648 research outputs found

    Techniques, Taxonomy, and Challenges of Privacy Protection in the Smart Grid

    Get PDF
    As the ease with which any data are collected and transmitted increases, more privacy concerns arise leading to an increasing need to protect and preserve it. Much of the recent high-profile coverage of data mishandling and public mis- leadings about various aspects of privacy exasperates the severity. The Smart Grid (SG) is no exception with its key characteristics aimed at supporting bi-directional information flow between the consumer of electricity and the utility provider. What makes the SG privacy even more challenging and intriguing is the fact that the very success of the initiative depends on the expanded data generation, sharing, and pro- cessing. In particular, the deployment of smart meters whereby energy consumption information can easily be collected leads to major public hesitations about the tech- nology. Thus, to successfully transition from the traditional Power Grid to the SG of the future, public concerns about their privacy must be explicitly addressed and fears must be allayed. Along these lines, this chapter introduces some of the privacy issues and problems in the domain of the SG, develops a unique taxonomy of some of the recently proposed privacy protecting solutions as well as some if the future privacy challenges that must be addressed in the future.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111644/1/Uludag2015SG-privacy_book-chapter.pd

    A survey on smart grid communication infrastructures: Motivations, requirements and challenges

    Get PDF
    A communication infrastructure is an essential part to the success of the emerging smart grid. A scalable and pervasive communication infrastructure is crucial in both construction and operation of a smart grid. In this paper, we present the background and motivation of communication infrastructures in smart grid systems. We also summarize major requirements that smart grid communications must meet. From the experience of several industrial trials on smart grid with communication infrastructures, we expect that the traditional carbon fuel based power plants can cooperate with emerging distributed renewable energy such as wind, solar, etc, to reduce the carbon fuel consumption and consequent green house gas such as carbon dioxide emission. The consumers can minimize their expense on energy by adjusting their intelligent home appliance operations to avoid the peak hours and utilize the renewable energy instead. We further explore the challenges for a communication infrastructure as the part of a complex smart grid system. Since a smart grid system might have over millions of consumers and devices, the demand of its reliability and security is extremely critical. Through a communication infrastructure, a smart grid can improve power reliability and quality to eliminate electricity blackout. Security is a challenging issue since the on-going smart grid systems facing increasing vulnerabilities as more and more automation, remote monitoring/controlling and supervision entities are interconnected. © 1998-2012 IEEE

    Anonymous and Efficient Message Authentication Scheme for Smart Grid

    Get PDF
    Smart grid has emerged as the next-generation electricity grid with power flow optimization and high power quality. Smart grid technologies have attracted the attention of industry and academia in the last few years. However, the tradeoff between security and efficiency remains a challenge in the practical deployment of the smart grid. Most recently, Li et al. proposed a lightweight message authentication scheme with user anonymity and claimed that their scheme is provably secure. But we found that their scheme fails to achieve mutual authentication and mitigate some typical attacks (e.g., impersonation attack, denial of service attack) in the smart grid environment. To address these drawbacks, we present a new message authentication scheme with reasonable efficiency. Security and performance analysis results show that the proposed scheme can satisfy the security and lightweight requirements of practical implementations and deployments of the smart grid

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    A Lightweight Privacy-Preserved Spatial and Temporal Aggregation of Energy Data

    Get PDF
    Smart grid provides fine-grained real time energy consumption, and it is able to improve the efficiency of energy management. It enables the collection of energy consumption data from consumer and hence has raised serious privacy concerns. Energy consumption data, a form of personal information that reveals behavioral patterns can be used to identify electrical appliances being used by the user through the electricity load signature, thus making it possible to further reveal the residency pattern of a consumer’s household or appliances usage habit. This paper proposes to enhance the privacy of energy con- sumption data by enabling the utility to retrieve the aggregated spatial and temporal consumption without revealing individual energy consumption. We use a lightweight cryptographic mech- anism to mask the energy consumption data by adding random noises to each energy reading and use Paillier’s additive homo- morphic encryption to protect the noises. When summing up the masked energy consumption data for both Spatial and Temporal aggregation, the noises cancel out each other, hence resulting in either the total sum of energy consumed in a neighbourhood at a particular time, or the total sum of energy consumed by a household in a day. No third party is able to derive the energy consumption pattern of a household in real time. A proof-of- concept was implemented to demonstrate the feasibility of the system, and the results show that the system can be efficiently deployed on a low-cost computing platform

    Securing the Home Energy Management Platform

    Get PDF
    Energy management in households gets increasingly more attention in the struggle to integrate more sustainable energy sources. Especially in the electrical system, smart grid systems are envisioned to be part in the efforts towards a better utilisation of the energy production and distribution infrastructure. The Home Energy Management System (HEMS) is a critical infrastructure component in this endeavour. Its main goal is to enable energy services utilising smart devices in the households based on the interest of the residential consumers and external actors. With the role of being both an essential link in the communication infrastructure for balancing the electrical grid and a surveillance unit in private homes, security and privacy become essential to address. In this chapter, we identify and address potential threats Home Energy Management Platform (HEMP) developers should consider in the progress of designing architecture, selecting hardware and building software. Our approach starts with a general view of the involved stakeholders and the HEMS. Given the system overview, a threat model is constructed from the HEMP developer\u27s point of view. Based on the threats that have been detected, possible mitigation strategies are proposed taking into account the state of the art of technology for securing platforms

    Smart Grid Challenges Through the Lens of the European General Data Protection Regulation

    Get PDF
    The General Data Protection Regulation (GDPR) was conceived to remove the obstacles to the free movement of personal data while ensuring the protection of natural persons with regard to the processing of such data. The Smart Grid has similar features as any privacy-critical system but, in comparison to the engineering of other architectures, has the peculiarity of being the source of energy consumption data. Electricity consumption constitutes an indirect means to infer personal information. This work looks at the Smart Grid from the perspective of the GDPR, which is especially relevant now given the current growth and diversification of the Smart Grid ecosystem. We provide a review of existing works highlighting the importance of energy consumption as valuable personal data as well as an analysis of the established Smart Grid Architecture Model and its main challenges from a legal viewpoint, in particular the challenge of sharing data with third parties.This work is funded by the PDP4E project, H2020 European Project Number: 787034. We would like to thank all PDP4E project partners for their valuable inputs and comments, and Marta Castro and Mikel Vergara for their discussions

    Residential Demand Side Management model, optimization and future perspective: A review

    Get PDF
    The residential load sector plays a vital role in terms of its impact on overall power balance, stability, and efficient power management. However, the load dynamics of the energy demand of residential users are always nonlinear, uncontrollable, and inelastic concerning power grid regulation and management. The integration of distributed generations (DGs) and advancement of information and communication technology (ICT) even though handles the related issues and challenges up to some extent, till the flexibility, energy management and scheduling with better planning are necessary for the residential sector to achieve better grid stability and efficiency. To address these issues, it is indispensable to analyze the demand-side management (DSM) for the complex residential sector considering various operational constraints, objectives, identifying various factors that affect better planning, scheduling, and management, to project the key features of various approaches and possible future research directions. This review has been done based on the related literature to focus on modeling, optimization methods, major objectives, system operation constraints, dominating factors impacting overall system operation, and possible solutions enhancing residential DSM operation. Gaps in future research and possible prospects have been discussed briefly to give a proper insight into the current implementation of DSM. This extensive review of residential DSM will help all the researchers in this area to innovate better energy management strategies and reduce the effect of system uncertainties, variations, and constraints

    Smart Grid Metering Networks: A Survey on Security, Privacy and Open Research Issues

    Get PDF
    Smart grid (SG) networks are newly upgraded networks of connected objects that greatly improve reliability, efficiency and sustainability of the traditional energy infrastructure. In this respect, the smart metering infrastructure (SMI) plays an important role in controlling, monitoring and managing multiple domains in the SG. Despite the salient features of SMI, security and privacy issues have been under debate because of the large number of heterogeneous devices that are anticipated to be coordinated through public communication networks. This survey paper shows a brief overview of real cyber attack incidents in traditional energy networks and those targeting the smart metering network. Specifically, we present a threat taxonomy considering: (i) threats in system-level security, (ii) threats and/or theft of services, and (iii) threats to privacy. Based on the presented threats, we derive a set of security and privacy requirements for SG metering networks. Furthermore, we discuss various schemes that have been proposed to address these threats, considering the pros and cons of each. Finally, we investigate the open research issues to shed new light on future research directions in smart grid metering networks

    Cyber Hygiene Maturity Assessment Framework for Smart Grid Scenarios

    Get PDF
    Cyber hygiene is a relatively new paradigm premised on the idea that organizations and stakeholders are able to achieve additional robustness and overall cybersecurity strength by implementing and following sound security practices. It is a preventive approach entailing high organizational culture and education for information cybersecurity to enhance resilience and protect sensitive data. In an attempt to achieve high resilience of Smart Grids against negative impacts caused by different types of common, predictable but also uncommon, unexpected, and uncertain threats and keep entities safe, the Secure and PrivatE smArt gRid (SPEAR) Horizon 2020 project has created an organization-wide cyber hygiene policy and developed a Cyber Hygiene Maturity assessment Framework (CHMF). This article presents the assessment framework for evaluating Cyber Hygiene Level (CHL) in relation to the Smart Grids. Complementary to the SPEAR Cyber Hygiene Maturity Model (CHMM), we propose a self-assessment methodology based on a questionnaire for Smart Grid cyber hygiene practices evaluation. The result of the assessment can be used as a cyber-health check to define countermeasures and to reapprove cyber hygiene rules and security standards and specifications adopted by the Smart Grid operator organization. The proposed methodology is one example of a resilient approach to cybersecurity. It can be applied for the assessment of the CHL of Smart Grids operating organizations with respect to a number of recommended good practices in cyber hygiene.This project has received funding from the European Union Horizon 2020 research and innovation program under grant agreement No. 787011 (SPEAR
    • …
    corecore