22,842 research outputs found

    A Planning Pipeline for Large Multi-Agent Missions

    Get PDF
    In complex multi-agent applications, human operators are often tasked with planning and managing large heterogeneous teams of humans and autonomous vehicles. Although the use of these autonomous vehicles broadens the scope of meaningful applications, many of their systems remain unintuitive and difficult to master for human operators whose expertise lies in the application domain and not at the platform level. Current research focuses on the development of individual capabilities necessary to plan multi-agent missions of this scope, placing little emphasis on the integration of these components in to a full pipeline. The work presented in this paper presents a complete and user-agnostic planning pipeline for large multiagent missions known as the HOLII GRAILLE. The system takes a holistic approach to mission planning by integrating capabilities in human machine interaction, flight path generation, and validation and verification. Components modules of the pipeline are explored on an individual level, as well as their integration into a whole system. Lastly, implications for future mission planning are discussed

    Prototype gesture recognition interface for vehicular head-up display system

    Get PDF

    GazeDrone: Mobile Eye-Based Interaction in Public Space Without Augmenting the User

    Get PDF
    Gaze interaction holds a lot of promise for seamless human-computer interaction. At the same time, current wearable mobile eye trackers require user augmentation that negatively impacts natural user behavior while remote trackers require users to position themselves within a confined tracking range. We present GazeDrone, the first system that combines a camera-equipped aerial drone with a computational method to detect sidelong glances for spontaneous (calibration-free) gaze-based interaction with surrounding pervasive systems (e.g., public displays). GazeDrone does not require augmenting each user with on-body sensors and allows interaction from arbitrary positions, even while moving. We demonstrate that drone-supported gaze interaction is feasible and accurate for certain movement types. It is well-perceived by users, in particular while interacting from a fixed position as well as while moving orthogonally or diagonally to a display. We present design implications and discuss opportunities and challenges for drone-supported gaze interaction in public

    An Evaluation of Touch and Pressure-Based Scrolling and Haptic Feedback for In-car Touchscreens

    Get PDF
    An in-car study was conducted to examine different input techniques for list-based scrolling tasks and the effectiveness of haptic feedback for in-car touchscreens. The use of physical switchgear on centre consoles is decreasing which allows designers to develop new ways to interact with in-car applications. However, these new methods need to be evaluated to ensure they are usable. Therefore, three input techniques were tested: direct scrolling, pressure-based scrolling and scrolling using onscreen buttons on a touchscreen. The results showed that direct scrolling was less accurate than using onscreen buttons and pressure input, but took almost half the time when compared to the onscreen buttons and was almost three times quicker than pressure input. Vibrotactile feedback did not improve input performance but was preferred by the users. Understanding the speed vs. accuracy trade-off between these input techniques will allow better decisions when designing safer in-car interfaces for scrolling applications

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving

    Sonification of probabilistic feedback through granular synthesis

    Get PDF
    We describe a method to improve user feedback, specifically the display of time-varying probabilistic information, through asynchronous granular synthesis. We have applied these techniques to challenging control problems as well as to the sonification of online probabilistic gesture recognition. We're using these displays in mobile, gestural interfaces where visual display is often impractical
    corecore