1,300 research outputs found

    Sound and Precise Malware Analysis for Android via Pushdown Reachability and Entry-Point Saturation

    Full text link
    We present Anadroid, a static malware analysis framework for Android apps. Anadroid exploits two techniques to soundly raise precision: (1) it uses a pushdown system to precisely model dynamically dispatched interprocedural and exception-driven control-flow; (2) it uses Entry-Point Saturation (EPS) to soundly approximate all possible interleavings of asynchronous entry points in Android applications. (It also integrates static taint-flow analysis and least permissions analysis to expand the class of malicious behaviors which it can catch.) Anadroid provides rich user interface support for human analysts which must ultimately rule on the "maliciousness" of a behavior. To demonstrate the effectiveness of Anadroid's malware analysis, we had teams of analysts analyze a challenge suite of 52 Android applications released as part of the Auto- mated Program Analysis for Cybersecurity (APAC) DARPA program. The first team analyzed the apps using a ver- sion of Anadroid that uses traditional (finite-state-machine-based) control-flow-analysis found in existing malware analysis tools; the second team analyzed the apps using a version of Anadroid that uses our enhanced pushdown-based control-flow-analysis. We measured machine analysis time, human analyst time, and their accuracy in flagging malicious applications. With pushdown analysis, we found statistically significant (p < 0.05) decreases in time: from 85 minutes per app to 35 minutes per app in human plus machine analysis time; and statistically significant (p < 0.05) increases in accuracy with the pushdown-driven analyzer: from 71% correct identification to 95% correct identification.Comment: Appears in 3rd Annual ACM CCS workshop on Security and Privacy in SmartPhones and Mobile Devices (SPSM'13), Berlin, Germany, 201

    I know what leaked in your pocket: uncovering privacy leaks on Android Apps with Static Taint Analysis

    Get PDF
    Android applications may leak privacy data carelessly or maliciously. In this work we perform inter-component data-flow analysis to detect privacy leaks between components of Android applications. Unlike all current approaches, our tool, called IccTA, propagates the context between the components, which improves the precision of the analysis. IccTA outperforms all other available tools by reaching a precision of 95.0% and a recall of 82.6% on DroidBench. Our approach detects 147 inter-component based privacy leaks in 14 applications in a set of 3000 real-world applications with a precision of 88.4%. With the help of ApkCombiner, our approach is able to detect inter-app based privacy leaks

    Evidence-based Development of Trustworthy Mobile Medical Apps

    Get PDF
    abstract: Widespread adoption of smartphone based Mobile Medical Apps (MMAs) is opening new avenues for innovation, bringing MMAs to the forefront of low cost healthcare delivery. These apps often control human physiology and work on sensitive data. Thus it is necessary to have evidences of their trustworthiness i.e. maintaining privacy of health data, long term operation of wearable sensors and ensuring no harm to the user before actual marketing. Traditionally, clinical studies are used to validate the trustworthiness of medical systems. However, they can take long time and could potentially harm the user. Such evidences can be generated using simulations and mathematical analysis. These methods involve estimating the MMA interactions with human physiology. However, the nonlinear nature of human physiology makes the estimation challenging. This research analyzes and develops MMA software while considering its interactions with human physiology to assure trustworthiness. A novel app development methodology is used to objectively evaluate trustworthiness of a MMA by generating evidences using automatic techniques. It involves developing the Health-Dev β tool to generate a) evidences of trustworthiness of MMAs and b) requirements assured code generation for vulnerable components of the MMA without hindering the app development process. In this method, all requests from MMAs pass through a trustworthy entity, Trustworthy Data Manager which checks if the app request satisfies the MMA requirements. This method is intended to expedite the design to marketing process of MMAs. The objectives of this research is to develop models, tools and theory for evidence generation and can be divided into the following themes: • Sustainable design configuration estimation of MMAs: Developing an optimization framework which can generate sustainable and safe sensor configuration while considering interactions of the MMA with the environment. • Evidence generation using simulation and formal methods: Developing models and tools to verify safety properties of the MMA design to ensure no harm to the human physiology. • Automatic code generation for MMAs: Investigating methods for automatically • Performance analysis of trustworthy data manager: Evaluating response time generating trustworthy software for vulnerable components of a MMA and evidences.performance of trustworthy data manager under interactions from non-MMA smartphone apps.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    CARTON Project: Do-It-Yourself Approach to Turn a Smartphone into a Smart Eyewear

    Get PDF
    International audienceThis paper presents a tool to transform a smartphone into a smart eyewear, named "CARTON", following a Do-It-Yourself (DIY) approach. The hardware prototype is made with very simple materials and regular tools we could find anywhere. It also includes a Software Development Kit (SDK) with samples in order to easily adapt or develop new mobile app compatible with this kind of device. By providing everything open-source and open-hardware, we intend to solve the reachability of technologies related to smart eyewear and aim to accelerate research around it. Users experiments were conducted in which participants were asked to create, by themselves, the CARTON's hardware part and perform usability tests with their own creation. Qualitative user feedback and quantitative results prove that CARTON is functional and feasible by anyone, without specific skills

    Deep Reinforcement Learning Driven Applications Testing

    Get PDF
    Applications have become indispensable in our lives, and ensuring their correctness is now a critical issue. Automatic system test case generation can significantly improve the testing process for these applications, which has recently motivated researchers to work on this problem, defining various approaches. However, most state-of-the-art approaches automatically generate test cases leveraging symbolic execution or random exploration techniques. This led to techniques that lose efficiency when dealing with an increasing number of program constraints and become inapplicable when conditions are too challenging to solve or even to formulate. This Ph.D. thesis proposes addressing current techniques' limitations by exploiting Deep Reinforcement Learning. Deep Reinforcement Learning (Deep RL) is a machine learning technique that does not require a labeled training set as input since the learning process is guided by the positive or negative reward experienced during the tentative execution of a task. Hence, it can be used to dynamically learn how to build a test suite based on the feedback obtained during past successful or unsuccessful attempts. This dissertation presents three novel techniques that exploit this intuition: ARES, RONIN, and IFRIT. Since functional testing and security testing are complementary, this Ph.D. thesis explores both testing techniques using the same approach for test cases generation. ARES is a Deep RL approach for functional testing of Android apps. RONIN addresses the issue of generating exploits for a subset of Android ICC vulnerabilities. Subsequently, to better expose the bugs discovered by previous techniques, this thesis presents IFRIT, a focused testing approach capable of increasing the number of test cases that can reach a specific target (i.e., a precise section or statement of an application) and their diversity. IFRIT has the ultimate goal of exposing faults affecting the given program point

    SensorCloud: Towards the Interdisciplinary Development of a Trustworthy Platform for Globally Interconnected Sensors and Actuators

    Get PDF
    Although Cloud Computing promises to lower IT costs and increase users' productivity in everyday life, the unattractive aspect of this new technology is that the user no longer owns all the devices which process personal data. To lower scepticism, the project SensorCloud investigates techniques to understand and compensate these adoption barriers in a scenario consisting of cloud applications that utilize sensors and actuators placed in private places. This work provides an interdisciplinary overview of the social and technical core research challenges for the trustworthy integration of sensor and actuator devices with the Cloud Computing paradigm. Most importantly, these challenges include i) ease of development, ii) security and privacy, and iii) social dimensions of a cloud-based system which integrates into private life. When these challenges are tackled in the development of future cloud systems, the attractiveness of new use cases in a sensor-enabled world will considerably be increased for users who currently do not trust the Cloud.Comment: 14 pages, 3 figures, published as technical report of the Department of Computer Science of RWTH Aachen Universit

    Towards model checking Android applications

    Get PDF
    As feature-rich Android applications (apps for short) are increasingly popularized in security-sensitive scenarios, methods to verify their security properties are highly desirable. Existing approaches on verifying Android apps often have limited effectiveness. For instance, static analysis often suffers from a high false-positive rate, whereas approaches based on dynamic testing are limited in coverage. In this work, we propose an alternative approach, which is to apply the software model checking technique to verify Android apps. We have built a general framework named DroidPF upon Java PathFinder (JPF), towards model checking Android apps. In the framework, we craft an executable mock-up Android OS which enables JPF to dynamically explore the concrete state spaces of the tested apps; we construct programs to generate user interaction and environmental input so as to drive the dynamic execution of the apps; and we introduce Android specific reduction techniques to help alleviate the state space explosion. DroidPF focuses on common security vulnerabilities in Android apps including sensitive data leakage involving a non-trivial flow- and context-sensitive taint-style analysis. DroidPF has been evaluated with 131 apps, which include real-world apps, third-party libraries, malware samples and benchmarks for evaluating app analysis techniques like ours. DroidPF precisely identifies nearly all of the previously known security issues and nine previously unreported vulnerabilities/bugs.NRF (Natl Research Foundation, S’pore
    • …
    corecore