9,571 research outputs found

    A Conceptual Framework for Motion Based Music Applications

    Get PDF
    Imaginary projections are the core of the framework for motion based music applications presented in this paper. Their design depends on the space covered by the motion tracking device, but also on the musical feature involved in the application. They can be considered a very powerful tool because they allow not only to project in the virtual environment the image of a traditional acoustic instrument, but also to express any spatially defined abstract concept. The system pipeline starts from the musical content and, through a geometrical interpretation, arrives to its projection in the physical space. Three case studies involving different motion tracking devices and different musical concepts will be analyzed. The three examined applications have been programmed and already tested by the authors. They aim respectively at musical expressive interaction (Disembodied Voices), tonal music knowledge (Harmonic Walk) and XX century music composition (Hand Composer)

    Interactive Spaces. Models and Algorithms for Reality-based Music Applications

    Get PDF
    Reality-based interfaces have the property of linking the user's physical space with the computer digital content, bringing in intuition, plasticity and expressiveness. Moreover, applications designed upon motion and gesture tracking technologies involve a lot of psychological features, like space cognition and implicit knowledge. All these elements are the background of three presented music applications, employing the characteristics of three different interactive spaces: a user centered three dimensional space, a floor bi-dimensional camera space, and a small sensor centered three dimensional space. The basic idea is to deploy the application's spatial properties in order to convey some musical knowledge, allowing the users to act inside the designed space and to learn through it in an enactive way

    Toward a model of computational attention based on expressive behavior: applications to cultural heritage scenarios

    Get PDF
    Our project goals consisted in the development of attention-based analysis of human expressive behavior and the implementation of real-time algorithm in EyesWeb XMI in order to improve naturalness of human-computer interaction and context-based monitoring of human behavior. To this aim, perceptual-model that mimic human attentional processes was developed for expressivity analysis and modeled by entropy. Museum scenarios were selected as an ecological test-bed to elaborate three experiments that focus on visitor profiling and visitors flow regulation

    Somatic ABC's: A Theoretical Framework for Designing, Developing and Evaluating the Building Blocks of Touch-Based Information Delivery

    Get PDF
    abstract: Situations of sensory overload are steadily becoming more frequent as the ubiquity of technology approaches reality--particularly with the advent of socio-communicative smartphone applications, and pervasive, high speed wireless networks. Although the ease of accessing information has improved our communication effectiveness and efficiency, our visual and auditory modalities--those modalities that today's computerized devices and displays largely engage--have become overloaded, creating possibilities for distractions, delays and high cognitive load; which in turn can lead to a loss of situational awareness, increasing chances for life threatening situations such as texting while driving. Surprisingly, alternative modalities for information delivery have seen little exploration. Touch, in particular, is a promising candidate given that it is our largest sensory organ with impressive spatial and temporal acuity. Although some approaches have been proposed for touch-based information delivery, they are not without limitations including high learning curves, limited applicability and/or limited expression. This is largely due to the lack of a versatile, comprehensive design theory--specifically, a theory that addresses the design of touch-based building blocks for expandable, efficient, rich and robust touch languages that are easy to learn and use. Moreover, beyond design, there is a lack of implementation and evaluation theories for such languages. To overcome these limitations, a unified, theoretical framework, inspired by natural, spoken language, is proposed called Somatic ABC's for Articulating (designing), Building (developing) and Confirming (evaluating) touch-based languages. To evaluate the usefulness of Somatic ABC's, its design, implementation and evaluation theories were applied to create communication languages for two very unique application areas: audio described movies and motor learning. These applications were chosen as they presented opportunities for complementing communication by offloading information, typically conveyed visually and/or aurally, to the skin. For both studies, it was found that Somatic ABC's aided the design, development and evaluation of rich somatic languages with distinct and natural communication units.Dissertation/ThesisPh.D. Computer Science 201

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    The digitally 'Hand Made' object

    Get PDF
    This article will outline the author’s investigations of types of computer interfaces in practical three-dimensional design practice. The paper contains a description of two main projects in glass and ceramic tableware design, using a Microscribe G2L digitising arm as an interface to record three-dimensional spatial\ud design input.\ud \ud The article will provide critical reflections on the results of the investigations and will argue that new approaches in digital design interfaces could have relevance in developing design methods which incorporate more physical ‘human’ expressions in a three-dimensional design practice. The research builds on concepts indentified in traditional craft practice as foundations for constructing new types of creative practices based on the use of digital technologies, as outlined by McCullough (1996)
    corecore