visual system, binocular disparity
evaluation, blur, spatial frequency (Jiang et al. 2016; Yang et al. 2019; Zhou et al.
2018). Jiang et al. (2017a,b), in their work, introduced disparity features, such as
magnitude, contrast, dispersion, skewness, and also combined with the oscillatory
activity of the middle temporal area, for the assessment of visual discomfort. Per-
formance of their method was evaluated on NBU S3D-VCA (Jiang et al. 2015) and
IVY LAB 3D (Jung et al. 2013) stereoscopic image databases.

Four objectives were formulated to achieve the aim of the investigation. The
first objective was to estimate the number of focus points in an image for a user
before the DPM occurs and how the number of focus points changes with the visual
comfort level. The second objective was to determine a relative pupil size during
analysis of the stereoscopic image of the investigated dataset, and how it varies
with the visual comfort level, assigned to the image. The third objective was to
examine the relationship between eye disparity, measured at the focus point, and
image visual comfort level designated by the user. The fourth objective was to
measure and analyze the EEG activity from the frontal lobe and investigate how
this activity changes with the level of visual comfort. We predicted that the number
of focus points, the pupil size, the eye disparity and the activity of EEG would be
affected by different visual comfort levels since natural mechanisms of binocular
vision are violated with the usage of artificial stereoscopic cues.

In the second section stimuli, subjects, signal acquisition, subjective assess-
ment, signal processing methods applied in this research will be presented. Addi-
tionally, in the subsections of this section a procedure of the experiment, estimated
features, and methods for analyzing these features will be discussed. In the third
section, the results of the research will be presented. The presented results are
divided into two subsections — the first subsection contains the results of the in-
vestigation with gaze signals, and the second subsection contains the results of the
investigation with the EEG signals. The fourth section contains a discussion of the
results. Finally, conclusions are presented in the last section.
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3.2. Visual Comfort Detection Methods

In this investigation, a group of 28 volunteers was invited to perform a set of indi-
vidual tests on the IVY LAB stereoscopic image dataset (Jung et al. 2013). This
dataset of 120 stereoscopic images was selected in order to compare subjective
evaluation results with other studies. During the experiment, each participant was
asked to indicate the moment of the visually comfortable depth perception (DPM)
and afterward rate the image comfort level from 1 to 5 (5 is for the highest visual
comfort). Information about the time when the participant reaches a stable depth
perception (identifies a stereoscopic depth of the stimulus) is relevant in situations
when content is changed suddenly, or a different level of visual comfort is induced.
In their study, Hoffman er al. (2008) showed that in addition to increased viewers
fatigue and discomfort, distortions in 3D displays also increases the time required
to identify a stereoscopic stimulus.

A contribution of this section is a systematic approach for the feature extrac-
tion from the EEG and gaze signals. An experiment was designed to measure
physiological signals while subjects were consuming stereoscopic stimuli. Addi-
tionally, subjective evaluations of DPM and visual comfort were obtained. General
outline of the experiment is illustrated in Fig. 3.1. Details about the methodology
of the experiment, description of the stimuli, equipment used to collect the physio-
logical signals, information about the participants and subjective assessment pro-
cedures are described in the following subsections. However, detailed information
about the stereoscopic images can be found in the original paper by Jung et al.
(2013).

3.2.1. Stereoscopic Visual Stimuli

The IVY LAB stereoscopic 3D image database (Jung et al. 2013) of 120 stereo-
scopic images was used for investigation. Level of the visual comfort of each image
was rated by the subjects on a scale from 1 to 5 (extremely uncomfortable to very
comfortable). This dataset contains stereoscopic images with urban, nature, indoor
objects including humans and non-living entities, as shown in Fig. 3.2. Image res-
olution was 1920 x 1080 pixels with the magnitude of crossed disparity ranging
from 0.11 to 5.07 degrees. Moreover, this dataset was used in other research works
regarding visual comfort, e.g., Sohn ef al. (2013) designed an object-dependent
model to predict visual discomfort, Xu et al. (2018) introduced a visual discom-
fort prediction model based on the mechanisms of neural activity, Oh et al. (2017)
introduced a process of blurring and parallax shift to reduce visual discomfort.
Stereoscopic visual stimuli were shown on a 1280x1024 resolution screen
with a 60 Hz refresh rate. The stereoscopic 3D effect was produced by using
anaglyph red and blue image encoding. Thus, to achieve the stereoscopic 3D effect,
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the participants were wearing red-blue filter glasses. Encoded images are shown in
Fig. 3.3. Images in Fig. 3.3a have lower stereoscopic disparity and most subjects
evaluated such images as visually comfortable; images in Fig. 3.3c have larger
disparity, therefore most subjects evaluated such images as visually uncomfortable.

4 N
.120 stereoscopic Expfarnnental DRub et
images session
N /
4 ™
[ EEG Measuring
physiological
[ Gaze signals
~—__
[ DPM Obtaining

subjective
evaluations

[ Visual comfort

Fig. 3.1. Structure of the experiment. More detailed illustration of the
experimental session is given in Fig. 3.4

Anaglyph technology is traditionally considered more prone to crosstalk, as
shown in the study of Terzic, Hansard (2017). However, a study from 2013 claims
that crosstalk is lower on passive displays than on active displays (Yun et al. 2013).
Another study found no significant difference between active and passive stereo
displays (Wang et al. 2011). Therefore, usage of the anaglyph system enables to
accumulate more factors causing visual discomfort and visual fatigue. More fac-
tors increase the possibility to detect changes in the analyzed features.

3.2.2. Subjective Assessment

A group of 28 subjects (25 males and three females) participated in this experiment
as volunteers. Subjects received no rewards or compensations for their participa-
tion. Their age varied between 19 and 37 years old, with an average of 22 (with a
standard deviation of 4). All volunteers were informed about the procedure, goals,
and the subjective assessment phase of the experiment. Furthermore, all subjects
have signed consent forms and orally expressed that they were ready to begin the
experimental session.
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Fig. 3.2. Right eye stimuli of the IVY LAB stereoscopic 3D image database

The visually comfortable stereoscopic view is easy to find and quickly focuses
on the point in the image at which depth perception is comfortable, as images in
Fig. 3.3a. There is no object in such images, for which focusing is hard to complete.
However, in some stereoscopic images, focusing on the object is challenging and
takes more time, as shown in Fig. 3.3c. During the experiment, participants were
asked not only to rate images according to the visual comfort but also to fix the
moment at which focusing on the object was successful. The time when each
subject registered this moment of focus was marked as a depth perception moment
(DPM).

During each trial the DPM was collected in the first phase, to measure when
the subjects achieved depth perception. The visual comfort score was collected in
the 2nd phase — after each stimulus subjects were asked to assess the level of visual
comfort. The subjective assessment was carried using the Single Stimuli adjectival
categorical judgment method of ITU-R BT.500-13. Grade level of visual comfort
was in five-grade scale from 1 (extremely uncomfortable) to 5 (very comfortable).

After the experiment, the reliability of the subjects was qualitatively evaluated
by using the procedures described in ITU-R BT.500-13. Unreliable voting pa-
rameters were not found for any of the participants. However, four subjects’ data
were discarded due to faulty reference connection (for one subject), measurement
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errors which led to substantially decreased sampling rates (for two subjects) and
failure to pass the color blindness test (for one subject). Consequently, records of
24 subjects’ were used for this study.

3.2.3. Setup of the Experiment

Subjects were seated in front of the 17-inch screen in which stereoscopic images
were shown. Sitting distance from the screen was approximately 70-80 cm. To
simulate real-life conditions, head and body motions were not restricted; when the
instructions about the experiment were given, subjects also were reminded to sit
freely and comfortably. Additionally, subjects were encouraged to wear corrective
lenses. Furthermore, each volunteer, if desired, could select a musical background.

a) b)

c) d)

Fig. 3.3. An example of the encoded stereo pairs of comfortable and
uncomfortable stimuli: a) visually comfortable stimuli of indoors; b) visually
comfortable stimuli of a table; c) visually uncomfortable stimuli of indoors; d)
visually uncomfortable stimuli of outdoors

Structure of the conducted experiment is shown in Fig. 3.4. When subjects re-
ceived information about the experiment, signed consent forms and vocally agreed
to participate in the experiment the EEG sensor and glasses were mounted. All
subjects were screened for normal color vision, and normal visual acuity, using
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Ishihara Color Vision and Fine Stereopsis tests (ITU-R BT.2021-1), respectively.
To stabilize the opinion of the subjects, a training session with five random pre-
sentations was introduced. The data received from this voting were not taken into
account of the results. Afterward, the training session subjects were asked to com-
plete the calibration procedures of the eye tracker, in order to receive accurate
results for the experiment. Finally, before the test session, the individual baseline
EEG activity of the subjects was measured.

Instructions

about the
experiment

Agreement to
participate

Mounting
EEG sensor

and safety and glasses

) )
Calibrating Training Subject
eye tracker session screening
— - J
- — —
Baseline Rest breaks
Test session after 40 and
phase 80 ima
ges
— / —  /

Fig. 3.4. Setup of the experiment

The test session of the experiment consisted of 120 trials. Order of the dis-
played images to the subjects during the experiment was randomized. A single
trial of the test session is shown in Fig. 3.5.

[ Collecting gaze and EEG data ]

][ Phase 2. Voting ]
>

5 seconds

[ Phase 1. Image stimulus

Wait for DPI, plus 5 seconds

Fig. 3.5. A single trial of the test session

Physiological signals, specifically the eye tracker data and single-sensor EEG,
were measured during the test session, except for the resting periods. The ex-
periment is divided into two phases. During the first phase, participants were
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instructed to press the spacebar key as soon as they had perceived the depth of
the shown stereoscopic 3D content. A stereoscopic stimulus was displayed for the
subject 5 seconds more after the DPM input. Directly after the first phase, an eval-
uation screen was shown to the subjects for 5 seconds. Subjects were informed
that they can stop for a rest or quit the experiment at any time. Also, two resting
periods of at least 30 seconds, after 40 and 80 images, was mandatory. The total
duration of the experiment was approx. 40 minutes. The experimental procedure,
anaglyph stereo rendering, timing, and keyboard input controls were implemented
using Psychtoolbox software tools (Pelli 1997).

3.2.4. Eye Tracker Signal Preprocessing and Feature Extraction

A goal of this research was to investigate the effect of the EEG and gaze signal
based features with different levels of visual comfort. Five feature sets were ex-
tracted from the gaze data, and their changes analyzed using statistical analysis
tools. In this subsection feature extraction from eye tracker data and their process-
ing will be presented.

Gaze signals were collected using Tobii T120 eye tracker. This eye tracker
uses infrared illumination to create reflection patterns on the cornea and pupil of
the eye, while image sensors capture images of the eyes and reflection patterns.
Tracker supports binocular tracking and allows head movements within a certain
area.

Knowing the size of the pupil and changes over time is often used when study-
ing accommodation time to stimuli. The eye tracker used in this research allows
measurements of the position of the eyes as well as the pupil size. The optical
sensor registers an image of the eyes which then is used to calculate the eye model.
As the eye model used by the eye tracker provides data about the distance between
the eye and the sensor, the firmware can calculate the pupil size by measuring the
diameter of the pupil on the image and multiply it with a scaling factor.

Several definitions exist regarding what should be defined as the size of the
pupil. In the eye model used by Tobii Eye Tracker, the pupil size is defined as the
actual, external physical size of the pupil. However, in most scientific research the
actual size of the pupil is less important than its variations in size over time (Bris-
son et al. 2013; John et al. 2018; Ukai, Howarth 2008). Inoue, Ohzu (1997) found
that changes in pupillary responses to a stereoscopic 3D display was elicited by
convergence and moved to the stereoscopic distance on the 3D image.

In order to estimate a gaze point and gaze direction with high precision, the
eye tracker firmware adapts the algorithms to the person sitting in front of the
eye tracker. This adaptation is made during the calibration process when the user
is looking at points located at known coordinates on display. Thus, each subject
completed a calibration procedure with five calibration points. The calibration
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points spanned the display area where the stimuli are to be shown in order to ensure
proper interaction.

The eye tracker measured eye position, gaze point and pupil diameter of each
eye at a rate of 60 Hz. Using these measurements following features were calcu-
lated for the investigation:

o gaze point — calculated as a center point of gaze coordinates of the indi-
vidual measures taken from the left and right eye;

« the pupil size — the estimate of pupil diameter, calculated as a mean of the
left and right eye, measured in millimeters;

« focus point — estimated from the spatial distribution of the gaze points.
Each focus point was aggregated of gaze points which did not change their
coordinates more than 5% of the screen dimensions over (.2 seconds or
more;

« binocular disparity — the horizontal distance between the left and right eye
coordinates, calculated for each gaze point, measured as pixels; pixel size
for our screen settings were 0.2634 mm;

o crossed disparity — the ratio of crossed gaze points to a total number of
gaze points. Gaze point was marked as a crossed when the difference
between horizontal gaze coordinates was negative. This ratio was calcu-
lated for each trial. It is more difficult to focus upon objects which require
crossed disparity, objects with uncrossed disparity are less critical to visual
attention Khaustova et al. (2014).

3.2.5. Electroencephalogram Signal Preprocessing and
Analysis

The presented investigation aimed at indicating the dynamics in a single-sensor
EEG signal activity before the user focuses on the point in the image at which
the depth perception occurs and the EEG activity after that moment. Changes
in the power spectrum of the EEG signals were analyzed at different frequency
bands. The duration from the moment of a new image was presented to the user,
the moment of focus, and successful depth perception varied from user to user and
also depended on the visual comfort level for the image.

EEG signals were captured using consumer-oriented Neurosky Mindwave head-
set with a single electrode placed at the frontal lobe. This device is wireless, uses
a dry sensor technology, therefore it is convenient to wear, to apply and to remove
it. Neurosky Mindwave headset has been used in scientific research before, in ar-
eas, such as recognizing human emotions (Ursutiu et al. 2018; Yoon et al. 2013),
developing an attention aware system, which is capable of recognizing attention
levels (Chen et al. 2017), detecting cognitive loading (Lin, Kao 2018). Further-



46 3. EXPERIMENTAL RESEARCH OF VISUAL COMFORT DETECTION

more, Maskeliunas et al. (2016) analyzed the abilities to use consumer-grade EEG
units for control tasks and named some problems that should be taken into ac-
count before using them. In this investigation, it was analyzed EEG activity as a
complementary feature for image comfort level classification. Therefore, the re-
quirements for the accuracy of the headset was acceptable. Illustration of a raw
ECG signal of a single trial is shown in Fig. 3.6. A trial consists of stimulus and
voting phases, voting phase starts 5 s after the depth perception moment. Vertical
line marks the depth perception moment, time is measured from the beginning of
the experiment. Stimulus begins at the beginning of the plot (approx. at 346.2 s)
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Fig. 3.6. Illustration of a raw electroencephalogram signal of a single trial

In addition to the features, estimated from the data provided by the eye-tracker,
the dynamics in the single sensor EEG signal activity before the moment of DPM
and after was evaluated. EEG signal activity as changes in the signal spectrum
energy at different frequency bands was analyzed. The duration from the moment
a new image was presented to the user to the moment the focusing, and successful
depth perception varied from user to user and also depended on the image visual
comfort level.
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EEG is described regarding its frequency band. The varying amplitude and
frequency of the wave represent various brain states (Carnegie, Rhee 2015), which
depends on external stimulation and internal mental states (Terzic, Hansard 2017).
The most common classification uses EEG waveform frequency (e.g., alpha, beta,
theta, and delta). The signal captured from the headset had a sampling rate of
300 Hz and was additionally filtered using 4" order digital Butterworth band-pass
filter with cutoff frequencies between 0.01 Hz and 40 Hz. A filtered EEG signal
is shown in Fig. 3.7. To remove ocular artifacts from the EEG signal, (WICA)
based method (Castellanos, Makarov 2006). Based on visual inspection of the
filtered signals, two minor modifications were made in the implementation of this
method: reducing the threshold multiplier to 0.3 and selecting a fastICA algorithm
for extraction of ICA components. Result of the ocular aftifact removal is shown
in the Fig. 3.8.
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Fig. 3.7. Illustration of a band-pass filtered electroencephalogram signal of a
single trial

For the time-frequency analysis of the single sensor EEG signal, the *multita-
per method’ based on Slepian sequences as tapers was used. In this investigation
the Oostenveld et al. (2011) implementation of this method was used. Frequency
components in the range from 1 to 30 Hz with 1 s duration analysis time-frame was
analyzed. Also, a 4 Hz spectral smoothing through multi-tapering was applied.
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Fig. 3.8. Illustration of an electroencephalogram signal of a single trial, with
ocular artifacts removed

Fig. 3.9 shows an EEG spectrogram of a single trial. Obtained frequency
components were separated to theta (4-8 Hz), alpha (8-13 Hz), low beta (13—
17 Hz), beta medium (17-21 Hz) and high beta (21-30 Hz) frequency bands.
Afterwards, median power of each frequency band range was used to represent
frequency bands.

3.2.6. Statistical Analysis Methods

The results of this experimental investigation from the viewpoint of the eye tracker
based and EEG signal-based features to be used for automatic comfort level pre-
diction was analyzed. Therefore, the time from image presentation start to the time
DPM was indicated by the subject was compared, and the comparison of statistical
similarity between the eye tracker and EEG signal features at different frequencies
between different visual comfort levels was performed.

To accumulate the measurement results from different subjects on each image
type (level of visual comfort), collected data was analyzed for six different time
frames: “all pre-DPM”; 1, 2, 5 s pre-DPM; 5 s post-DPM and “full duration”. “All
pre-DPM” time frame was used to analyze all data collected from the beginning
of the stimuli to the moment of the DPM. This time frame is not consistent in
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duration, which varies from a couple to tens of seconds, but it can describe eye ac-
tivity features accumulated from the beginning of the stimuli to the moment of the
DPM. “Full duration” time frame describes values for the whole duration of image
presentation: from the beginning of the stimuli up to the subjective evaluation part.
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Fig. 3.9. [llustration of an electroencephalogram spectrogram of a single trial

Different visual comfort levels were investigated as an experimental parameter
to find the changes in the brain activity and gaze features of the subjects. In the
study, EEG signals were divided into five frequency bands. In order to find evi-
dence of these changes one-way ANOVA, was performed. ANOVA uses F-tests to
statistically test the equality of means, by measuring the ratio of group variances.
Result of ANOVA analysis — F-statistic shows if the investigated groups are signif-
icantly different. The p-value measures the significance as a probability that the
null hypothesis is correct. The small p-value, lower than the significance level,
e.g., 0.05 or less shows that the null hypothesis should be rejected and it indicates
that differences between group means are significant. In this experiment, the alpha
significance level was set to 0.05.
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3.3. Results of the Visual Comfort Detection

In this section, the results of the experimental investigation of the visual comfort
detection methods are presented. This section is divided into three subsections.
The first subsection contains subjective evaluation results. In the second subsec-
tion, the results of the eye tracker data investigation are presented. The third sub-
section contains the results of the brain activity investigation. Results are discussed
in the following section.

3.3.1. Comparison of the Depth Perception Moment Time

During the experimental investigation, each subject was free to rate the stereo-
scopic images according to their personal experiences. The requirement of iden-
tifying the DPM by pressing a key was an additional stimulus to concentrate on
each image evaluation and provided additional time to make a decision. The sub-
jective assessment results of visual comfort showed that individual scores of 5
images varied from ‘“very uncomfortable” (VUn) to “uncomfortable” (Un). The
visual comfort of 21 images varied from Un to “mildly uncomfortable” (MdUn).
The 58 images had variations between MdUn and “comfortable” (Co), and 36 im-
ages had visual comfort assessment variations between Co and “very comfortable”
(VCo). Compared to the experiment of Jung et al. (2013), our experiment had two
main differences between experimental conditions — to achieve stereoscopic depth
effect different screen size and different technology (anaglyph) to display the stim-
uli, was used. The mean difference between subjective assessment results of two
experiments were (0.061 (with a standard deviation of 0.42). Subjective image
evaluation differences between ours and Jung et al. (2013) experiment are shown
in Fig. 3.10. Our results of the subjective assessment are shown using a yellow bar
with 95% confidence intervals. Teal dots represent mean opinion scores obtained
from the Jung et al. (2013) experiment.

Data, collected during the experimental investigation, to find the features,
which are statistically different for the images with a distinct visual comfort level
was analyzed. Four hypotheses were tested in this investigation. One-way ANOVA
was used to assess the effect of the focus points, pupil size, disparity and the ac-
tivity of the EEG signal on the level of visual comfort.

The subjects spent approximately 4—-6 seconds before indicating a DPM. The
images with the VCo score showed the lowest average time (4.31 & 2.8 seconds) to
DPM. The longest time (6.12 £ 4.9 seconds) to DPM was found for the VUn rated
images. Table 3.1 shows the results of mean DPM times at the different visual
comfort levels. Note, that sample size is different for each group, e.g., only 5% of
all stimuli were rated as very uncomfortable.
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Fig. 3.10. Comparison of the subjective assessment results

Table 3.1. Mean values of the depth perception moment time in seconds with a
standard deviation for each subjective assessment score

Assessment DPM time, s
Very uncomfortable 6.12£4.9
Uncomfortable 5.96 £4.0
Mildly uncomfortable 5.59£3.6
Comfortable 5.04+3.8
Very comfortable 4.31+2.8

The DPM time of the subjects to the presented stereoscopic image possessed a
high standard deviation from 2.8 seconds for the VCo images to 4.9 seconds for the
VUn images. It should be noted, that for a set of images (usually rated as the VUn)
the depth perception was not achieved at all, and in some cases, subjects spent
up to 30 seconds trying to achieve the DPM. Therefore, we expected a different
behavior of the eyes when comparing low and high visual comfort images.

In this investigation, the term pre-DPM time was used to indicate the dura-
tion between the start of the new stereoscopic image appears on the screen till
the moment the user press spacebar as an moment, that the user achieved depth
perception.

Histograms in Fig. 3.11 illustrates pre-DPM time statistics for images with
different mean opinion scores. Histograms of 5 subjective assessment scores of
visual comfort are shown. The abscissa represents DPM time with 0.5 s bin reso-
lution. The number of samples (number of images) in each subjective assessment
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group varies from 436 to 769. Therefore, normalization according to the probabil-
ity density function of the histogram was applied. The resolution of the bins in the
histogram is 0.5 s.
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Fig. 3.11. Histograms of the time required to establish a stable depth perception
(DPM): a) very uncomfortable; b) uncomfortable; c) mildly uncomfortable; d)
comfortable; e) very comfortable

The mean value of pre-DPM time given in Table 3.1 shows that approx. 5—
6 s were spent by the subjects to perceive the depth of the image and indicate it
using the keyboard. The most visually comfortable images, those classified into
the VCo group, required the shortest time for a decision with the smallest standard
deviation. However, the mean value remained close to 5 s.
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3.3.2. Results of the Eye Tracker Data Investigation

In the first hypothesis, it was investigated, if there is a statistically significant dif-
ference between visual comfort score and an estimated number of focus points in
an image, measured in the fixed time frame. It was assumed whenever the subjects
are looking at the visually uncomfortable stimuli they are searching for an object
in the picture with the comfortable mapping of disparities which will ensure the
comfortable depth perception. The low level of the visual comfort forces the users
to explore more regions of the image for the possibility of finding the comfortable
area or object, thus increasing the number of focus points in low scored images.

Change of the average number of focus points with different visual comfort
scores for three investigated time frames is shown in Fig. 3.12. Visual comfort
level gradually changes from 1 (very uncomfortable) to 5 (very comfortable). The
error bar represents the standard error. An average number of focus points depends
on the duration of the time frame.
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Fig. 3.12. Average number of focus points for each subjective assessment group
using: a) 5 s pre-DPM time frame (p = 0.545); b) 2 s pre-DPM time frame
(p = 0.035); ¢) 5 s post-DPM time frame (p = 0.302)
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Using 2 s pre-DPM time frame lowest number of estimated focus points were
for Un scored stimuli, highest for VCo scored stimuli, 4.30 and 4.77 respectively.
Results showed that the average number of estimated focus points for the 5 s pre-
DPM time frame were between 9.22 and 9.93, while for the 5 s post-DPM time
frame the average number of estimated focus points were between 8.34 and 8.87.
Additionally, subjects after the DPM maintains similar number of focus points
for MdUn, Co and VCo visual comfort scores, 8.84, 8.85 and 8.87 respectively.
However, a number of focus points for VUn, and Un scores was found lower —
8.46 and 8.34 respectively.

In the Fig. 3.12a, an average number of focus points using 5 s pre-DPM time
frame is displayed. Average number of focus points changes from 9.22 (for VUn
rated stimuli) to 9.70 (for VCo rated stimuli). However, the highest number of
focus points were found for Co rated stimuli — 9.93. The standard error of the
estimated number of focus points overlapped for all visual scores.

In the Fig. 3.12b, an average number of focus points using 5 s pre-DPM time
frame is displayed. Average number of focus points changes from 9.22 (for VUn
rated stimuli) to 9.70 (for VCo rated stimuli). However, the highest number of
focus points were found for Co rated stimuli — 9.93. The standard error of the
estimated number of focus points overlapped for all visual scores.

In the Fig. 3.12¢, an average number of focus points using 5 s post-DPM time
frame is displayed. Average number of focus points changes from 9.22 (for VUn
stimuli) to 9.70 (for VCo stimuli). However, the standard error of the average
number of focus points overlapped for all visual scores.

Table 3.2 shows results of the average number of focus points, received from
each subjective assessment group (calculated using individual ratings of the sub-
jects) and the ANOVA measures for the five groups of images. The results in Ta-
ble 3.2 shows that the number of focus points changes with different visual comfort
scores. The longest duration of investigated time frame was “full duration”, the av-
erage number of focus points varied from 20.87 (for VCo stimuli) to 24.05 (for
Co stimuli). Using the shortest time frame (1 s pre-DPM time frame), the average
number of focus points was varying from 2.64 (for Un stimuli) to 2.84 (for VCo
stimuli).

A significant difference, according to the estimated p-value (which should
be less than 0.05 for significance indication), was found using 2 s (p = 0.035)
pre-DPM analysis time frame window. Differences between the number of focus
points for images with distinct subjective scores using 1 s pre-DPM (p = 0.107),
5 s pre-DPM (p = 0.545), “all pre-DPM” (p = 0.097), 5 s post-DPM (p = 0.302)
and “full duration” (p = 0.174) time frame windows were not significant.

In the second hypothesis, it was investigated, if there is a statistically signifi-
cant difference between visual comfort score and estimated pupil size in an image,
estimated for the fixed time frame. Changes in pupil size with different visual
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comfort scores for three investigated time frames are shown in Fig. 3.13. Visual
comfort level gradually changes from 1 (very uncomfortable) to 5 (very comfort-
able). The error bar represents the standard error. Pupil size was found relatively
similar for all investigated time frames, e.g., using 1 s pre-DPM time frame esti-
mated pupil size was 4.06 mm, and using full duration time frame — 4.11 mm.

Table 3.2. An average number of focus points and their significance level for the
different visual comfort scores during the investigated time frames. A bold font
denotes significant values (p < 0.05)

Time frame VUn Un MdUn Co VCo | F Sig

All pre-DPM 12.14 1332 1352 14.64 11.76 | 1.977 0.097
1 s pre-DPM 269 264 274 281 2.84 | 1907  0.107
2 s pre-DPM 454 430 455 458 477 | 2597  0.035
5 s pre-DPM 922 9.64 947 993 970 | 0770  0.545
5 s post-DPM 846 834 884 885 887 1.217 0.302
Full duration 21.17 2228 22.68 24.05 20.87 | 1.596 0.174

In the Fig. 3.13a, an estimated pupil size, in millimeters, using 5 s pre-DPM
time frame is shown. Pupil size of the subjects changed from 4.15 mm (for VUn
rated stimuli) to 4.12 mm (for VCo rated stimuli). The highest pupil size were
found for Un rated stimuli — 4.22 mm, lowest pupil size, 4.12 mm, was found for
VCo rated stimuli. The standard error of the pupil size overlapped for all adjacent
visual scores except for the VCo scored stimuli.

In the Fig. 3.13b, an estimated pupil size using 2 s pre-DPM time frame is
shown. Pupil size of the subjects reduced from 4.26 mm (for Un rated stimuli)
to 4.07 mm (for VCo rated stimuli). The pupil size estimated for the VUn rated
stimuli was 4.14 mm, and had the highest standard error. The standard error of the
pupil size overlapped for all adjacent visual scores except for the VCo and VUn
rated stimuli.

In the Fig. 3.13c, an estimated pupil size using 5 s post-DPM time frame is
shown. Pupil size of the subjects reduced from 4.32 mm (for Un rated stimuli)
to 4.11 mm (for VCo rated stimuli). The pupil size estimated for the VUn rated
stimuli was 4.17 mm, and had the highest standard error. The standard error of the
pupil size of adjacent visual comfort scores overlapped only for the Un and MdUn
rated stimuli.

A significant difference between visual comfort level of the image given dur-
ing experimental investigation and estimated pupil size of the subject was found
using 1 s pre-DPM (p < 0.001), 2 s pre-DPM (p = 0.001), “all pre-DPM”
(p = 0.036), 5 s post-DPM (p < 0.001) and “full duration” (p = 0.015) time
frames (see Table 3.3). There were no significant changes found using 5 s pre-
DPM time frame (p = 0.158). The estimated pupil size was highest for the stimuli
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scored as the Un, this result was consistent in all investigated time frames. Lowest
pupil size was found for the images with the VCo ratings. In most cases, the mean
pupil size of the VUn rated images was found lower than Co rated images, however
having a higher standard error, as shown in Fig. 3.13.
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Fig. 3.13. Average pupil size for each subjective assessment group using: a) 5 s
pre-DPM time frame (p = 0.158); b) 2 s pre-DPM time frame (p = 0.001); c)
5 s post-DPM time frame (p = 0.000)

In the third hypothesis, it was investigated, if there is a statistically significant
difference between visual comfort rating and mean gaze disparity, estimated dur-
ing the fixed period. Changes in disparity with different visual comfort scores for
three investigated time frames are shown in Fig. 3.14. Visual comfort level gradu-
ally changes from 1 (very uncomfortable) to 5 (very comfortable). The error bar
represents the standard error. Gaze disparity was measured in pixels, the size of
the pixel was 0.2634 mm. An estimated number of pixels for different duration
time frames were relatively similar. However, estimated disparity changed with
the level of visual comfort, e.g., disparity of 1 s pre-DPM time frame was lowest
for the VCo scored stimuli (73.1 pixels), highest — Un scored stimuli (84.3 pixels),
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and disparity of full duration time frame was lowest for the VCo scored stimuli
(74.1 pixels), highest — Un scored stimuli (83.5 pixels), respectively.

Table 3.3. Mean pupil size (in millimeters) and its significance level for the different
visual comfort scores during the investigated time frames. A bold font denotes
significant values (p < 0.05)

Time frame VUn Un MdUn Co VCo | F Sig

All pre-DPM 422 425 418 418 411 2579 0.036
1 s pre-DPM 412 423 419 414 406 | 5424  0.000
2 s pre-DPM 414 426 419 415 4.07 | 499  0.001
5 s pre-DPM 415 422 417 418 412 1.653  0.158
5 s post-DPM 417 432 427 420 411 8.170 0.000
Full duration 421 427 418 418 411 3.098  0.015

In the Fig. 3.14a, an estimated disparity using 5 s pre-DPM time frame is
shown. Disparity of the subjects gaze fluctuated from 83 pixels (for VUn rated
stimuli) to 70.9 pixels (for VCo rated stimuli). The highest gaze disparity was
found for Un rated stimuli — 85.8 pixels, lowest gaze disparity — 70.9 pixels, was
found for VCo rated stimuli. The standard error of the gaze disparity did not
overlap between VCo and VUn, Un, Co scored stimuli.

In the Fig. 3.14b, an estimated disparity using 2 s pre-DPM time frame is
shown. Disparity of the subjects gaze fluctuated from 82.4 pixels (for VUn rated
stimuli) to 71.1 pixels (for VCo rated stimuli). The highest gaze disparity was
found for Un rated stimuli — 83.3 pixels, lowest gaze disparity — 71.1 pixels, was
found for VCo rated stimuli. The standard error of the gaze disparity did not
overlap only of VCo and all other (VUn, Un, MdUn and Co) stimuli.

In the Fig. 3.14c, an estimated disparity using 5 s post-DPM time frame is
shown. Disparity of the subjects gaze fluctuated from 83.6 pixels (for VUn rated
stimuli) to 75.6 pixels (for VCo rated stimuli). The highest gaze disparity was
found for Un rated stimuli — 85.8 pixels, lowest gaze disparity — 75.6 pixels, was
found for VCo rated stimuli. The standard error of the gaze disparity for post-
DPM time frame overlapped for all adjacent visual comfort scores. However, the
standard error did not overlap between VCo and Un, MdUn visual comfort scores.

ANOVA results of the effects of disparity for the different visual comfort
levels are shown in Table 3.4. Results of disparity values were rounded to one
number after the decimal point. Significant difference was found using 5 s pre-
DPM time frame (p = 0.041). However, no significant difference was found be-
tween subjective assessment groups using 1 s pre-DPM (p = 0.176), 2 s pre-DPM
(p = 0.079), “all pre-DPM” (p = 0.292), 5 s post-DPM (p = 0.152) and “full du-
ration” (p = 0.502) time frames. Results indicated a reduced gaze disparity when
observing images with high visual comfort scores.
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Fig. 3.14. Average binocular disparity for each subjective assessment group
using: a) 5 s pre-DPM time frame (p = 0.041); b) 2 s pre-DPM time frame
(p = 0.079); c) post-DPM time frame (p = 0.152)

A ratio between crossed and uncrossed disparity was investigated for different
visual comfort values. Changes in the estimate of this ratio for three investigated
time frames are shown in Fig. 3.15. Visual comfort level gradually changes from 1
(very uncomfortable) to 5 (very comfortable). The error bar represents the standard
error.

The ratio of crossed disparity for time frames with different duration was rel-
atively similar. However, estimated ratio changed with the level of visual comfort,
e.g., ratio of crossed disparity using 1 s pre-DPM time frame was lowest for the
MdUn scored stimuli (0.33), highest — VUn scored stimuli (0.39), and estimated
ratio using full duration time frame was lowest for the VCo scored stimuli (0.29),
highest — VUn scored stimuli (0.36), respectively. A higher value in this ratio in-
dicates that a larger number of focus points required crossed disparity to perceive
stereoscopic depth.

In the Fig. 3.15a, an estimated ratio of crossed disparity using 5 s pre-DPM
time frame is shown. Ratio of crossed disparity fluctuated from 0.4 (for VUn rated
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stimuli) to 0.32 (for VCo rated stimuli). The highest ratio was found for VUn rated
stimuli — 0.40, lowest ratio — 0.31, was found for MdUn rated stimuli. However,
ratio of Un, MdUn, Co and VCo had differences below 0.02 between scores. The
standard error of the estimated ratio did not overlap only between VUn and all
other (Un, MdUn, Co and VCo) rated stimuli.
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Fig. 3.15. Crossed disparity ratio for each subjective assessment group: a) 5 sec.
pre-DPM time frame (p = 0.159); b) 2 sec. pre-DPM time frame (p = 0.264); c)
post-DPM time frame (p = 0.172)

In the Fig. 3.15b, an estimated ratio of crossed disparity using 2 s pre-DPM
time frame is shown. Ratio of crossed disparity fluctuated from 0.4 (for VUn rated
stimuli) to 0.34 (for VCo rated stimuli). The highest ratio was found for VUn rated
stimuli — 0.40, lowest ratio — 0.32, was found for MdUn rated stimuli. However,
ratio of Un, MdUn, Co and VCo had differences below 0.03 between scores. The
standard error of the estimated ratio did not overlap only between VUn and all
other (Un, MdUn, Co and VCo) rated stimuli.

In the Fig. 3.15¢, an estimated ratio of crossed disparity using 5 s post-DPM
time frame is shown. Ratio of crossed disparity fluctuated from 0.37 (for VUn
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rated stimuli) to 0.30 (for VCo rated stimuli). The highest ratio was found for VUn
rated stimuli — 0.37, lowest ratio — 0.30, was found for Un, MdUn and VCo rated
stimuli. The standard error of the estimated ratios did not overlap only between
VUn and Un, MdUn and VCo rated stimuli.

Table 3.4. Mean binocular disparity (in pixels) and its significance level for the
different visual comfort scores during the investigated time frames. A bold font
denotes significant values (p < 0.05)

Time frame VUn Un MdUn Co VCo | F Sig

All pre-DPM 80.5 823 766 799 712 1.239  0.292
1 s pre-DPM 81.3 843 783 794 731 1.583 0.176
2 s pre-DPM 824 833 785 797 711 2.095  0.079
5 s pre-DPM 83 858 759 805 709 | 2502 @ 0.041
5 s post-DPM 83.6 858 827 795 756 1.679 0.152
Full duration 823 835 789 803 741 0.836  0.502

Table 3.5. Crossed disparity (results are shown as a proportion of both crossed and
uncrossed disparities) within the investigated time frame for the different visual
comfort score

Time frame VUn Un MdUn Co VCo | F Sig

All pre-DPM 035 030 029 031 031 0.643  0.632
1 s pre-DPM 039 034 033 036 034 | 0687 0.601
2 s pre-DPM 040 033 032 035 034 1.310 0.264
5 s pre-DPM 040 032 031 033 032 | 1.651 0.159
5 s post-DPM 037 030 030 033 030 | 1598 0172
Full duration 036 030 030 0.31 029 | 0.866  0.483

The analysis of gaze data showed the highest ratio of the crossed disparity at
the focus points for the images with the lowest (VUn) visual comfort scores (see
Fig. 3.15). However, ANOVA analysis found no significant difference between
visual comfort scores and ratio of the crossed disparity in all investigated time
frames, as shown in Table 3.5.

3.3.3. Results of the Brain Activity Investigation

A selection of a pre-DPM time for analysis of spectral components is important for
the EEG signal-based feature estimation. To ensure that the EEG spectral compo-
nents carry statistically separable data, we have compared EEG activity between
images grouped to five comfort levels at different time frames: 0.5, 1, 3,4, 56, 7,
and 10 seconds before the DPM.
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A selection of frequency band for EEG activity analysis plays a vital role
in the comfort level prediction capabilities. Since frequency bands (alpha, beta,
theta) have a tendency to contradict each other, e.g., Cheng et al. (2007), in their
study, not only used EEG power analysis in specific frequency bands but also used
different combinations to estimate relative power between different bands (e.g.,
theta/alpha, beta/alpha, etc.). Similarly, Zou et al. (2015) evaluated six types of
band ratios during repetitive random dot stereogram based task, results showed
significant differences for all investigated ratios, alpha activity was found as most
promising indicator in their experiment. In this study brain activity was separated
to: theta (6) 4-8 Hz, alpha («) 8-13 Hz, low beta () 13-17 Hz, beta medium (3p,)
17-21 Hz and high beta () 21-30 Hz frequency bands (Dunbar et al. 2007). In
addition to commonly used band ratios (Cheng et al. 2007; Hsu, Wang 2013; Zou
et al. 2015), sub-beta oscillations (3, Bm, ) Were investigated, making a total set
of seven different frequency band ratios for the investigation: a/f3; (o + 0)/;
a/0;0/8; a/Bi; a/Bm; o/ bh.

Table 3.6 presents the results of ANOVA measures for the five groups of im-
ages with different visual comfort level on investigated brain activity band at par-
ticular pre-DPM time. 6, a and ; frequencies showed no statistically significant
differences for all investigated pre-DPM time frames. A significant difference was
found for 3, frequency band using 6 s pre-DPM time frame (p = 0.017), and
for B, frequency band using 2, 3, 4, 5, 6 and 7 s pre-DPM time frames, with sig-
nificance levels (rounded to three digits after the decimal point) of 0.014, 0.002,
0.002, 0.000, 0.000 and 0.008, respectively.

Table 3.6. One-way ANOVA results of the visual comfort scores for oscillatory activity
at investigated time frame before depth perception moment. Significant values
(p < 0.05) were highlighted

pre-DPM time, s 0 Q B Pm bn

0.5 0.273 0.550 0.259 0.054 0.429
1 0.241 0.617 0.199 0.126 0.330
2 0.169 0.906 0.176 0.189 0.014
3 0.436 0.347 0.242 0.133 0.002
4 0.276 0.173 0.362 0.129 0.002
5 0.223 0.231 0.280 0.061 0.000
6 0.273 0.917 0.231 0.017 0.000
7 0.299 0.664 0.203 0.162 0.008
10 0.217 0.432 0.556 0.598 0.277

Table 3.7 presents the results of ANOVA measures for the five groups of im-
ages with different visual comfort levels on ratios of the investigated brain activity
bands at particular pre-DPM time. 6/, (6 + «) /3, o/ 8 and «/ 5; frequency band
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ratios showed no statistically significant differences for all investigated pre-DPM
time frames. A significant difference was found for 6/« ratio using 0.5, 1, 2, 3,
4 and 5 s pre-DPM time frames, with significance levels of 0.031, 0.020, 0.026,
0.005, 0.002 and 0.002, respectively. Additionally, a significant difference was
found for 6/, ratio using 6 s pre-DPM time frame (p = 0.028), and for 6//;
ratio significance levels were 0.005, 0.000, 0.000, 0.000, 0.000 and 0.020, using
2,3,4,5,6 and 7- s pre-DPM time frames, respectively.

Table 3.7. One-way ANOVA results of the visual comfort scores for ratios of the
oscillatory activity at investigated time frame before depth perception moment.
Significant values (p < 0.05) are highlighted

pre-DPM time, s O/lae | 0/ | (O+a)/B | /B | /B | a/Bm | a/bn
0.5 0.031 | 0.244 | 0.233 0.365 | 0.229 | 0.088 | 0.392
1 0.020 | 0.084 | 0.178 0.438 | 0.232 | 0.287 | 0.050
2 0.026 | 0.599 | 0.543 0.330 | 0.190 | 0.288 | 0.005
3 0.005 | 0.936 | 0.564 0.162 | 0.296 | 0.154 | 0.000
4 0.002 | 0.772 | 0.499 0.114 | 0.381 | 0.274 | 0.000
5 0.002 | 0.543 | 0.372 0.087 | 0.537 | 0.221 | 0.000
6 0.103 | 0.396 | 0.819 0.936 | 0.665 | 0.028 | 0.000
7 0.104 | 0.548 | 0.755 0.893 | 0.252 | 0.104 | 0.020
10 0.068 | 0.460 | 0.707 0.786 | 0.681 | 0.598 | 0.055

Multiple comparison tests using the Tukey-Kramer (o = 0.05) method was
used to investigate ANOVA results which showed significant effects. Results of
the post-hoc Tukey’s test at 4, 5, and 6 s pre-DPM times are given in Tables 3.8,
3.9, and 3.10. Brain activities and their ratios investigated using Tukey’s test were
conducted for the significant values shown in Tables 3.6 and 3.7. Tukey-Kramer’s
post-hoc tests revealed significant differences between subjective assessment value
pairs.

Table 3.8 presents the results of Tukey’s test pairwise comparison of brain ac-
tivity for the five groups of images with different visual comfort levels. Tukey’s
test was conducted to investigate /3, brain activity band, 6/« and o/ /3, brain ac-
tivity ratios using 4 s pre-DPM time frame. At the 4 s pre-DPM time, significant
difference between VUn and Un (p = 0.046), MdUn (p = 0.005), Co (p = 0.000),
VCo (p = 0.000) groups were observed in «/( ratio. Additionally, significant
difference were found in 6/« oscillatory activity ratio between VUn and VCo
(p = 0.045), and Un and VCo (p = 0.002) pairs. Furthermore, the test results
showed that the 3, activity at 4 s pre-DPM time for VUn was significantly differ-
ent from Co (p = 0.022) and VCo (p = 0.004) visual comfort levels. The post-hoc
test revealed no significant difference between other visual comfort pairs using 4 s
pre-DPM time frame.
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Table 3.8. Summary of the p-values using a post-hoc Tukey’s test for the significant
differences in oscillatory activity, calculated using 4 s time frame before depth
perception moment. Significant values (p < 0.05) are highlighted

On 0/ a/ B Group VS. group
0.350 0.998 0.046 VUn Un
0.273 0.486 0.005 VUn MdUn
0.022 0.631 0.000 VUn Co
0.004 0.045 0.000 VUn VCo
1.000 0.280 0.897 Un MdUn
0.465 0.467 0.302 Un Co
0.120 0.002 0.044 Un VCo
0.415 0.994 0.791 MdUn Co
0.083 0.297 0.222 MdUn VCo
0.900 0.116 0.839 Co VCo

The effect of visual comfort for oscillatory activity using 4 s pre-DPM time
frame is shown in Figure 3.16. The abscissa represents visual comfort level from
1 — very uncomfortable to 5 — very comfortable. The error bar represents the
standard error. Relative o power level (see Fig. 3.16a) of the subjects decreased
from 0.956 to 0.927 with higher visual comfort level, while the relative activity
Bn power (see Fig. 3.16b) increased from 1.040 to 1.123 with the higher visual
comfort. Therefore, the a/ 3, ratio (see Fig. 3.16¢) decreased from 0.981 to 0.849,
when visual comfort level increased. The standard error of the « level did not over-
lap between VCo and other (VUn, Un, MdUn, Co) rated stimuli (Fig. 3.16a). The
standard error of the (3 level did not overlap between VUn and other (Un, MdUn,
Co, VCo) rated stimuli, and the standard error of VCo and Co did not overlap with
lower visual comfort levels (Fig. 3.16b). The standard error of the «/f, ratio did
not overlap between VUn and other (Un, MdUn, Co, VCo) rated stimuli, and the
standard error of VCo did not overlap with lower visual comfort levels (VUn, Un,
MdUn). However, visual comfort of other adjacent scores overlapped (Fig. 3.16¢).

Results of Tukey’s test pairwise comparison of brain activity for the five groups
of images with different visual comfort levels are shown in Table 3.9. Tukey’s test
was conducted to investigate brain activity of the Sy band and brain activity of
the 6/« and o/, ratios using 5 s pre-DPM time frame. Post-hoc analysis in-
dicated significant difference between VUn and Co (p = 0.021), VUn and VCo
(p = 0.002), Un and VCo (p = 0.042), MdUn and VCo (p = 0.014) visual comfort
scores at Oy, frequency. Additionally, significant difference were observed between
Un and VCo (p = 0.002) scores at the 6/« ratio. Moreover, significant differences
were found between VUn and all four visual comfort groups: Un (p = 0.026),
MdUn (p = 0.007), Co (p < 0.001), VCo (p < 0.001), and between VCo and Un
(p = 0.027), VCo and MdUn (p = 0.042) visual comfort scores at o/ 3}, frequency
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ratio. However, the post-hoc test revealed no significant difference between other
visual comfort pairs using 5 s pre-DPM time frame.
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Fig. 3.16. Relative electroencephalogram activity of the subjects using 4 s time
frame before depth perception moment: a) relative a level (p = 0.173); b)
relative Sy, level (p = 0.002); ¢) ratio of a/ By levels (p = 0.000)

The effect of visual comfort for oscillatory activity using 5 s pre-DPM time
frame is shown in Figure 3.17. The abscissa represents visual comfort level from
1 — very comfortable to 5 — very comfortable. The error bar represents the stan-
dard error. Relative level of the oo power (see Fig. 3.17a) decreased from 0.960 to
0.925 with higher visual comfort levels, while the relative level of the 3, power
(see Fig. 3.17b) increased from 1.039 to 1.136 with the higher visual comfort.
Therefore, the ratio of the a//3, waves (see Fig. 3.17¢c) decreased from 0.983 to
0.834, when the level of visual comfort increased. The standard error of the «
level did not overlap between VCo and other (VUn, Un, MdUn, Co) rated stimuli
(Fig. 3.17a). The standard error of the (3}, level did not overlap between VUn and
other (Un, MdUn, Co, VCo) rated stimuli, and the standard error of VCo and Co
did not overlap with lower visual comfort levels (Fig. 3.17b). The standard error
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of the o/, ratio did not overlap between VUn and other (Un, MdUn, Co, VCo)
rated stimuli, and the standard error of VCo and Co did not overlap with lower vi-
sual comfort levels (VUn, Un, MdUn). However, visual comfort of other adjacent
scores overlapped (Fig. 3.17¢).

Table 3.9. Summary of the p-values using a post-hoc Tukey’s test for the significant
differences in oscillatory activity, calculated using 5 s time frame before depth
perception moment. Significant values (p < 0.05) are highlighted

Bn 0/« o/ B Group VS. group
0.436 1.000 0.026 VUn Un
0.430 0.563 0.007 VUn MdUn
0.021 0.546 0.000 VUn Co
0.002 0.069 0.000 VUn VCo
1.000 0.192 0.994 Un MdUn
0.370 0.165 0.337 Un Co
0.042 0.002 0.027 Un VCo
0.224 1.000 0.499 MdUn Co
0.014 0.401 0.042 MdUn VCo
0.751 0.365 0.682 Co VCo

The post-hoc results using the 6 s pre-DPM time are shown in Table 3.10. The
post-hoc tests were conducted using Tukey’s pairwise method. Tukey’s tests were
conducted to investigate brain activity of the [, and S, bands and brain activity
of the /By and «/fy ratios. Post-hoc analysis indicated significant difference
between VUn and VCo (p = 0.016) visual comfort scores at 5y, frequency. Addi-
tionally, significant effects of visual comfort was observed in 3y, frequency band
between VUn and Co (p = 0.017), VUn and VCo (p = 0.001), VCo and Un
(p = 0.021), VCo and MdUn (p = 0.008) scores. Moreover, significant differ-
ences were found at a/3,,, frequency ratio between VCo and MdUn (p = 0.044)
visual comfort scores, and at o/ 3, ratio between VUn and other four visual com-
fort rating pairs: Un (p = 0.022), MdUn (p = 0.016), Co (p = 0.001), VCo
(p < 0.001). However, the post-hoc test revealed no significant difference between
other visual comfort pairs using 6 s pre-DPM time frame.

The effect of visual comfort in oscillatory activity using 6 s pre-DPM time
frame is shown in Figure 3.18. The abscissa represents visual comfort level from 1
— very comfortable to 5 — very comfortable. The error bar represents the standard
error. Relative o power level (see Fig. 3.18a) of the subjects decreased from 0.957
to 0.938 with higher visual comfort level, while the relative activity 3, power
(see Fig. 3.18b) increased from 1.029 to 1.145 with the higher visual comfort.
Therefore, the o/ /3, ratio (see Fig. 3.18¢c) decreased from 0.989 to 0.841, when
visual comfort level increased. The standard error of the « level overlaped between
all visual comfort scores (Fig. 3.18a). The standard error of the 3y level did not
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overlap between VUn and all other (Un, MdUn, Co, VCo) rated stimuli, and the
standard error of VCo and Co did not overlap with lower visual comfort levels
(Fig. 3.18b). The standard error of the «/f ratio did not overlap between VUn
and other (Un, MdUn, Co, VCo) rated stimuli, and the standard error of the VCo
did not overlap with lower rated stimuli of VUn, Un and MdUn.

3.3.4. Discussion of the Results
In this study, the effect of visual comfort for gaze and EEG features, collected

using eye tracker and consumer grade EEG device, was investigated. Additionally,
the time of stable depth perception for various stereoscopic images was measured.
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Fig. 3.17. Relative electroencephalogram activity of the subjects using 5 s time
frame before depth perception moment: a) relative alpha level (p = 0.231); b)
relative high beta level (p = 0.000); c) ratio of alpha and high beta levels
(p = 0.000)

Depth perception of images rated as VCo showed shortest DPM time (4.31 s).
Images rated as VUn showed highest DPM time (6.12 s). Such tendency may give
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assumption, that the DPM time correlates with the visual comfort level. However,
very high standard deviation, from 2.8 s (VCo) to 4.9 s (VUn) was observed in
the results (Table 3.1). This may indicate that behavior of the subjects depends
on other underlying factors, which can be unique to the shown content, individual
experience of the subjects or the limits of the ability to focus on the object in
the image. This investigation supports and extends a research by Hoffman et al.
(2008), which showed that minimum time of 400-500 ms was required to identify
a stereoscopic stimulus when the vergence-accommodation conflict was zero, and
that 3D displays, in comparison to the real-life scenes, increases the time required
to identify a stereoscopic stimulus and a level of visual fatigue and discomfort.

Table 3.10. Summary of the p-values using a post-hoc Tukey’s test for the significant
differences in oscillatory activity, calculated using 6 s time frame before depth
perception moment. Significant values (p < 0.05) are highlighted

B 5n a/Bm a/ B Group vs. group
0.082 0.381 0.716 0.022 VUn Un
0.394 0.380 0.985 0.016 VUn MdUn
0.063 0.017 0.379 0.001 VUn Co
0.016 0.001 0.143 0.000 VUn VCo
0.722 1.000 0.791 1.000 Un MdUn
1.000 0.363 0.956 0.765 Un Co
0.944 0.021 0.577 0.287 Un VCo
0.649 0.239 0.250 0.711 MdUn Co
0.212 0.008 0.044 0.222 MdUn VCo
0.902 0.582 0.890 0.875 Co VCo

A significant difference between a number of focus points (see Table 3.2),
pupil size (see Table 3.3) and binocular disparity (see Table 3.4) to a different level
of visual comfort was found. The experimental data were analyzed using different
time frames, including time frames taken before the moment of DPM and after
the DPM. Time frame windows with the significant effects were not consistent
across different gaze features, e.g., significant effect in binocular disparity was
found using 5 s pre-DPM time frame, an effect in focus points — using 2 s pre-
DPM time frame, an effect in pupil size — with all investigated time frames, except
with the 5 s pre-DPM time frame. Pupil size correlations with arousal, memory
activities, brain processing tasks were showed in early studies (Beatty 1982). Porter
et al. (2007) in their investigation showed that visual search tasks using distractors
that increase difficulty of target recognition lead to increases in pupil diameter.
Furthermore, in their work Suryakumar (2005), used pupillometry to investigate
illumination effects on visual discomfort level.

Ratio of crossed disparity (Table 3.5) showed no significant effect for all in-
vestigated time frames, it could be interpreted as different visual comfort levels
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have a similar ratio of crossed and uncrossed disparity, and this feature is not an
important factor for subjects to rate comfort level of a stimulus.
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Fig. 3.18. Relative electroencephalogram activity of the subjects using 6 s time
frame before depth perception moment: a) relative alpha level (p = 0.917); b)
relative high beta level (p = 0.000); c) ratio of alpha and high beta levels
(p = 0.000)

An interesting fact was found — features calculated for the VUn rated images
had values similar to the Co or VCo rated images, e.g., lowest number of focus
points (shown in Fig. 3.12) using 2 s pre-DPM time frame (p = 0.035), was found
for the Un rated stimuli (4.3 focus points), while for the VUn and Co rated images
average number of focus points was approx. 4.5, VCo rated stimuli had highest
number of focus points — 4.8; the pupil size of the VUn visual comfort rating
(shown in Fig. 3.13) was 4.15 mm (using 2 s pre-DPM time frame), similar to
the Co rating — 4.15 mm, highest pupil size (4.27 mm) was found for the Un
visual comfort rating, lowest — for the VCo rating (4.08 mm); estimated disparity
(shown in Fig. 3.14) using 5 s pre-DPM time frame (p = 0.041) was largest for Un
rated images (85.84 pixels), and smallest for the VCo rated images (71 pixel). We
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assume that subjects rated images as VUn, when the stereoscopic perception was
not achieved. Therefore, experimental investigation results tend to look similar to
the high visual comfort scores.

Additional estimated feature — the ratio of crossed disparity (shown in Fig. 3.15)
was used for complementary analysis of the results. The calculated ratio of crossed
disparity, received using images with different comfort levels, was highest for the
VUn visual comfort scores (0.40). By comparison, this ratio for the other four
visual comfort levels varied from 0.31 to 0.33. However, this difference was found
not significant using any of the investigated time frames (shown in Table 3.5).
Therefore, crossed disparity could not be used as a standalone feature, but it may
be used as a supplementary feature for the classification of the lowest rated images
(VUn) because other estimates of the gaze features for the lowest rated images
were mixed with Co and VCo scores. Probably, images rated as VUn were too
difficult to focus on, resulting in controversial gaze features, except the ratio of
crossed disparity. Thus, more experimental investigations are needed with subject
behavior for VUn stereoscopic stimuli.

Multiple studies using multi-channel EEG measurements investigated visual
fatigue for 2D and 3D content. For example, Chen et al. (2013) showed decreases
in power spectral entropy. Similar study, using non-consumer grade EEG de-
vice (Chen et al. 2014) compared energy values in several EEG bands with four
discomfort-related parameters — significant changes were found in all bands, ex-
cept 6 band. In our investigation, oscillatory activity of €, a and (; frequency
bands showed no significant difference in all investigated pre-DPM time durations
(as shown in Table 3.6). In the Figures 3.16a, 3.17a and 3.18a, the relative mean
power of « activity is illustrated, « activity reduced when the level of visual com-
fort increased. In the Figures 3.16b, 3.17b and 3.18b, the relative mean power of
B activity is illustrated, By activity increased when the level of visual comfort
increased. Therefore, the ratio of o/}, (shown in Figures 3.16¢, 3.17¢ and 3.18c)
decreased with higher visual comfort levels. The post-hoc tests showed that o/ By
ratio is statistically different for the VUn group and all other visual comfort groups
using 4, 5 and 6 s pre-DPM time frames (as shown in Tables 3.8, 3.9 and 3.10).
This shows that using the o/ 3, ratio, as a feature, it is possible to recognize stereo-
scopic views in the image, specially ones which are VUn for the subjects.

Additionally, the estimation of the different ratios of the EEG band activity
showed strong significant differences in the #/« and «/ 5y, ratios (see Table 3.7).
This phenomenon was expected to take into account. Chen et al. (2013) published
results, where authors used the 3 frequency range for the ratio estimation. How-
ever, in this study, it was noticed that « ratio for visual comfort level classification
should be estimated in respect to 3, frequency range. Taking the whole ( fre-
quency range no significant differences were found (see Table 3.7). Additionally,
after the experimental session, some of the subjects informed that several images
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were too difficult to focus and the DPM was not achieved for these images. There-
fore, when interpreting the results of this investigation, it would be useful to con-
sider that VUn may indicate a visual comfort level which is too low for the subjects
to reach the depth perception.

Developers of virtual reality headsets are implementing EEG and eye track-
ing sensors in their newest devices (Enhancing AR/VR Devices; FMCG Packag-
ing A-B Testing). Physiological data based calibration of head-mounted displays,
compared to the standard subjective assessment methods, is more comfortable and
acceptable for the user. Main issues of the objective based calibration of a device
are accuracy, reliability, and comfortability. Our proposed technique can be used
towards solving these issues. Using DPM time and EEG data an algorithm can be
developed, which could be able to detect individual sensation of visual discomfort
and calibrate head-mounted display individually for each user without spending a
considerable amount of time.

In this investigation, the results of the experimental tests with 28 subjects to
evaluate the differences in EEG activity and gaze data was used. Subjects were
asked to look at stereoscopic images, and rate their visual comfort using five levels
grading system. Additionally, subjects marked a time of achieved depth perception.
With such additional markers, the IVY LAB database, by Jung et al. (2013), was
extended with annotated single-sensor EEG data, gaze data and subjective DPM
information. Using these additional markers user behavior during stereoscopic
perception was analyzed.

3.4. Conclusions of Chapter 3

1. According to the experimental investigation, the power density spectrum of
the EEG signal in the 3 frequency range should be divided into subranges
of B1, Bm and By, in order to use S5 frequency range based features to detect
visual discomfort before the DPM.

2. Detection of visual discomfort using features obtained from EEG signal
before DPM is dependent on investigated window frame size. Visual dis-
comfort can be detected using 3, frequency range of EEG spectrum with
analysis window sizes from 2 to 7 s before the DPM.

3. Relative « level of the brain activity increases with higher visual discom-
fort level, and relative (y level decreases with higher visual discomfort
level. Therefore, visual discomfort can be detected using a ratio of «/
as a feature, when using frame durations from 2 to 7 s before the DPM.

4. Experimental results showed that § and o waves of the brain activity can-
not be used as a feature to detect visual discomfort before the DPM. How-
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ever, visual discomfort can be detected using EEG signal when a ratio of
0 /c waves is used as a feature with 0.5 or 1 s analysis frame size before
the DPM.

5. Depth perception moment time is different for each level of visual discom-
fort. It increases from 4.31 £ 2.8 s (for images rated as very comfortable)
to 6.12 £ 4.9 s (for images rated as very uncomfortable).

6. A number of focus points changes with level of visual discomfort before
the DPM. An average number of focus points can be used as a feature to
detect visual discomfort when using 2 s time frame before the DPM. Using
2 s time frame, the number of focus points increases by 10% for the images
scored from “uncomfortable” to “very comfortable”.

7. Pupil size can be used as a feature to detect visual discomfort when using
1, 2 s pre-DPM or 5 s post-DPM time frame windows.

8. Level of binocular disparity, measured at the focus point, decreases by 14.9
pixels in average with higher levels of visual comfort. Binocural disparity
can be used as a feature to detect visual discomfort when 5 s pre-DPM
time frame is used.

9. Crossed disparity ratio was highest for images rated as “extremely uncom-
fortable” by approximately 6% compared to other four groups. However,
crossed disparity cannot be used as a feature to detect visual discomfort.






General Conclusions

1. The ECG and EEG signal based features can be used for the SoP level
detection of the presented audiovisual content:

1.1

1.2.

the estimated heart rate from the electrocardiogram signal can be used
as a feature to distinguish between low and high SoP level when there
are three SoP levels of an audiovisual content presented to the user;

features estimated from the electroencephalogram signal can be used

to distinguish between an audiovisual content with three SoP levels.
However, the 3 frequency range should be divided into subranges of

51’ Bm and /Bh-

2. The EEG signal based features obtained using consumer grade single sen-
sor EEG device placed on the frontal region can be used to detect visual
discomfort of the stereoscopic images before the moment of depth percep-
tion:

2.1.

2.2.

visual discomfort can be detected using /3, frequency range or the ratio
of /Py of EEG spectrum with analysis window sizes from 2 to 7 s
before the DPM;

visual discomfort can be detected using EEG signal when a ratio of
0 /c waves is used as a feature with 0.5 or 1 s analysis frame size be-
fore the DPM.

73
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3. Features obtained using eye tracker data can be used to detect visual dis-
comfort of the stereoscopic images before the moment of depth perception:

3.1. an average number of focus points can be used as a feature to detect
visual discomfort when using 2 s time frame before the DPM;

3.2. pupil size can be used as a feature to detect visual discomfort when
using 1, 2 s pre-DPM or 5 s post-DPM time frame windows;

3.3. binocular disparity, measured at the focus point can be used as a feature
to detect visual discomfort when 5 s pre-DPM time frame is used.
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Summary in Lithuanian

Jvadas

Problemos formulavimas

Virtualios realybés turiniui perZitiréti skirti atvaizdavimo jrenginiai praktikoje naudojami
mazai ne dél aukstos jy kainos ar nepakankamos vaizdo kokybés, o neretai dél daZnai su-
keliamo regos diskomforto. Regos diskomforto lygis yra individualus kiekvienam naudo-
tojui, todél reikalingos techninés priemonés, leidZiancios aptikti pirmuosius regos diskom-
forto poZymius naudojant virtualiosios realybés akinius. Rinkoje jau pasirodé virtualiosios
realybés akiniai su integruota akiy sekimo jranga, taip pat akiniy gamintojai bendradar-
biauja su elektroencefalogramy nuskaitymo jrenginius gaminan¢iomis jmonémis. Taciau
néra sukurti bidai regos diskomfortui aptikti naudojant akiy aktyvumo ar elektroencefa-
logramy registravimo jrenginius. Siekiant aptikti akiy diskomforta salygojancias situaci-
jas vaizdo perziiiros metu, disertacijoje sprendZiama vaizdo pojiciy kiekybinio jvertinimo
problema.

Problemai iSspresti disertacijoje naudoti vieSuose duomeny rinkiniuose esantys elek-
trokardiogramy, elektroencefalogramy signalai, vaizdy rinkiniai. Papildomai buvo atliktas
eksperimentinis tyrimas, kurio metu buvo matuojamos ne tik elektroencefalogramos, ta-
¢iau registruojamas ir akiy aktyvumas naudojant specializuota akiy sekimo irengini. Tyri-
mo dalyviai Zitiréjo i vaizdus turinCius stereoskopinj efekta, bei turéjo subjektyviai vertinti
patiriama regos diskomforta. Buvo tikimasi, kad surinktuose signaluose galima isskirti po-
Zymius, kurie leis atskirti skirtinga regos diskomforta sukeliancius vaizdus.
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Mokslo problemos aktualumas

Nuo 1987 m. JAV National Science Foundation (NSF) pripaZino vizualizavimo moksla
strategine nacionalinio proverZio kryptimi. Po i§ esmés sékmingos ir 25 metus trukusios
Sios mokslo krypties vystymosi istorijos lieka nemazai aktualiy ir neiSspresty problemy.
Tarp aktualiausiyjy probleminiy vizualizavimo uZzdaviniy (angl. Visualization Research
Challenges) ivardinamas vizualizavimas, kuris skirtomas i tyrimy tematikas, susijusias su
vizualizavimu: 1) skirtu Zitrovui (angl. view-dependent), 2) gristu vaizdo turiniu (angl.
image-based rendering), 3) naudojant skirtingas vaizdo skyras (angl. multiresolution),
4) gristu svarba (angl. importance-based), 5) naudojanciu adaptyvius ir iSteklius tausojan-
¢ius algoritmus (angl. adaptive resource-aware algorithms). Teigiama, kad Sie uZdaviniai
turi biiti sprendZiami {vertinant konkrecios taikomosios srities keliamus reikalavimus.

Analizuojant trimacio vizualizavimo sistemy ateities perspektyvas yra atliktos kelios
trimacio vizualizavimo rinkos vystymosi prognozés-studijos. Industry Reports 2017 metais
prognozavo 3D vizualizavimo rinkos augima iki 4,03 mlrd. JAV doleriy 2023 metais. PnS
Market Research 2019 metais atlikto tyrimo duomenimis, trimacio sutapdinimo ir mode-
liavimo rinka turéty pasiekti 3,84 mlrd. JAV doleriy iki 2023 mety.

Doktorantiiros metu buvo tiriami poZymiai susij¢ su regos diskomfortu (angl. visu-
al discomfort), su vizualizavimu sietinu akiy nuovargiu (angl. gaze fatigue), akiy itampa
(angl. eyestrain), klaidingu gylio suvokimu ir ilgu Zmogaus prisitaikymo prie vaizdo laiku
(angl. depth perception time). Yra Zinoma, kad stereoskopinio vizualizavimo metu suak-
tyvéja Zmogaus akiy judéjima valdancios smegeny sritys (angl. oculomotor nerve), kuriy
aktyvumas pastebimas EEG signaluose. Disertacijoje buvo siekiama iStirti esamy metody
EEG signalams analizuoti efektyvuma naudotojui stebint stereoskopinj turinj ir pasiily-
ti poZymius, regos diskomforto lygiui matuoti. Tyrimai buvo atliekami naudojant viesai
prieinama stereoskopiniy vaizdy rinkini. Buvo registruojami abiejy akiy judesiai ir matuo-
jamos elektroencefalogramos.

Tyrimy objektas

Tyrimy objektras yra paieska iSmatuojamy kiekybiniy parametry, kurie leisty atpazinti,
kada Zmogus stebi vaizdus neitempdamas akiy judesius valdancius raumenis, atskirti, kada
vaizdo gylio suvokimui akys yra tinkamoje padétyje, o kada gylio suvokimui tinkamos akiy
padéties ilgai nepavyksta rasti.

Darbo tikslas

Disertacijos tikslas — pasitlyti naujus pozZymius, tinkamus regos diskomfortui aptikti isti-
riant pokycius elektroencefalogramose ir akiy judesiy sekimo metu gautuose signaluose.

Darbo uzdaviniai

Disertacijos hipotezéms patikrinti suformuluoti trys uZdaviniai:
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1. I8tirti stebimo audiovizualaus turinio poveiki signaly poZymiams, gautiems i§ ma-
tuojamy elektroencefalogramy ir elektrokardiogramy.

2. Istirti skirtingo lygio stereoskopini gyli formuojanciy vaizdy itaka elektroence-
falogramoms ir pasiiilyti poZymius regos diskomforto simptomus salygojanciy
biiseny atpaZinimui.

3. Istirti akiy sekimo metu gaunamy signaly poZymius, leidZiancius aptikti regos
diskomforto simptomus stereoskopiniy vaizdy stebéjimo metu.

Tyrimy metodika

Disertacijoje atlikti tyrimai suskirstyti i dvi grupes. Pirmojoje grupéje naudojami Perrin
et al. (2016) autoriaus tyrimy metu iSmatuoti signalai. Autoriaus atlikto tyrimo metu 20
savanoriy grupé stebéjo trijy kokybés lygiy vaizdo iraSus naudodami skirtingo dydZio
vaizduoklius. Tyrimo metu iSmatuotos elektrokardiogamos ir elektroencefalogramos buvo
analizuojamos naudojant skaitmeninio signaly apdorojimo priemones bei statisting signaly
poZymiy analiz¢. Antrojojedisertacijos tyrimy grupéje naudojami 120 stereoskopiniy vaiz-
du, kuriuos paruose¢ ir subjektyvaus vertinimo eksperimentiniame tyrime naudojo ir kiti
autoriai Jung et al. (2013). Disertacijos rengimo metu buvo surinkta papildoma 28 savano-
riy grupé. Eksperimentiniame tyrime dalyvave savanoriai, kaip ir kity autoriy tyrimuose,
subjektyviai vertino stereoskopinius vaizdus i penkias klases. Papildomai eksperimento
metu buvo matuojami savanoriy elektroencefalogramy signalai, registruojami akiy jude-
siai, vyzdZio dydZio dinaminiai pokyciai bei fiksuotas momentas, kuomet akys pasiekia
patogia padeéti gyliui stereoskopiniuose vaizduose suvokti.

Darbo mokslinis nhaujumas

1. Pasiilyti poZymiai ivertinti patirta kokybg matuojant elektroencefalogramos sig-
nalus, esant trims skirtingiems patirtos kokybés lygiams.

2. Pasitlyti poZymiai leidZiantys taikyti akiy sekimo irenginus stereoskopiniy vaizdy
sukeltam regos diskomfortui jvertinti.

3. Pasiiilyti poZymiai stereoskopiniy vaizdy sukeltam regos diskomfortui jvertinti
matuojant elektroencefalogramos signalus.

Darbo rezultatais yra siekiama pakeisti iprastus vidutinés nuomonés ivercius, kuriais
vertinamas vartotojo regos diskomfortas. PoZymiai i§skirti i§ iSmatuoty fiziologiniy sig-
naly yra individualis, todeél gali iSreiksti kiekvieno vartotojo regos diskomforta stebint
stereoskopini turinj.

Darbo rezultaty praktiné reikSmeé

PoZymiai i$skirti i§ iSmatuoty fiziologiniy signaly yra individualis, todél gali iSreiksti kiek-
vieno vartotojo pojiiti stebint stereoskopini turini, taip pat ir regos diskomforta. Akiy jude-
siy sekimo analizei pasitlyti sprendimai gali buti pritaikyti virtualios realybés sistemose
registruojanciose akiy judesius ir vyzdzio dydi. Elektroencefalogramy analizei pasitlyti
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sprendimai tinkami naudoti virtualios realybés sistemose, kur yra galimybé naudoti tik
viena jutikli, integruota akiniuose.

Ginamieji teiginiai

1.

Naudojant kaip pozymius i§ EEG signaly isskirtus aukstus ir Zemus beta daZnius,
iSmatuotus momens ir smilkinio srityse, galima jvertinti patirta kokybe¢ audiovi-
zualinio turinio stebéjimo metu.

Elektroencefalogramos 8—13 Hz ir 21-30 Hz daZniy ruoZuose apskaiCiuoty sig-
naly spektro galios santykis yra poZymis stereoskopiniams vaizdams aptikti, kai
Zitirovui nepavyksta parinkti akiy padéties tinkamam gylio vaizde suvokimui.

. Taskuy, i kuriuos sutelkiamas démesys skaicius yra poZymis aptikti stereoskopinio

gylio suvokimo momenta, jei naudojamas 2 s trukmés signalo analizés kadras.

. Akies vyzdZio dydis yra poZymis aptikti stereoskopinio gylio suvokimo momen-

ta, taCiau naudojant 5 s trukmés signalo analizés kadra kaip pozymis turi buti
pasirenkamas akiy paralaksas.

Darbo rezultaty aprobavimas

Darbo rezultatai paskelbti SeSiuose moksliniuose straipsniuose:

dvi publikacijos atspausdintos Zurnaluose, itrauktuose i Thomson Reuters Web of
Science sarasa ir turinCiuose citavimo indeksa (Abromavicius et al. 2018, Abro-
mavicius, Serackis 2018);

viena publikacija atspausdinta recenzuojamame mokslo Zurnale, jtrauktame i In-
dex Copernicus duomeny bazg (Abromavicius 2017);

trys publikacijos atspausdintos tarptautiniy konferencijy straipsniy rinkiniuose,
cituojamuose ISI Proceedings duomeny bazéje (Abromavicius, Serackis 2017,
Abromavicius et al. 2017, Serackis et al. 2015)

Pagrindiniai disertacijos rezultatai paskelbti aStuoniuose mokslinése konferencijose:

2015 m. tarptautinéje konferencijoje ,,Computing in Cardiology CINC*, Pranci-
zijoje, Nicoje;

2016-2018 m. respublikinése konferencijose ,,Science — Future of Lithuania“, Lie-
tuvoje, Vilniuje;

2017 m. tarptautinéje konferencijoje ,,Electrical, Electronic and Information Scien-
ces (eStream), Lietuvoje, Vilniuje;

2017 m. tarptautinéje konferencijoje ,,Advances in Information, Electronic and
Electrical Engineering AIEEE®, Latvijoje, Rygoje;

2017-2018 m. tarptautinése konferencijose ,,Data Analysis Methods for Software
Systems®, Lietuvoje, Druskininkuose;
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Disertacijos struktura

Disertacija sudaro: jvadas, trys skyriai, bendrosios i§vados. Darbo apimtis yra 106 pusla-
piai kuriuose yra pateikta: 28 paveikslai ir 21 lentelé. Disertacijoje remtasi 158 kity autoriy
literatdiros Saltiniais.

1. Literaturos saltiniy apie regos diskomforto radima metody
apzvalga

Iprastai Patirta kokybé (angl. sense of presence — SoP) matuojama klausimynais, kai varto-
tojas dazniausiai pagal 5 ar 10 baly sistema jvertina matyta audiovizualinj turini Song et al.
(2016). I klausimynus jtraukiami klausimai apie garso kokybe, vaizdo kokybe, isijautima
i turini, aplinkos suvokima. Siuos subjektyvius matavimus bandoma pakeisti objektyviais
kokybés jvertinimo budais, kurie grindZiami Zmogaus fiziologine ir kognityvine informa-
cija Gupta et al. (2013).

Fiziologiniai metodai leisty jvertinti SoP realiuoju laiku. Sirdies ritmas ar jo pokytis
gali biiti vienas i§ poZymiy, padedanciy objektyviai jvertinti SoP. Sirdies ritmo mazéjimas
sietinas su kognityvine veikla, o jaudinantys potyriai didina Sirdies ritma (Bryant, Oliver
2009). Priklausomyb¢ tarp Sirdies ritmo ir SoP nustatyta ZaidZiant kompiuterinius Zaidi-
mus Castellar er al. (2014); Drachen et al. (2010). Barreda-Angeles et al. (2014) tyrinéjo
regos diskomforta (angl. visual discomfort) stereoskopiniuose 3D vaizduose esant jvai-
rioms subjekto emocinéms biisenoms. Subjektyvis saves jvertinimai nerodé jokio povei-
kio regos diskomfortui, tac¢iau buvo rasta koreliacija tarp regos diskomforto ir fiziologiniy
matavimy Sirdies ritmo elektrokardiogramos (ECG) signale, taip pat rasta koreliacija tarp
elektromiografijos ir odos galvaniniy reakcijy (angl. electrodermal activity).

Naujausios technologijos ir infrastruktiira pritaikytos vaizda perduoti ne tik i stacio-
narius irenginius, bet ir { mobiliuosius telefonus, planSetinius ar neSiojamuosius kompiu-
terius. Objektyviam SoP jvertinimo patobulinimui pasiiilytas fiziologiniy signaly rinki-
nys, susidedantis i§ EEG, ECG, kvépavimo signaly ir subjektyviy matavimy (Perrin et al.
2016). Autoriai SoP jvertinti naudoja skirtingos raiskos ir garso kokybés audiovizualini
turini. Signaly rinkinys yra vieSai prieinamas. Kadangi pateikti duomenys yra ivertinti
subjektyviai, galima ieSkoti panaSumo tarp subjektyviy ir objektyviy SoP matavimy.

Regos diskomforto vertinimas gali biiti atliekamas dvejopai: naudojant subjektyvias
arba objektyvias priemones. Atliekant subjektyvy vertinima, savanoriams yra pateikiamas
klausimynas (eksperimento metu arba po jo), kuriame yra praSoma jvertinti patirta regos
diskomfortg, pykinima, akiy komforta, patirta kokybe stebint rodoma vaizdo medZiaga.
Objektyviais metodais siekiama rasti biologiniy signaly pokyti keiciant stereoskopinio tu-
rinio parametrus. Atliekant objektyvy vertinima yra stebimas savanoriy biologinis atsakas
i rodoma turinj. Stebint biologiniy signaly pokyti dazniausiai yra naudojama akiy sekimo
iranga (Bernhard et al. 2014; latsun er al. 2015; Lin, Kao 2018), bei smegeny aktyvumo
matavimo iranga (Fischmeister, Bauer 2006; Frey et al. 2016; Moon, Lee 2017). Zinoma,
yra ieSkoma ir kity objektyviy budy vertinti regos diskomforta, savo tyrime, Lee et al. 2016
parodé, kad regos diskomfortg galima vertinti remiantis veido iSraiSkomis.
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2. Patirtos kokybés matavimo metody teoriniai tyrimai

Tyrimui atlikti naudotas Perrin et al. (2016) duomeny rinkinys, kuris buvo sudarytas atlikus
trijy matavimo sesijy eksperimenta. Kiekvienai sesijai naudoti skirtingi prietaisai, kuriais
vartotojams buvo pateikiama vaizdo ir garso medZiaga. Tokiu biidu buvo subjektyviai nu-
statytas SoP lygio pokytis per kiekviena sesija. Pirmaja sesija (Zemo SoP lygio) vizualiné
medZiaga buvo rodoma naudojant iPhone5 kartu su stereogarso signalu. Antrajai tyrimo
sesijai (vidutinio SoP lygio) panaudota iPad4 ir stereogarso signalas. Treciajai tyrimo sesi-
jai (aukSto SoP lygio) panaudoti 5.1 erdvinio garso signalai ir taikyta ultraaukstos raiSkos
vaizdo sistema. Tyrime dalyvavo 20 subjekty (10 vyry ir 10 motery), kuriy amZius buvo
svyravo 18 iki 25 mety (vidutinis amzius — 21 metai esant 2,2 mety standartiniam nuokry-
piui). Per kiekviena sesija parodyti 9 epizodai, kuriy metu iSmatuoti fiziologiniai signalai.
Tyrime naudoty epizody trukmeé buvo 1 minuté. Po kiekvieno epizodo SoP jvertinta sub-
jektyviai — klausimynu. Tyrimo subjektai pagal 9 baly skale nuo 1 (Zemas kriterijus) iki
9 (aukstas kriterijus) jvertino SoP atsakydami i SeSis klausimus. Perrin et al. (2016) atlik-
ta subjektyviy rezultaty analizé parode, kad kiekvienas tirtas prietaisas skirtingai paveike
SoP lygi. Tyrimo metu buvo matuoti ECG, EEG ir kvépavimo signalai, jie jtraukti { duo-
meny rinkinj.

Remiantis pateiktais signalais buvo siekiama patikrinti dvi hipotezes. Pirmoji — ar
Sirdies ritma veikia skirtingi SoP lygiai. Antroji — ar smegeny aktyvuma veikia skirtingi
SoP lygiai. Tyrimo metu esant skirtingiems SoP lygiams ECG signaluose buvo matuojamas
vidutinis Sirdies ritmas, o panaudojant EEG signalus — skaifiuojamas ir analizuojamas
smegeny aktyvumo spektras.

Sirdies ritmas ECG signale apskai¢iuotas matuojant laiko trukme tarp gretimy R tipo
danteliy (RR intervaly). Q, R ir S tipo danteliai sudaro QRS kompleksa. Sis kompleksas yra
lengvai aptinkamas pozymis ECG signale. Todé¢l remiantis QRS kompleksu Sirdies ritmo
skaiCiavimas tiriant iprastus, neturinc¢ius anomalijy ECG signalus, yra patikimas. Tyrime
vidutinis §irdies ritmas skai¢iuotas kiekvienam rodytam 60 s trukmés epizodui, diiZiais per
minut¢ (bpm. Gauti rezultatai palyginti su subjektyviu SoP jvertinimu.

ECG signalo diskretizavimo daZnis 250 Hz, pateikti signalai buvo padalinti i 70 s truk-
més intervalus — atitinkamai kiekvienam subjekto Zitirétam epizodui. Pirmos 10 s skirtos
nuolatinei dedamajai nustatyti ir nebuvo naudojamos QRS piky detektoriuje.

Signalui filtruoti buvo naudojamas ECG signaly triuk§mo $alinimo, glaudinimo ir
glodinimo Savitzky ir Golay filtras (Lascu, Lascu 2008). Savitzky ir Golay filtrai daz-
niausiai naudojami triuk§mingiems signalams, turintiems platy daZniy ruoZa, glodinti. Sie
filtrai yra efektyvesni nei iprasti ribotos impulsinés reakcijos filtrai, nes leidZia paSalin-
ti triukSma ir i§saugoti reikalinga aukStojo daZnio turinj signale (Krishnan, Seelamantula
2013). Remiantis Krishnan, Seelamantula (2013) ir gautais eksperimentiniais rezultatais
misy naudojamam Savitzky ir Golay filtrui parinkta 8 filtro eilé ir 31 atskaitos ilgio kad-
ras. Maitinimo linijos triukSmai pasalinti juostiniu 50 Hz begalinés impulsinés reakcijos
filtru, o filtro kokybe rodantis parametras Q yra lygus 30.

QRS kompleksams aptikti buvo naudotas piky detektorius, gristas Pan, Tompkins
(1985) pasiilytu algoritmu, pakeitus slenksting riba, nuo kurios aptinkami QRS pikai, iki
0,35 santykiniy vienety. Intervalas tarp gretimy piky parinktas standartinis — 0,25 s truk-
més. Piky detektoriaus veikimas pavaizduotas S2.1 paveiksle. Apskritimai Zymi aptiktus
Sirdies dazius. Epizodas pradétas rodyti ties O s riba. Piky detektoriaus rezultatai buvo
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patikrinti vizualiai. 10 % atsitiktinai pasirinkty ECG signaly piky detektoriaus tikslumas
vir$ijo 99,9 %.

< 1200 ]
€ 800
o
Q. 400
€
2 0 HAN AR
'400 Il Il L L L L L L L L |
-10 -5 15 20 25 30 35 40 45 50 55 60
laikas, s
a)
T T
1200 - |
Zz 9
s ”‘ | | [ | T | T (I
g 400 “ I I H “ I H | -
£ ‘\ l l | H I I l |
g, 0k JL,/\/VW/\J L/N»ku\ | M/\mm«l‘ L e LA \M"\«WMJ L/AMM“ LA L
400t ‘ ‘ ‘ ‘ ‘ B
-2 -1 0 1 2 3 4
laikas, s
b)

S2.1 pav. Elektrokardiogramos signalas: a) vieno epizodo trukmés elektrokardiogramos
signalas; b) jo 6 s trukmeés kadras

Remiantis aptiktais QRS pikais kiekvienam epizodui buvo skaiiuojamas vidutinis
Sirdies ritmas. Vidutinio $irdies ritmo matavimo rezultatai, gauti per kiekvieng sesija (9 epi-
zody metu, dalyvaujant 20 subjekty), yra pateikti S2.1 lenteléje.

S2.1 lentelé. Vidutinis Sirdies ritmas ir jo standartinis nuokrypis esant trims skirtingiems patirtos
kokybés lygiams. Rezultatai pateikti diiZiais per minutg

SoP lygis Zemas Vidutinis Aukstas
Vidutinis $irdies ritmas, bpm 70,80 69,04 67,85
Standartinis nuokrypis, bpm 5,59 5,58 6,23

Vidutinis Sirdies ritmas taikant Zemo SoP lygio prietaisy konfigiiracija buvo 70,8 bpm,
jo standartinis nuokrypis 5,59 bpm. Taikant vidutinio SoP lygio prietaisy konfigdiracija vi-
dutinis Sirdies ritmas sumazéjo iki 69,04 bpm, standartinis nuokrypis — 5,58 bpm. Taikant
auksto SoP lygio konfigiiracija — vidutinis §irdies ritmas sumazéjo iki 67,85 bpm, standar-
tinis nuokrypis — 6, 23 bpm.

EEG signalo daZniy juostos ribos yra nuo 0,01 iki mazdaug 100 Hz, jo amplitudé
kinta nuo keliy mikrovolty iki 100 pV, Zinoma signalo amplitudé gali biti ir Zymiai dides-
ne, esant pasalinio triuk§mo poveikiui. Tiriant SoP poveiki smegeny aktyvumui gamma
bangos (30—100 Hz) dazniausiai néra nagrinéjamos dél didelés matavimo netikslumy tiki-
mybés ir kity priezas¢iy (Whitham et al. 2008, 2007; Yuval-Greenberg et al. 2008).
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EEG signalai buvo matuoti, stiprinti ir skaitmenizuoti naudojant EGI Geodesic EEG
System 300. EEG duomenys rinkti naudojant 256 elektrodus, jos montuojant standarti-
nése pozicijose ant galvos. EEG signaly diskretizavimo daznis 250 Hz. Elektrodai, kuriy
impedansas buvo didesnis nei 50 (2 buvo pasalinti i§ tolimesnio apdorojimo. Signalams
filtruoti buvo naudojamas 4 eilés skaitmeninis Batervorto filtras, kurio pralaidumo juosta
buvo nuo 0,01 iki 40 Hz. Signaly atskaitos potencialui buvo naudojamas Cz elektrodas, po
to signaly potencialai véliau buvo dar karta atskaityti pagal EEG signaly bendra vidurki.
Artefaktams paSalinti buvo naudotas wavelet ICA metodas (Castellanos, Makarov 2006).
Naudojant $i metoda buvo pakeisti du pradiniai parametrai: slenkstinis daugiklis sumaZin-
tas iki 0,5 ir ICA komponentams iSskirti naudotas fastICA algoritmas (Hyvarinen 1999;
Hyvirinen, Oja 2000).

Gauty signaly spektriné analizé atlikta naudojant daugiaktiging (angl. multi-taper)
Furjé transformacija (Thomson 1982). Sis metodas naudoja ortogonaliy lango funkcijy
rinkinj, dar vadinama Slepian kiigiais, ir véliau apskaic¢iuoja gauto spektro svertinj vidurki
(Gramfort et al. 2014). Kiigio rinkinio naudojimas (vietoj iprastos lango funkcijos) leidZia
sumazinti spektro jverciy dispersija (Haykin et al. 2005). Spektriné analizé¢ buvo taikoma
visam 60 s trukmés epizodui. Norint efektyviai panaudoti greitaja Furjé transformacija
signalai buvo prailginti nuliais. Taigi, tirti EEG signalai buvo prailginti iki 2'4 matavimo
imciy. Spektriné analizé buvo atlikta naudojant Fieldtrip irankj (Oostenveld et al. 2011).

Gautas EEG signaly spektras skirstytas i 5 daZniy ruoZus: teta (4-7 Hz), alfa (8-
12 Hz), Zemos beta (13—-16 Hz), vidutinés beta (17-20 Hz) ir aukstos beta (21-29 Hz)
bangos. Tolimesnei analizei 256 EEG elektrodai buvo suskirstyti i 10 smegeny aktyvumo
sri¢iy: kaire ir deSine kakting, kair¢ ir deSine centring, kair¢ ir deSing momenine, kairg ir
desing pakausing, kaire ir deSing smilkining (Andreassi 2010; Idris et al. 2014). Taigi, kiek-
vienam subjektui buvo apskaiciuota 50 skirtingy poZymiy atitinkanc¢iy kiekvieno regiono
daZniy ruozus.

Tiriant SoP lygio poveiki Sirdies ritmui ir smegeny aktyvumui buvo atlikta dvimaté
ir trimaté vieno faktoriaus dispersiné analizé (ANOVA). Tyrimo metu patikrinta ar gauti
ECG ir EEG signaly poZymiai reik§mingai skiriasi esant skirtingiems SoP lygiams. Re-
zultaty reikSmingumui jvertinti taikoma p verté. p verté rodo tikimybe gauti F statistinio
kriterijaus verte, kuri bus didesné uz tikraja kriterijaus statistikos F verte¢ ar jai lygi. Ma-
Za p verté, pvz., mazesné nei 0,05, rodo, kad skirtumai tarp tiriamy grupiy vidurkiy yra
statistiSkai reikSmingi.

Sirdies ritmo ANOVA analizés rezultatai pateikti S2.2 lenteléje. Rezultatai suapvalin-
ti iki trijy skaiCiy po kablelio. Gauty rezultaty analizé parodé, kad yra artimas statistiSkai
reik§mingumo ribai rySys tarp Zemo ir vidutinio SoP lygiy (F = 2,09, p = 0,15). Statistis-
kai reikSmingas skirtumas nebuvo gautas tarp vidutinio ir auksto SoP lygiy (F = 1,34, p
= 0,25), t. y. Sirdies ritmas esant vidutinio ir aukSto SoP lygiy konfigtracijai skiriasi ne-
reik§mingai. Nustatytas statistiSkai reikSmingas rySys tarp Zemo ir aukSto SoP lygiy (F =
7,03, p = 0,008). Gavus trimatés ANOVA analizés rezultatus buvo nustatytas statistiSkai
reik§mingas rySys tarp visy trijuy SoP lygiy ir Sirdies ritmo (F = 3,47, p = 0,032).

Smegeny aktyvumo ANOVA analizés rezultatai pateikti S2.3 lenteléje. Apskaiciuo-
tos reikSmeés suapvalintos iki trijy skaiciy po kabelio, statistiSkai reikSmingi rezultatai
(p < 0,05) paryskinti, reikSmés maZzesnés uz 0,001 pazymétos kaip ,,<0,001%.
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Gauty rezultaty analizé parodé, kad aukStas beta bangy aktyvumas kaktingje srityje
neéra statistiSkai reikSmingas (p > 0,05), taciau tyrimo metu nustatytas statistiSkai reiks-
mingas skirtumas ( p < 0,05 ) teta, alfa, Zemame ir vidutiniame beta bangy ruoZuose.

S2.2 lentelé. ANOVA analizés rezultatai vertinant Sirdies ritmo pokytj esant skirtingiems patirtos
kokybes lygiams. StatistiSkai reik§mingi rezultatai (p < 0,05) yra paryskinti

SoP lygis F kriterijus p verté
Zemas — vidutinis 2,09 0,150
Vidutinis — aukstas 1,34 0,249
Zemas — aukstas 7,03 0,008
Zemas — vidutinis — aukstas 3,47 0,032

Momeninéje srityje statistiSkai reikSmingi skirtumai (p < 0,05) esant skirtingam SoP
lygiui nustatyti teta, alfa, Zemame ir aukStame beta ruoZe. ReikSmingy skirtumy (p > 0,1)
nerasta vidutiniame beta ruoze. Taip pat tyrimo metu nustatytas reikSmingas skirtumas
(p < 0,05) centrinio regiono teta ir alfa daZniy ruozuose.

Smilkininéje srityje teta, Zemi ir auksti beta daZniai parodé statistiSkai reikSmingus
skirtumus (p < 0,001) esant skirtingiems SoP lygiams. Taip pat, reikSmingas skirtumas
(p = 0,009) rastas alfa daZniy ruoZe deSiniajame smilkiningje srityje. Taciau, statistiSkai
reikSmingi skirtumai nenustatyti smilkiningje srityje vidutiniams beta virpesiams (p >
0,4), ir kair¢je smilkininéje srityje alfa virpesiams (p = 0,18).

S2.3 lentelé. ANOVA analizés rezultatai vertinant smegeny aktyvumo pokytj esant trims
skirtingiems patirtos kokybés lygiams. StatistiSkai reik§mingi rezultatai (p < 0,05) yra parySkinti

Smegeny bangos Teta Alfa Zemos beta Vidutineés Aukstos
beta beta
. Kaire <0,001 <0,001 0,091 <0,001 0,283
Kaktiné )
Desine | 0,004 0,014 0,005 0,026 0,104
. . Kairé <0,001 0,002 <0,001 0,191 0,041
Momeniné
Desiné | <0,001 0,009 <0,001 0,680 <0,001
.. Kairé 0,004 <0,001 0,770 0,230 0,334
Centriné
Desine | 0,045 <0,001 0,367 0,981 0,352
. . . Kaire <0,001 0,182 <0,001 0,726 <0,001
Smilkininé .
Desine | <0,001 0,009 <0,001 0,466 <0,001
.. . Kaire 0,027 <0,001 0,739 0,751 0,789
Pakausine
Desine | 0,011 <0,001 0,968 0,717 0,448

PakauSinéje srityje, tarp skirtingy SoP lygiy statistiSkai reik§mingas skirtumas (p <
0,01) nustatytas alfa ir teta daZniy ruoZams. ReikSmingy skirtumy (p > 0,4) nerasta beta
(Zemuose, vidutiniuose ir auksStuose) dazniy ruozuose.
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3. Regos diskomforto radimo stereovaizduose metody
eksperimentiniai tyrimai

Tyrimui atlikti surinktas Zvilgsnio ir EEG duomeny rinkinys. Tyrime dalyvavo 28 tyrimo
subjektai, kuriems buvo rodomas 120 stereoskopiniy paveiksly rinkinys. Eksperimento
metu tyrimo subjektai buvo praSomi jvertinti patiriama regos diskomforta 5 baly skalé-
je, nuo 1 iki 5 (didZiausias regos komfortas) ir paZyméti kuomet pavyksta suvokti stereo
gyli vaizduose (angl. depth perception moment — DPM). Atlikto eksperimento struktiira
pavaizduota S3.1 paveiksle. Eksperimento metu 120 stereoskopiniy vaizdy parodyta 28 ty-
rimo subjektams. Tyrimo subjektai jvertino patirta regos diskomfortg ir gylio suvokimo
momenta. Eksperimento metu buvo matuojami fiziologiniai signalai.

120 stereoskopiniy Eksperimentiné 78 savanoriai
paveiksly sesija
[ EEG . S
Fiziologiniy signaly

matavimas
[ Regos signalai

[ DPM _
Subjektyviis

jvertinimai

[ Regos diskomfortas

S3.1 pav. Eksperimento struktiira

Tyrimui atlikti buvo naudota IVY LAB surinkta stereoskopiniy 3D vaizdy duomeny
bazeé, publikuota Jung et al. (2013) autoriy. Vaizdy rinkini sudaro vaizdai turintys gamtos,
miesto, vidaus, Zmoniy ir daikty objekty. Vaizdy skiriamoji geba 1920 x 1080 pikseliai, tu-
rintys nesugretinima kintanti nuo 0,11 iki 5,07 laipsniy. Paveikslai buvo rodomi naudojant
1280 x 1024 tasky raiskos ekrang dirbanti 60 Hz atnaujinimo dazniu. Stereoskopinis 3D
efektas buvo gaunamas naudojant anaglifo technologija. Tyrimo subjektai dévéjo akinius
su raudonos ir mélynos spalvos filtrais.

Tyrimo dalyviai buvo savanoriai (25 vyrai ir 3 moterys), kuriy amZius svyravo nuo 19
iki 37 mety. Savanoriams nebuvo jokiais budais atlyginama uz dalyvavima eksperimente.
Prie§ prasidedant eksperimentui visi jo dalyviai buvo supazindinti su tyrimo procediiro-
mis, tikslu, subjektyvaus vertinimo kriterijais, matuojamais duomenimis, galimu pavoju
sveikatai. Taip pat tyrimo subjektai ZodZiu ir rastu dave sutikima dalyvauti eksperimente.
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Tyrimo subjektams paveikslai buvo rodomi naudojant 17 coliy ekrana. Sédéjimo atstu-
mas buvo 70-80 cm. Natiraliy salygy atkarimui galvos ir kiino judesiai nebuvo varZomi,
taip pat savanoriai galéjo déveéti rega koreguojancius prietaisus. Eksperimento pradZioje
kiekvienas subjektas turéjo atlikti stereo suvokimo (ITU-R BT.2021-1) ir daltonizmo tes-
tus (Isihara Color Vision test). Taip pat, pries prasidedant bandymams tyrimo subjektams
buvo rodomi 5 atsitiktiniai paveikslai. Buvo praSoma juos jvertinti. Tokiu biidu buvo sta-
bilizuojami nuomonés iverciai. Po Sio Zingsnio buvo kalibruojami akiy sekimo ir EEG
matavimo jrenginiai.

Kiekvienas eksperimentas susidéjo i§ dviejy daliy (S3.2 pav.). Pirmoje bandymo daly-
je buvo rodomas stereoskopinis paveikslas, ir tyrimo subjektai turéjo nuspausti klaviattiros
mygtuka, kuomet jie suvoké rodomo paveikslo stereoskopini gyli, paveikslas buvo rodomas
dar 5 s. Antra dalis buvo balsavimas, kuomet tyrimo subjektai turéjo jvertinti patirta regos
diskomforta penkiy baly skaléje, naudojant Single Stimulus kategorinj vertinimo metoda
ITU-R BT.500-13. Kiekvienas eksperimentas susidéjo i§ 120 tokiy bandymy. Kiekvieno
bandymo metu buvo matuojami fiziologiniai singalai. Vidutiné eksperimento trukmé buvo
apie 40 minuciy.

Po eksperimento subjektyviy duomeny patikimumui jvertinti buvo taikomos proce-
diiros aprasytos ITU-R BT.500-13 standarte. Nepatikimy jverciy nebuvo rasta, taciau i$
eksperimento buvo paSalinta keturiy tyrimo subjekty fiziologiniai duomenys, dél blogo
matavimo tikslumo (1 subjektas), matavimo klaidy, susijusiy su mazu kvantavimo dazniu
(2 subjektai), ir vienas subjektas neatliko daltonizmo testo.

[ Matuojami Zvilgsnio ir EEG signalai ]

[ 1 dalis. Rodomas paveikslas ][ 2 dalis. Balsavimas ]

l >

Laukiama DPI Ss Ss

S3.2 pav. Vieno bandymo struktiira

Regos signalai buvo matuoti Tobii T120 iranga. [ranga buvo kalibruojama kiekvienam
subjektui atskirai, naudojant 5 taskus ant ekrano. Taskai buvo tolygiai paskirstyti ekrane.
Iranga matavo akiy pozicija, Zvilgsnio pozicija, vyzdzio diametra. Matavimo daZnis buvo
60 Hz. Pagal surinktus matavimo duomenis buvo formuojami poZymiai:

« zvilgsnio taskas — apskaic¢iuojamas kaip centrinis tagkas tarp kairés ir deSinés akiy
zvilgsnio koordinaciy ekrane;

o vyzdZio dydis — apskai¢iuojamas, kaip vidurkis tarp kairés ir deSinés akiy iSma-
tuoty vyzdZio diametry, matuojamas milimetrais;

« démesio taskas — apskai¢iuojamas pagal erdvini Zvilgsnio taSky iSsidéstyma. Kiek-
vienas démesio taskas yra Zvilgsnio tasky rinkinys, kuriy koordinatés nepakeité
daugiau nei 5% ekrano ploto per 0,2 s ar daugiau;



100 SUMMARY IN LITHUANIAN

« regos nesugretinamumas — horizontalus atstumas tarp kairés ir desinés akiy zvilgs-
nio koordinaciu, apskai¢iuojamas kiekvienam Zvilgsnio taSkui, matuojamas pik-
seliais; pikselio dydis su naudota jranga buvo 0,2634 mm;

« kryZminés regos santykis — teigiamy ir neigiamy regos nesugretinamumy santy-
kis, apskaic¢iuojamas kiekvienam bandymui.

Norint jvertinti skirtuma tarp regos diskomforto grupiy gauti poZymiai buvo tiriami
naudojant skirtingos trukmeés kadrus. Buvo suformuoti 6 skirtingos trukmés kadrai: ,,visas
iki DPM*, 1, 2, 5 s iki DPM, 5 s po DPM ir ,,pilnos trukmés*. ,,Pilnos trukmés* kadrui
buvo naudojami poZymiai surinkti per visa vieno bandymo trukme, nuo vaizdo pasiro-
dymo iki subjektyvaus vertinimo dalies. ,,Visas iki DPM* kadras tiria laika nuo vaizdo
pasirodymo iki DPM jvedimo. Sis kadras néra pastovios trukmés, jo trukme kinta nuo ke-
liy sekundZiy iki deSimties, taciau juo galima jvertinti regos aktyvuma nuo vaizdo rodymo
pradzios iki gylio suvokimo jvesties (DPM).

S3.1 lentel¢je pateikti vidutinis démesio taskai skaicius kiekvienai regos diskomforto
grupei, naudojant skirtingos trukmés kadro ilgi ir ju ANOVA rezultatai. I$ pateikty rezul-
taty matyti, kad vidutinis démesio tasky skaicius priklauso nuo kadro trukmés ir nuo regos
diskomforto. Tasky skaicius naudojant ilgiausios trukmeés kadra — ,,pilnos trukmés* buvo
gautas nuo 20,87 (VCo diskomforto lygiui) iki 24,05 (Co diskomforto lygiui). Naudojant
trumpiausia kadro ilgj (1 s iki DPM) tasky skai¢ius buvo gautas nuo 2,64 (Un lygiui) iki
2,84 (VCo lygiui). Reik§mingas démesio tasky skirtumas gautas tik naudojant 2 s iki DPM
langa (p = 0,035).

S3.2 lenteléje pateiktas vidutinis vyzdZio dydis kiekvienai regos diskomforto grupei,
naudojant skirtingos trukmes kadro ilgj ir juy ANOVA rezultatai. IS pateikty rezultaty ma-
tyti, kad vyzdZio dydis nebuvo priklausomas nuo tiriamo kadro trukmés. Reik§mingi vyz-
dZio dydzio skirtumai gauti naudojant 1 s iki DPM (p < 0,001), 2 s iki DPM (p = 0,001),
,visas iki DPM* (p = 0,036), 5 s po DPM (p < 0,001) ir ,,pilnos trukmés* (p = 0,015)
kadrus.

S3.1 lentelé. Démesio tasky skaicius ir jy reikSmingumo lygis esant skirtingam regos
diskomfortui. StatistiSkai reik§mingi rezultatai (p < 0,05) yra paryskinti

Kadro trukmé VUn Un MdUn Co VCo F p verté
Visas iki DPM 12,14 13,32 13,52 14,64 11,76 1,977 0,097
1 s iki DPM 2,69 2,64 2,74 2,81 2,84 1,907 0,107
2 s iki DPM 4,54 4,30 4,55 4,58 4,77 2,597 0,035
5 s iki DPM 9,22 9,64 9,47 9,93 9,70 0,770 0,545
5 s po DPM 8,46 8,34 8,84 8,85 8,87 1,217 0,302
Pilnos trukmés 21,17 22,28 22,68 24,05 20,87 | 1,596 0,174

S3.3 lenteléje pateiktas regos nesugretinamumas kiekvienai regos diskomforto gru-
pei, naudojant skirtingos trukmés kadro ilgj ir ju ANOVA rezultatai. IS pateikty rezultaty
matyti, kad regos nesugretinamumas visoms kadry trukméms buvo panaSus, taciau kito
nuo regos diskomforto. StatistiSkai reik§mingas pokytis rastas naudojant 5 s iki DPM kad-
ro ilgi (p = 0,041).

EEG signalai buvo matuoti vartotojui draugiska Neurosky Mindwave iranga, turincia
vieng sauso matavimo elektroda, montuojama ant kaktinés srities. Irenginys yra belaidis,



SUMMARY IN LITHUANIAN 101

todél yra lengvai uzdedamas ir patogus vartotojui. Taip pat, Sis irenginys yra naudojamas
moksliniuose tyrimuose, tokiose srityse kaip Zmogaus emocijy atpaZinimas (Ursutiu et al.
2018; Yoon et al. 2013), vystant démesio sutelkimo sistemas, kurios gali atpaZinti kelis
démesio sutelkimo lygmenis (Chen et al. 2017), ar matuojant kognityving apkrova (Lin,
Kao 2018). Maskeliunas et al. (2016) iStyré vartotojui draugiSky EEG irenginiy galimybes
valdymo uzduotims, bei ivardino problemas, kurias reikia jvertinti naudojant tokius jrengi-
nius. Siame tyrime EEG aktyvumas buvo tiriamos galimybés naudoti EEG jtaiso signala,
kaip papildoma pozZymi regos diskomfortui nustatyti.

S3.2 lentelé. Vyzdzio dydis (milimetrais) ir jy reikSmingumo lygis esant skirtingam regos
diskomfortui. Statistiskai reikSmingi rezultatai (p < 0,05) yra paryskinti

Kadro trukmé VUn Un MdUn Co VCo F p verté
Visas iki DPM 4,22 4,25 4,18 4,18 4,11 2,579 0,036
1 s iki DPM 4,12 4,23 4,19 4,14 4,06 5,424 0,000
2 s iki DPM 4,14 4,26 4,19 4,15 4,07 4,990 0,001
5 s iki DPM 4,15 4,22 4,17 4,18 4,12 1,653 0,158
5 s po DPM 4,17 4,32 4,27 4,20 4,11 8,170 0,000
Pilnos trukmés 4,21 4,27 4,18 4,18 4,11 3,098 0,015

S3.3 lentelé. Regos nesugretinamumas (pikseliais) ir reikSmingumo lygis esant skirtingam regos
diskomfortui. StatistiSkai reik§mingi rezultatai (p < 0,05) yra paryskinti

Kadro trukme VUn Un MdUn Co VCo F p verté
Visas iki DPM 80,5 82,3 76,6 79,9 71,2 1,239 0,292
1 s iki DPM 81,3 84,3 78,3 79,4 73,1 1,583 0,176
2 s iki DPM 82,4 83,3 78,5 79,7 71,1 2,095 0,079
5 s iki DPM 83 85,8 75,9 80,5 70,9 2,502 0,041
5 s po DPM 83,6 85,8 82,7 79,5 75,6 1,679 0,152
Pilnos trukmés 82,3 83,5 78,9 80,3 74,1 0,836 0,502

Surinkti EEG signalai filtruoti naudojant 4 eilés skaitmenini Batervorto filtra, kurio
pralaidumo juosta buvo nuo 0,01 iki 40 Hz. Akiy judesiy ir kitiems artefaktams paSalinti
naudotas wavelet ICA metodas (Castellanos, Makarov 2006). Naudojant §i metodg buvo
pakeisti du pradiniai parametrai: slenkstinis daugiklis sumazintas iki 0,3 ir ICA komponen-
tams iSskirti naudotas fastICA algoritmas (Hyvarinen 1999; Hyvirinen, Oja 2000). Gauty
signaly spektriné analizé atlikta naudojant daugiakiiging (angl. multi-taper) Furjé trans-
formacija (Thomson 1982). Sis metodas igyvendintas naudojant Oostenveld et al. (2011)
pasitlyta algoritma, taikant 1 s trukmés langg.

Regos diskomforto poveikis smegeny aktyvumui buvo analizuojamas naudojant 0,5,
1,3,4,56, 7, ir 10 s trukmés analizés kadrus iki DPM. Tiriamy EEG daZniy ruozai
(alfa, beta, teta) kinta netolygiai, Cheng et al. (2007) tyré ne tik dazniy ruoZus, bet ir juy
santykius (pvz., teta/alfa, beta/alfa ir t.t.). Taip pat, Zou et al. (2015) tirdami atsitiktiniy
tasky stereogramos poveiki naudojo SeSis daZniy ruozo santykius, reikSminti skirtumai
buvo rasti visuose tirtuose santykiuose, bei alfa daZniy ruoze.

Siame tyrime gautas EEG signaly spektras skirstytas i 5 daZniy ruozus: teta (6) 4—
8 Hz, alfa (o) 8-13 Hz, Zzemos beta (/3) 13—-17 Hz, vidutinés beta (3,,) 17-21 Hz ir auks-
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tos beta (8,) 21-30 Hz bangos (Dunbar et al. 2007). Taip pat panaudoti septyni dazniy
ruoZy santykiai: «o/3; (a+ 60)/8; /0 0/8; ) Br; &/ B o/ Bn. Santykiai buvo pasirinkti
remiantis Cheng et al. (2007), Hsu, Wang (2013) ir Zou et al. (2015) tyrimy rezultatais.

S3.4 lentelé. Smegeny dazniy ANOVA rezultatai esant skirtingiems regos diskomforto lygiams.
StatistiSkai reik§mingi rezultatai (p < 0,05) yra paryskinti

kadro  trukmeé  (iki | 6 o B B 5n
DPM), s

0,5 0,273 0,550 0,259 0,054 0,429
1 0,241 0,617 0,199 0,126 0,330
2 0,169 0,906 0,176 0,189 0,014
3 0,436 0,347 0,242 0,133 0,002
4 0,276 0,173 0,362 0,129 0,002
5 0,223 0,231 0,280 0,061 0,000
6 0,273 0,917 0,231 0,017 0,000
7 0,299 0,664 0,203 0,162 0,008
10 0,217 0,432 0,556 0,598 0,277

S3.4 lenteléje pateikti EEG daZniy ruoZzy ANOVA rezultatai, esant penkiems skir-
tingiems regos diskomforto lygiams naudojant skirtingo ilgio kadrus. Dazniuose 6, « ir
B nebuvo rasta statistiSkai reik§Smingy skirtumy prie skirtingy regos diskomforto lygiy
naudojant visas tirtas kadro ilgio trukmes. StatistiSkai reik§mingi skirtumai nustatyti 3,
dazniy ruoZe naudojant 6 s iki DPM kadro trukme (p = 0,017), ir 3, daZniy ruoZe naudo-
jant 2, 3,4, 5, 6 ir 7 s iki DPM kadro trukmeg, reik§mingumo vertés (suapvalintos iki trijy
skai€iy po kablelio) atitinkamai buvo 0,014, 0,002, 0,002, 0,000, 0,000 ir 0,008.

S3.5 lentel¢je pateikti EEG dazniy ruozy santykiniy ANOVA rezultatai, esant pen-
kiems skirtingiems regos diskomforto lygiams naudojant skirtingo ilgio kadrus.

S3.5 lentelé. Santykiy tarp smegeny dazniy ANOVA rezultatai esant skirtingiems regos
diskomforto lygiams. StatistiSkai reikSmingi rezultatai (p < 0,05) yra paryskinti

kadro trukmé (ki | 6/ 6/8 @+a)/8 o/ a/fi  afBfn  af/bh
DPM), s

0,5 0,031 0,244 0,233 0,365 0,229 0,088 0,392
1 0,020 0,084 0,178 0438 0,232 0,287 0,050
2 0,026 0,599 0,543 0,330 0,190 0,288 0,005
3 0,005 0,936 0,564 0,162 0,296 0,154 0,000
4 0,002 0,772 0,499 0,114 0,381 0,274 0,000
5 0,002 0,543 0,372 0,087 0,537 0,221 0,000
6 0,103 0,396 0,819 0,936 0,665 0,028 0,000
7 0,104 0,548 0,755 0,893 0,252 0,104 0,020
10 0,068 0,460 0,707 0,786 0,681 0,598 0,055

Tiriant daZniy santykius 6/8, (0 + «)/8, o/ and «/f; nebuvo rasti statistiSkai
reik§mingi skirtumai esant skirtingiems regos diskomforto lygiams, naudojant visus ka-
dro ilgius. Reik§mingi skirtumai nustatyti 6/« santykiui naudojant 0,5, 1, 2, 3, 4ir 5 s
iki DPM kadrus, gautos p reik§més atitinkamai buvo 0,031, 0,020, 0,026, 0,005, 0,002 ir
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0,002. Taip pat reikSmingi skirtumai rasti /5, santykiui naudojant 6 s iki DPM kadro ilgi
(p = 0,028), santykiui 8/, naudojant 2, 3, 4, 5, 6 ir 7 s iki DPM kadro ilgi. P reik§més
atitinkamai buvo gautos 0,005, 0,000, 0,000, 0,000, 0,000 ir 0,020.

Bendrosios iSvados

1. Naudojant poZymius iSskirtus i§ elektrokardiogramos ir elektroencefalogramos
signaly galima aptikti patirtos kokybés lygi, kai yra rodomas audiovizualinis turi-
nys:

1.1. naudojant kaip pozymi i$ elektrokardiogramos iSskirta Sirdies ritma galima
ivertinti patirta kokybe tarp auks$to ir Zemo patirtos kokybés lygiy audiovi-
zualinio turinio stebéjimo metu, esant trim patirtos kokybés lygiams;

1.2. naudojant kaip poZymius i§ elektroencefalogramos i$skirtus dazniy ruozus
galima jvertinti patirta kokybe audiovizualinio turinio stebé&jimo metu. PozZy-
miams iSskirti beta bangy daZniy ruoza reikia dalinti { Zemus, vidutinius ir
aukstus beta bangy dazniy ruoZus.

2. PoZymiai iSskirti matuojant elektroencefalogramos signalus vartojojui orientuotu
vieno elektrodo EEG jutikliu kaktinéje srityje yra tinkami jvertinti stereoskopiniy
vaizdy sukelta regos diskomforta:

2.1. naudojant kaip poZymj i§ elektroencefalogramos isskirta auksta beta bangy
daZniy ruoZa arba alfa ir auksto beta bangy daZniy ruozy santyki galima atpa-
Zinti regos diskomforto simptomus salygojancias biisenas, jei yra naudojamas
2-7 s trukmés analizés kadras iki gylio suvokimo momento;

2.2. naudojant kaip poZymij i§ elektroencefalogramos iSskirta teta ir alfa bangy
daZniy ruozy santyki galima atpaZinti regos diskomforto simptomus salygo-
jancias blsenas, jei yra naudojamas 0,51 s trukmés analizés kadras iki gylio
suvokimo momento.

3. PoZymiai i§skirti naudojant akiy sekimo jrenginius yra tinkami jvertinti stereo-
skopiniy vaizdy sukeltg regos diskomforta:

3.1. naudojant kaip poZymij akiy sekimo metu apskaiCiuota vidutini démesio tasky
skaiCiy galima aptikti regos diskomforto simptomus stereoskopiniy vaizdy
stebéjimo metu, jei naudojamas 2 s trukmés signalo analizés kadras iki gylio
suvokimo momento;

3.2. naudojant kaip poZymj akiy sekimo metu apskaiciuotg vyzdZio dydi galima
aptikti regos diskomforto simptomus stereoskopiniy vaizdy stebéjimo metu,
jei naudojamas 1, 2 s trukmés signalo analizés kadras iki gylio suvokimo
momento.

3.3. naudojant kaip poZymij akiy sekimo metu apskai¢iuota regos nesugretinamu-
ma galima aptikti regos diskomforto simptomus stereoskopiniy vaizdy ste-
béjimo metu, jei naudojamas 5 s trukmés signalo analizés kadras iki gylio
suvokimo momento.
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