34,485 research outputs found

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving

    Benets of tight coupled architectures for the integration of GNSS receiver and Vanet transceiver

    Get PDF
    Vehicular adhoc networks (VANETs) are one emerging type of networks that will enable a broad range of applications such as public safety, traffic management, traveler information support and entertain ment. Whether wireless access may be asynchronous or synchronous (respectively as in the upcoming IEEE 8021.11p standard or in some alternative emerging solutions), a synchronization among nodes is required. Moreover, the information on position is needed to let vehicular services work and to correctly forward the messages. As a result, timing and positioning are a strong prerequisite of VANETs. Also the diffusion of enhanced GNSS Navigators paves the way to the integration between GNSS receivers and VANET transceiv ers. This position paper presents an analysis on potential benefits coming from a tightcoupling between the two: the dissertation is meant to show to what extent Intelligent Transportation System (ITS) services could benefit from the proposed architectur

    Satellite Navigation for the Age of Autonomy

    Full text link
    Global Navigation Satellite Systems (GNSS) brought navigation to the masses. Coupled with smartphones, the blue dot in the palm of our hands has forever changed the way we interact with the world. Looking forward, cyber-physical systems such as self-driving cars and aerial mobility are pushing the limits of what localization technologies including GNSS can provide. This autonomous revolution requires a solution that supports safety-critical operation, centimeter positioning, and cyber-security for millions of users. To meet these demands, we propose a navigation service from Low Earth Orbiting (LEO) satellites which deliver precision in-part through faster motion, higher power signals for added robustness to interference, constellation autonomous integrity monitoring for integrity, and encryption / authentication for resistance to spoofing attacks. This paradigm is enabled by the 'New Space' movement, where highly capable satellites and components are now built on assembly lines and launch costs have decreased by more than tenfold. Such a ubiquitous positioning service enables a consistent and secure standard where trustworthy information can be validated and shared, extending the electronic horizon from sensor line of sight to an entire city. This enables the situational awareness needed for true safe operation to support autonomy at scale.Comment: 11 pages, 8 figures, 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS
    • 

    corecore