663 research outputs found

    A Generalized Framework on Beamformer Design and CSI Acquisition for Single-Carrier Massive MIMO Systems in Millimeter Wave Channels

    Get PDF
    In this paper, we establish a general framework on the reduced dimensional channel state information (CSI) estimation and pre-beamformer design for frequency-selective massive multiple-input multiple-output MIMO systems employing single-carrier (SC) modulation in time division duplex (TDD) mode by exploiting the joint angle-delay domain channel sparsity in millimeter (mm) wave frequencies. First, based on a generic subspace projection taking the joint angle-delay power profile and user-grouping into account, the reduced rank minimum mean square error (RR-MMSE) instantaneous CSI estimator is derived for spatially correlated wideband MIMO channels. Second, the statistical pre-beamformer design is considered for frequency-selective SC massive MIMO channels. We examine the dimension reduction problem and subspace (beamspace) construction on which the RR-MMSE estimation can be realized as accurately as possible. Finally, a spatio-temporal domain correlator type reduced rank channel estimator, as an approximation of the RR-MMSE estimate, is obtained by carrying out least square (LS) estimation in a proper reduced dimensional beamspace. It is observed that the proposed techniques show remarkable robustness to the pilot interference (or contamination) with a significant reduction in pilot overhead

    Beamspace Aware Adaptive Channel Estimation for Single-Carrier Time-varying Massive MIMO Channels

    Full text link
    In this paper, the problem of sequential beam construction and adaptive channel estimation based on reduced rank (RR) Kalman filtering for frequency-selective massive multiple-input multiple-output (MIMO) systems employing single-carrier (SC) in time division duplex (TDD) mode are considered. In two-stage beamforming, a new algorithm for statistical pre-beamformer design is proposed for spatially correlated time-varying wideband MIMO channels under the assumption that the channel is a stationary Gauss-Markov random process. The proposed algorithm yields a nearly optimal pre-beamformer whose beam pattern is designed sequentially with low complexity by taking the user-grouping into account, and exploiting the properties of Kalman filtering and associated prediction error covariance matrices. The resulting design, based on the second order statistical properties of the channel, generates beamspace on which the RR Kalman estimator can be realized as accurately as possible. It is observed that the adaptive channel estimation technique together with the proposed sequential beamspace construction shows remarkable robustness to the pilot interference. This comes with significant reduction in both pilot overhead and dimension of the pre-beamformer lowering both hardware complexity and power consumption.Comment: 7 pages, 3 figures, accepted by IEEE ICC 2017 Wireless Communications Symposiu

    Enhancing massive MIMO: A new approach for Uplink training based on heterogeneous coherence time

    Full text link
    Massive multiple-input multiple-output (MIMO) is one of the key technologies in future generation networks. Owing to their considerable spectral and energy efficiency gains, massive MIMO systems provide the needed performance to cope with the ever increasing wireless capacity demand. Nevertheless, the number of scheduled users stays limited in massive MIMO both in time division duplexing (TDD) and frequency division duplexing (FDD) systems. This is due to the limited coherence time, in TDD systems, and to limited feedback capacity, in FDD mode. In current systems, the time slot duration in TDD mode is the same for all users. This is a suboptimal approach since users are subject to heterogeneous Doppler spreads and, consequently, different coherence times. In this paper, we investigate a massive MIMO system operating in TDD mode in which, the frequency of uplink training differs among users based on their actual channel coherence times. We argue that optimizing uplink training by exploiting this diversity can lead to considerable spectral efficiency gain. We then provide a user scheduling algorithm that exploits a coherence interval based grouping in order to maximize the achievable weighted sum rate
    corecore