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ABSTRACT

Widespread adoption of smartphone based Mobile Medical Apps (MMAs) is opening new

avenues for innovation, bringing MMAs to the forefront of low cost healthcare delivery.

These apps often control human physiology and work on sensitive data. Thus it is necessary

to have evidences of their trustworthiness i.e. maintaining privacy of health data, long term

operation of wearable sensors and ensuring no harm to the user before actual marketing.

Traditionally, clinical studies are used to validate the trustworthiness of medical systems.

However, they can take long time and could potentially harm the user. Such evidences

can be generated using simulations and mathematical analysis. These methods involve

estimating the MMA interactions with human physiology. However, the nonlinear nature

of human physiology makes the estimation challenging.

This research analyzes and develops MMA software while considering its interactions

with human physiology to assure trustworthiness. A novel app development methodology

is used to objectively evaluate trustworthiness of a MMA by generating evidences using

automatic techniques. It involves developing the Health-Dev β tool to generate a) evidences

of trustworthiness of MMAs and b) requirements assured code generation for vulnerable

components of the MMA without hindering the app development process. In this method,

all requests from MMAs pass through a trustworthy entity, Trustworthy Data Manager

which checks if the app request satisfies the MMA requirements. This method is intended

to expedite the design to marketing process of MMAs. The objectives of this research is

to develop models, tools and theory for evidence generation and can be divided into the

following themes:

• Sustainable design configuration estimation of MMAs: Developing an optimization

framework which can generate sustainable and safe sensor configuration while con-

sidering interactions of the MMA with the environment.
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• Evidence generation using simulation and formal methods: Developing models and

tools to verify safety properties of the MMA design to ensure no harm to the human

physiology.

• Automatic code generation for MMAs: Investigating methods for automatically gen-

erating trustworthy software for vulnerable components of a MMA and evidences.

• Performance analysis of trustworthy data manager: Evaluating response time perfor-

mance of trustworthy data manager under interactions from non-MMA smartphone

apps.
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Chapter 1

INTRODUCTION

Use of mobile medical apps (MMAs) in healthcare is becoming prevalent as they provide

low cost healthcare delivery [1]. These apps often control human physiology by acting

as a controller to the medical devices such as artificial pancreas which automatically con-

trols the blood glucose level by infusing insulin, ventilators to support breathing action

by blowing air in and out from the respiratory system. They also provide diagnosis using

physiological data collected by implanted sensors. Such close interaction of MMAs with

human physiology make them critical. Thus, despite of their ability to provide low cost

healthcare delivery, getting these apps in the market is a tedious process e.g. design for

the automated artificial pancreas came in 1999s [2]. However the actual app is marketed

in 2014, which is a first generation app and capable of only predicting hypoglycemia (low

blood glucose level)[3]. Due to involvement of human physiology, MMAs are technically

challenging to implement and get market approval which requires to establish trustworthi-

ness of these apps. Trustworthiness of MMAs can be viewed as having properties such as

interaction safety, communication and storage security and wearables sustainability. Assur-

ing these trustworthy properties in MMAs is challenging due to difficulty in extracting the

interactions between MMAs and human physiology, which leads to lack of mathematical

structure to objectively provide evidences of the MMAs. The evidence can be defined as

a set of observations on certain properties of MMA software and its effects on the human

body, generated through the usage of scientifically sound experiments, clinical studies,

simulations and mathematical proofs. Traditionally, experiments and clinical studies are

used to generate evidences of trustworthiness of MMAs. However they can be difficult and

costly to be comprehensive due to requirement of approval from institutional review board
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(IRB), patient availability. These techniques can also potentially harm the user and may

take long time to establish their trustworthiness. Simulation and mathematical proofs can

generate evidences before the actual use of the MMAs on the user. However, developing

such techniques might increase development time and may require higher skills set from

the developer. Thus, this research implements tools and techniques to enable evidence-

based MMA design and development of trustworthy MMAs.

Simulating the MMA involves estimating its interaction with human physiology. It

uses models of MMA software and human physiology to appraise the values of continuous

variables of the system over certain time. These values are then used to estimate resource

requirements, cost and verify the design against requirements which can provide evidence

for the trustworthiness of MMA design. The nonlinear and spatio-temporal nature of the

human physiology makes its models difficult to simulate. Further, the events generated

in controller software and human physiology changes the system configurations. Thus

inaccurate handling of such events might end up in getting sub-optimal design. Accurate

handling of the events require infinitely small time step in current simulators, which leads

to increased simulation time. Thus to overcome these challenges in accurately simulating

MMAs, I implemented a simulator with a time refinement approach which predicts the

event timing and accordingly modifies the time step to handle the event.

To obtain the evidence of the trustworthy properties of the MMA using mathematical

structures, a state based abstraction of the MMA software is used. The discrete states of

the abstraction represent the operating conditions of the software, while the transitions in

the state are governed by changes in human physiology variables. An execution of this

state based model results in valuations of the system variables. If the set of all possible

valuations intersects with the unsafe set, the system will not satisfy the trustworthy proper-

ties. This analysis is typically called as reachability analysis. It requires solving non-linear,

spatio-temporal differential equations of human physiology to accurately estimate values
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of system variables. The existing solutions for reachability analysis are for linear systems.

Thus they can not be directly applicable to the human physiology based system which is

non-linear in nature. Thus, this research has focused on developing reachability analysis

of nonlinear systems using exponential box splines, which are traditionally being used for

curve fitting in geometric modeling.

These automatic techniques can be used to develop trustworthy MMAs as well as to

generate evidences. Such techniques can be used, if the implementation follows a standard

model. However, the standard model can lead to generating similar types of MMAs. This

might limit the functionalities of the smartphone that can be exploited by the developers

e.g. different graphical user interfaces, data displaying techniques. Thus, this research

considers that the app developer should be responsible for developing GUI and process-

ing algorithms on smartphone end and the critical interfaces such as data communication,

sensor/actuator code will be generated and handled by the trustworthy entity. Thus, it is hy-

pothesized that trustworthy mobile medical applications should have an operating model,

where every instance of data communication to the sensor, data storage in the smartphone,

control inputs to the actuator, interaction with the user, data communication to the EHR

and even EHR access by physician has to pass through a certification entity, Trustworthy

Data Manager (TDM).

1.1 Overview of the Research Approach and Contributions

To ensure the trustworthiness of MMAs, the MMA software development process should

provide evidences at every step of its life cycle [4]. Such evidence-based MMA develop-

ment process (Figure 1.1) can be divided into four parts, a)MMA Design, b)MMA design

verification, c)MMA Implementation, and d)verification and validation of implemented

MMA. The process starts with obtaining MMA design which should satisfy trustworthy

requirements of MMA. It is then followed by providing evidence to check if the obtained
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Figure 1.1: Techniques used in MMA Development: Traditional and New Approach.

design meets the trustworthy requirements of MMAs. This verified design is then used for

implementation which includes sensor code and smartphone app development. Two types

of evidences are required for implemented code to verify if the implementation follows the

design and to validate if the implementation ensures trustworthy requirements of MMAs.

Traditional app development method uses manual implementation method while it does

not provide any evidence for correctness of the design. The implemented code is gener-

ally validated using experiments such as clinical study which is time consuming and might

lead to user safety hazards due to wrong design or implementation. This research fills the

gap by proposing models, tools and methodologies to generate evidences with theoretical

guarantees for ensuring correct working of MMAs before their experimental studies.

Research Contributions: The contributions are discussed as follows:

• MMA Design Optimization: MMAs interact with environment through wearable de-

vices, e.g. wearable devices scavenge energy from unpredictable sources such as
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human heat, sun light etc. Also as they are implanted on human body, they interact

with human physiology by controlling it using actuators or by heating the human

skin at the sensor worn spot. Thus to assure sustainable and safe working of the

MMAs, the design of the wearable devices should consider the interaction effects.

Traditional MMA design techniques fail to consider these interactions, which can

result into unreliable design. Thus, this research tries to answer following research

question:

How to incorporate interactions of MMA with its environment while configuring

the sensor/actuator?

Contribution: The research implements an optimization framework to get sensor

configuration that supports privacy ensured continuous monitoring powered by en-

ergy scavenged from human body or sun light and does not cause any harm to the

human physiology (Chapter 5). It takes hardware and software requirements of the

sensor/actuator to generate the optimal design. The framework uses hybrid simulator

to simulate human physiology to obtain the safe design. The research further extends

the hybrid simulator to simulate events from human physiology as well as from con-

troller app (Chapter 6). This whole system simulation can give better idea about the

MMA design in terms of resource allocation requirements.

• Design Verification: This step provides an evidence for the design obtained in pre-

vious step. The software design verification usually involves logical reasoning by

giving mathematical proof of the correctness of the design. In case of MMAs, as

they directly interact with human physiology, considering the effect of MMA opera-

tion on human physiology is the important part in the reasoning process. Traditional

MMA development techniques do not provide any of such method for the reasoning.

Thus, this research focuses on:
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How to generate evidence for the MMA design using models of human physiol-

ogy?

Contribution: The technique incorporates formal methods for verification of the de-

sign (Chapter 7). In this technique the combined analysis of continuous dynamics

of human physiology and discrete dynamics of the MMA controller software is done

using reachability analysis. Reachability analysis computes the values of continuous

variables of the system with a given controller at any point in time. These values are

further used to check instability in controller design. The technique uses exponen-

tial box splines to represent the trajectory of these continuous variables of nonlinear

systems. Exponential box splines are being traditionally used for curve fitting in

geometric modeling. Their curve fitting property is used to express the nonlinear

variation of the continuous variables in the system.

• MMA Implementation: Traditional app development process uses manual implemen-

tation which might result into software bugs. These errors can lead to safety and

security issues e.g. bug in the infusion pump controller software can lead to excess

drug infusion in the blood which can lead to distress, error in security algorithm can

cause leakage of health data. In order to avoid these issues the app software should

be developed in trustworthy environment. Thus, this research focuses on:

How to reduce manual implementation errors in MMAs?

Contribution: A medical app development framework, Health-Dev β, is developed

that enables the automated generation of TDM app, sensor and actuator code, and

communication code that meets the security and safety requirements (Chapter 8).

The framework generates customizable code for sensor communication, data storage

in smartphone and communication to the cloud from high level descriptions using

a parameterized code frame data-base. The visualization software (GUI) can be in-
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dependently developed by a manufacturer. Health-Dev β tool is equipped with a

data-base of security enabled communication protocol code frames such as password

based and physiological value based security.

• Verification and Validation of implemented code: To check if the implemented code

conforms to the requirements and design of the MMA, the use of clinical studies in

traditional app development methods can be hazardous to human physiology. Thus

this research compares the implemented code with already verified code such as

BSNBench [5] to verify if the implemented code satisfies the MMA design. Further,

emulation platform is used to validate the MMA requirements of safety from MMA

operation before actual use of the app. It uses field-programmable analog arrays

(FPAAs) to emulate the interaction between MMA software and human physiology

(Chapter 6 Section 6.8).

1.2 Research Outcome

The research outcome of this dissertation is as shown in Figure 1.2 which represents

the trustworthy development of MMA along with evidence generation for their regulation.

In this research, it is hypothesized that a trustworthy data manager (TDM) will provide

interfaces to MMAs and validate if the requirements are met or not at runtime (discussed

in Chapter 4). Given such TDM, the developer has to follow an app model where he is

responsible for providing the smartphone app software, models for safety sustainability and

security checking along with the requirements. Now the Health Dev β tool, an automated

code generator that I have developed involves simulators. The models and requirements

will be input to this simulator. The simulator uses hybrid simulator or reachability analysis

for safety verification, embedded system design optimizer for sustainability requirements

and a model checking algorithm for security requirements. Through these simulation it
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Figure 1.2: Trustworthy MMA Development.

will generate evidences of trustworthiness which will be used for MMA regulation. The

simulators to generate evidences are discussed as follows:

Energy sustainability checking :The developer has a choice to specify the energy budgets

of the application in the form of overall caps as requirements. The Health-dev β code

database [6] is supplied with energy consumption values for code snippets on different

platforms. While selecting the appropriate code frames in the generator the energy cap is

taken as one of the deciding factors. Such selection can give rise to complex optimization

problems which can be solved by developing appropriate models of energy consumption of

the respective components as shown in our previous work [7] and discussed in Chapter 5.

Safety verification: Safety verification can be used to prove the design safety using formal

modeling and hybrid simulation techniques. The safety verification ensures the side-effects

of interactions between human physiology and sensors within accepted limit. These in-

teractions are typically governed by smartphone control algorithm when sensor acts as an
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actuator. In such a scenario, developer provides the hybrid automata which embeds the

control algorithm while specifying high level design. Reachability analysis (discussed in

Chapter 7) or hybrid simulation (discussed in Chapter 6) is then performed on the specified

hybrid automata while considering optimized time constrained designs as initial set.

Security checking: Security properties can be expressed as a part of the high level specifi-

cation of the TDM application. The finite state automata representing data access patterns

should succinctly describe the desired operation of the app. Simulation of the FSA will

show whether in any state the security properties are violated (discussed in Chapter 2 and

Chapter 8).

After that all these models, requirements and simulators will be input to an automatic

code generator which will generate a TDM consisting of all these along with codes for the

sensors, wearables. This TDM, sensor codes along with the app software forms mobile

medical app or MMA.
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Chapter 2

PRELIMINARIES

2.1 Mobile Medical Apps Examples

MMAs communicate with physiological sensors implanted on user’s body and use the

collected physiological data for further processing such as diagnosis, controlling actuator

operation, displaying data in user readable format. The apps also communicate with a cloud

server to upload the health data to an electronic health record (EHR) which is a health data

storage.

Since, MMAs control medical grade actuators and monitor health, they need to meet

safety, security and sustainability requirements. Indeed, Food and Drug’s Administration

(FDA) classify smartphone health apps as medical devices. According to the definition of

the MMAs published by FDA in September 2012, the healthcare apps can be classified

into three types, a) displaying app - which displays the sensor data in graphical format, b)

diagnostic app - which processes the collected physiological data and provides diagnos-

tic feedback to the user, and c) controlling app which controls the actions of the body

implanted actuator device depending the sensed physiological signals.

The techniques investigated in this research have been applied to following MMA ex-

amples to validate the proposed approach. The example MMAs are classified according to

the FDA definition of smartphone medical apps.

Example 1 PETPeeves - Display app: PETPeeves is an app aimed to help users alter

their lifestyle to be healthier by presenting the user with a virtual pet whose mood changes

based on the amount of exercise the user performs a week. The app uses accelerometer and
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ECG sensor to monitor the user’s heart rate and accordingly calculates calories burned

during exercise.

Example 2 BrainHealth - Diagnostic app: The app consists of three activities-focus,

mood change, and relaxation. Focus is aimed towards users who suffer from learning

disabilities and need a boost in mental performance, motivation, and focus. Mood change

is aimed towards users whom are not satisfied with their mood and want to achieve a more

positive mood. Lastly, relaxation is aimed at any user who wants to learn how to relax

in any situation. The app consists of a visual feedback system which uses a glob of goop.

When the user is performing well in an activity, the glob is very structured and dense,

however when the user’s performance degrades, the glob breaks apart and the goop drifts

to the edges of the screen. Neurofeedback or phsychostimulants are found to be an effective

method for encouraging healthy behavior [8]. PETPeeves app uses this neurofeedback as

additional input to give reward points to the user which acts as the bonus to pet’s mood

modifier.

Example 3 Artificial Pancreas/Infusion Pump App - Controller App: Automated con-

trol of blood glucose levels in human are often obtained using artificial pancreas. Artificial

pancreas are distributed systems consisting of an infusion pump, glucosemeter, and a con-

troller implemented in a mobile device such as smartphone. These distributed components

are networked through the wireless communication channel and operate in a close loop to

keep the drug concentration in the human blood within recommended limits. The different

components of the automated control system may have skews in the clock rates as well as

data transfer rates. This results in transport delays in the sensed values of glucosemeter

and actuation delay in infusion. Thus, the continuous dynamic equation that represents the

blood glucose level in the blood sensed by the glucosemeter due to infusion from the pump

is given by equation 6.15.
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ẏ1 = Apy1 + BpQ̇z2 + Bpu(t − Ti), (2.1)

z1 = Cpy1(t − Tp),

ẏ2 = Asy2 + BsQ̇z1,

z2 = Csy2(t − Tr).

Here y1 and y2 are the state space variables of the equation. y1 consists of vectors of left

heart, lung blood, lung tissue and right heart compartments through which infused drug

passes. Newly infused drug merges with recirculated drug from Vessel Rich Group, Muscle,

Fat and Residual drug which is represented by y2 state space variable vectors. Ap, As, Bp,

Q̇, Cs, and Cp are constants. z1 is the drug concentration in the blood while z2 is the arterial

drug concentration. The initial infusion rate u = x0 is the input to the model and the output

is the drug concentration in the blood. The time delays related to the infusion input (Tayai)

is due to the delay in actuation, the cardio-pulmonary transport delay Tp and the arterial,

capillary and venous transport delays Tr manifest the delay in sensing the blood glucose

level by the glucosemeter.

The discrete controller of the infusion pump has five states: a) basal, where infusion

rate is I0 and the blood glucose rate is between 120 ug/dl and 70 ug/dl, b) braking, where

infusion rate is a fraction f of I0, and blood glucose level goes below 70 ug/dl but is still

above 20 ug/dl, c) correction bolus, where infusion rate is incremented by Icb, and the

blood glucose level is between 120 ug/dl and 180 ug/dl, d) bolus, where the infusion rate is

incremented by Ib > Icb, and the blood glucose level is above 180 ug/dl, and e) stop, when

the infusion is stopped i.e., Ib = 0, since the blood glucose level drops below 20 ug/dl.

Example 4 Body sensor Networks: This example considers a network of implanted sen-

sors, which communicate in a cluster protocol. The implanted sensors form a cluster, where
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a cluster head collects all communication packets from the participating sensors and sends

it out to a base station.

Example 5 Medical Ventilator - Controller App: Medical ventilators provide critical

life support to the patients when they are unable to breathe properly. Due to diseased

or injured lungs, respiratory system of the patient stops functioning correctly. In such a

scenario, ventilator develops the required pressure for air flow through the patient’s respi-

ratory system as well as it supplies air with appropriate amount of oxygen concentration.

The percentage of oxygen concentration in the ventilator supplied air is referred as FIO2

which is basically a fraction of inspired oxygen in the air. Ventilator system calculates FIO2

by measuring oxygen saturation, S PO2 , in the blood. Ventilators use non-invasive method

to measure S PO2 using pulse-oximeter. If the blood oxygen saturation level drops below

certain level, the patient suffers from hypoxemia and if it goes above the higher limit of tar-

get oxygen saturation, the patient suffers from hyperoxia. Ventilator needs to adjust FIO2

to maintain S PO2 in desired level. Blood cells are oxygenated in the lungs. Inhaled oxygen

and patient physiology decides the oxygen saturation in the blood. Thus, to avoid devel-

opment of hypoxemia or hyperoxia in the patient improper oxygen saturation, ventilator’s

control algorithm uses S PO2 as feedback to determine appropriate value of FIO2.

For ventilators, initially the input oxygen level is set to some default value or a value

decided by a physician as per the patient need. Then depending on the saturation level of

oxygen in the lungs, the input oxygen level should change. To accommodate this control

in ventilators, the oxygen level in the lungs is being measured using pulse-oximeter after

predefined time interval. The output of pulse-oximeter acts as an input to the ventilator

control algorithm. Next input oxygen level is decided depending on this feedback.

The patient model (patient physiology) gives the relation between the input oxygen level

and the saturation oxygen level. We have considered the non-linear patient model from [9]
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as defined in equation 2.2,
∆S aO2(s)

∆FIO2
=

GsGPe−Td s

1 + τps
, (2.2)

Here,

S aO2 : arterial oxygen saturation

FIO2 : input oxygen level

Td : system transport lag (sec)

Gp : sensitivity of PaO2 to FIO2

τp : time constant (sec)

Gs : linearised sensitivity of the O2 dissociation curve.

S aO2 measured using pulse-oximeter is referred as S PO2. The patient model in equation

2.2 is in Laplace transform. We are using Hybrid Automata to represent the ventilator

system and it can not compute the equations in Laplace transform format. Thus, we have

converted it into a differential equation in order to represent continuous dynamics of the

system (equation (2.3)).
dS PO2

dt
= GsGPFIO2et/Td , (2.3)

2.2 Trustworthy Properties of MMA

The interactions of MMAs with human physiology might lead to safety issues e.g.

brunt skin due to sensor dissipated heat, in case of infusion pump, extra drug infused in

patient’s body can cause respiratory distress. Security vulnerability can be a major concern

due to involvement of health data in wireless communication. Further, as these apps work

with low power sensors and actuators which usually scavenge energy from unpredictable

sources such as human heat, sunlight, their sustainable working is one of the important

aspect of MMA development. While considering the importance of these safety, security

and sustainability requirements in assuring trustworthy working of MMA, this research
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focuses on evaluating these requirements in app development process. These requirements

are referred as trustworthy properties of MMAs and defined as:

Safety: In MMAs, safety issues can occur due to device failure, control operation and

delay in treatment. This research mainly speculates interaction safety in MMAs that control

human physiology through actuators. Considering Vh as the human physiology parameter

controlled by MMA, safety can be defined with Equation 2.4 as,

f (Vh) ≤ Th (2.4)

Here, Th is the safety threshold value for Vh. f (Vh) can be a blood glucose level in case of

infusion pump or oxygen saturation level for ventilators, which should not exceed Th.

Sustainability: Sustainability in sensors and actuators can be defined with respect to a) re-

duction in energy usage, b) increase in battery life and, c) operate on harvesting resources.

This research considers sustainability as energy neutrality where energy required for sen-

sor or actuator operation is obtained from scavenging source only. Let P(t) be the power

required for a sensor operation at time t and H(t) be the storage capacity, then sustainability

property can be defined using Equation 2.5.∫ t

0
P(t)dt ≤

∫ t

0
H(t)dt (2.5)

Security: In MMAs, security is associated with storage and communication of health data.

The aim of this research is to assure secure communication through wireless channel. Com-

munication security is measured in terms of encryption algorithm input parameter size S m,

as in Equation 2.6.

min(S m) ≥ S Th,∀mεMMAs (2.6)

Here, S Th is the input parameter threshold for user selected encryption algorithm. S m has

to be atleast S Th to ensure minimum desired security. S m can be the size of the prime

number in case of RSA protocol or polynomial size or number of chaff points in case of

physiological value-based protocol [10].
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2.3 MMA Models and Requirements

2.3.1 MMA Models

Following models represent high level specification of MMA software. They are used

for generating evidences as well checking runtime requirements for the apps.

Hybrid Automata Model for Safety Checking:

Hybrid automata (HA) [11] is a mathematical construct that represents the behavior of

the MMA in terms of discrete modes and continuous state variables. MMAs have controller

software which has discrete modes. In each mode a certain control decision is evaluated

and administered such decisions are often taken based on the values of certain continuous

state variables which represent continuous dynamics systems in MMAs which is human

physiology. The temporal behavior of MMA is governed by differential equations. Hybrid

automata are popularly used to represent the discrete computing models and continuous

variables in a single mathematical construct. Hybrid automaton also enables transitions

between discrete modes which are decided by associated guard conditions on state vari-

ables. Figure 2.1 shows an example hybrid automata model for Artificial Pancreas MMA

(Example 3). It has three discrete modes basal, correction bolus, and breaking. Each mode

represents different infusion rates and associated continuous dynamics of the physiology.

The transition between states is governed by blood glucose level, G(t).

Sensor Design Optimization Formulation:

The low power wearable devices are more prone to safety and sustainability issues than

smartphones. Thus, an optimizer is used to find the optimal safe and sustainable design for

such devices for a defined time, hardware and software constraints. It simulates continuous

dynamics of the human physiology to consider the interaction effect between human body

and wearable sensors. Along with the human physiology safety constraints, the design
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Figure 2.1: Hybrid Automata Model for Artificial Pancreas MMA.

optimizer algorithm also includes security and sustainability constraints to find optimal

design for a particular device operation period.

The formulation can be for a given hardware and software constraints e.g. for given

sensing power, communication power, data processing power, power required for encryp-

tion, scavenging source availability and battery capacity, find the data sending frequency

when scavenging source is available and not available.

Finite State Machine for Security Checking:

Security properties can be expressed as a part of the high level specification of MMA.

The finite state Machine (FSM) representing data access patterns should succinctly describe

the desired operation of the app. Simulation of the FSM will show whether in any state the

security properties are violated.

Given the FSM model of the PETPeeves application (Example 1) as shown in Figure

2.2, the simulator can check each transition condition and evaluate whether the model sat-

isfies the security requirements. More complicated security rules such as a combination

of data storage security and communication security may also be specified using the FSM

models as shown for the BrainHealth case (Example 2).
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Figure 2.2: Finite State Machine Model for MMAs.

2.3.2 MMA Requirements Provided by the Developer

The requirements for MMA can be obtained by consulting with medical professionals,

doctors and MMA regulators. These requirements can written in English. There is no

automated way to get the requirements in system threshold formats. Thus developer has to

convert the requirements in system thresholds so as to use them during evidence generation

using models of MMA discussed in Section 2.3.1. These requirements can be the safety

regulations of mobile medical apps, the sensor sustainability requirements and the HIPAA

security requirements.
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Chapter 3

RELATED WORK

Mobile medical apps (MMAs) are involved in critical healthcare operations which might

lead to risks or hazards to human physiology. Recently there has been efforts taken to mon-

itor user physiology using MMAs. HeartMApp [12], an MMA, is developed to monitor

patients with congestive heart failure condition. It uses ECG sensor to collect heart signal

from that it follows up on when the patient is engaged in exercising activities such as deep

breathing, walking etc. MT-Diet [13] an MMA, developed towards the aim of reducing

obesity by computing calories from food plate using thermal camera and Myo sensors.

Further, there are MMAs developed to monitor user’s health by prompting user to enter in-

formation such as PainGauge [14] requires users to enter pain level every two hours, Mood

assessment app [15] asks user to enter the current emotional level on the scale of 1 to 10.

These apps send the collected data to cloud to be accessed by doctors for further diagno-

sis. It might lead to security issues such as tampering of health data or stealing of the data

when communicated over wireless channel from sensor or to cloud. They can lead to safety

issues by burning the user’s skin due to sensor wearing. Also it is required that the sensor

should operate for long time to avoid frequent battery charging. This research focuses on

mitigating these risks of MMA using automated techniques. The risks addressed in this re-

search are categorized as: a) safety violations, a user is not harmed due to the operation of

the smartphone app (the controller app might harm user physiology), b) security violations,

user’s data is always kept private and free from unauthorized access (unauthorized access

to the health data), and c) sustainability violations, lack of availability of apps due to re-

source constraints such as power, CPU, and memory. These are the trustworthy properties
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of MMAs which need to be evaluated before the actual use of the app to have dependable

healthcare system.

3.1 MMA Development Frameworks

There has been several frameworks proposed for developing MMAs to reduce devel-

opment time. The existing frameworks for mobile health app development can be clas-

sified considering their divergent development strategies as: a) support APIs, b) provide

programming abstractions, and c) automated code generation. The frameworks are also

evaluated against trustworthy requirements of MMAs. The mobile app development with

APIs is popular due its ease of programming. There are frameworks proposed in literature

to provide APIs to interface with sensors [16, 17, 18] without satisfying any trustworthy

requirements. UPHIAC [19] and PRISM [20] frameworks provide health data security

with APIs to interface with smartphone sensors and cloud for data storage. However these

frameworks do not check for safety and sustainability requirements of health apps and pro-

vide API’s to connect to external sensors. Programming abstractions for sensors are being

widely used to allow developers to write minimal sensor code to include wearables in health

apps [21, 22, 23, 24, 25]. Considering the limited energy availability on wearables, energy

efficiency techniques are supported by Reflex [23], LittleRock [24] and Turducken [25].

However these methods require sensor programming from the developer. Thus to reduce

health apps development time and to get bug-free code, there are automated sensor code

generators proposed in literature [26, 27, 28, 29]. Still they require developers to write code

for smartphone apps and its vulnerable components such as interfacing with sensors, actu-

ators and cloud. This led to fully automated code generators for sensors and smartphone

apps [30, 31, 32, 33]. However they only consider system safety and do not consider sensor

sustainability and data security. Thus, an automated code generator for health apps is pro-

posed which can ensure their trustworthiness without imposing any burden on developer.
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Data Sharing with other apps: Secure data communication, sharing data with other apps,

storage in cloud is one of the main concerns in MMAs. There has been lot of work done

to address issue of data sharing in mobile apps and cloud while considering the perva-

sive monitoring systems [34, 35, 36, 37, 38]. Open mHealth architecture[39] promotes the

use of having single framework which can collect data from various apps used by the pa-

tient/user and share with the physician instead of asking each app to upload data separately.

It mainly focuses on data transfer from apps to cloud. However it does not check for se-

curity vulnerabilities during the data transfer. bHealthy [37] promotes the use data sharing

between apps to give better feedback to the user. Mobius[34], a middleware for interfacing

with complex data management, supports unified data messaging and abstraction for mo-

bile apps. Another interface (Simba) [35] interfaces the complexities of synchronizing data

to the cloud with minimal work from the developer. A Service-Oriented Context-Aware

Middleware (SOCAM) has been proposed [36] to enable rapid prototyping of context-

aware services in pervasive computing environments. SOCAM provides a middleware of

components to define context providers, interpreters, and the interaction between different

components. All of these approaches use APIs to provide the interfaces and require an app

to change structural design to adapt to the interface. Configuration of the APIs is tedious

and inaccuracy in setting the API parameters correctly can result in failure of the system.

Thus, to reduce development effort a non-invasive interface provider framework is needed

which requires very less configuration. Thus this research proposes TDM app to provide

critical interfaces for MMAs. It allows developer to use the interfaces in the same way as

communicating with other app on the smartphone and avoids possible configuration issues.

3.2 Evidence Generation

Simulations can be used as an evidence for verifying MMA design against require-

ments. Lack of accurate simulation of smartphone app and human physiology interactions
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in a MMA may result in suboptimal design. This can cause significant hazards to the phys-

ical environment e.g., wrong infusion of insulin can cause hypo or hyper-glycemia prob-

lems [40]. Simulation of MMA interactions with human physiology are challenging and

traditional approaches of interfacing domain specific simulators may have simplifying as-

sumptions that adversely affect efficient MMA design. As MMA has smartphone app, sen-

sor/actuator code as cyber system and human physiology, environment as physical system,

the currently available tools to simulate cyber physical systems (CPS) can be used to simu-

late MMAs. WCPS [41] focuses on simulating wireless civil infrastructural control systems

and the effects of network delays and data loss on control. Truetime [42] is a Matlab-based

simulator used for simulating the effect of network performance on continuous control sys-

tems. Further, to capture the wireless network characteristic more accurately, NCSWT

[43] and PiccSIM [44] integrate control system simulators with NS-2 for wireless network

simulation. tools such as WCPS, GISOO [45] use TOSSIM [46] and COOJA [47] respec-

tively to have more realistic wireless network models. Other network simulators model

both packet level and continuous traffic flows in the network[48, 49, 50, 51, 52]. However,

a common disadvantage of these simulators is that they do not consider events from contin-

uous systems. These events can change parameters of the control system and hence change

the nature of continuous dynamics that govern the system variables. Further, they do not

consider any form of time refinement to accurately estimate event timings and hence take

the fixed time step approach towards simulation.

Several individual efforts are taken to assure trustworthy properties in MMAs using

formal methods [53]. Inaccurate control input to actuator computed by MMA can cause

serious harm to human physiology. This issue can be viewed as verification hybrid model

and existing techniques such as reachability analysis can be used to verify the control al-

gorithm before implementation [54, 55, 56, 57]. In these methods, due to linearization

of systems, the available linear solutions are directly applicable. These approximation
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errors are nonlinear in terms of discretization and may even increase exponentially with

increase in simulation time. To improve the reachability analysis with linearized systems,

the state space is decomposed into linearization domains and considered overlapping lin-

ear regions[58, 59]. This method increases the number of state variables, increasing the

computation complexity. Also the reach set approximation error increases with increase

in size of linearization domains. HyperTech [60] proposes the use of interval numerical

method to approximate the reach set for nonlinear Hybrid system. It uses rectangular shape

to represent the non-rectangular region shape, resulting into increased wrapping error. Also

this error keeps on growing with each iteration as reachability analysis considers sets from

previous time, which adds the errors from previous time step as well. To avoid these lin-

earization errors, recently few methods have been proposed which compute reachable sets

of non-linear system without linearizing them. One of the method proposes polynomial

Zonotope to capture nonlinearity of the system [61]. It converts nonlinear system equations

into polynomial differential equations. This approach models error while converting non-

linear system equations into polynomial differential equations by adding uncertainty. The

verification of the parameterized hybrid systems using first order discrete dynamics logic

has been proposed in [62]. However it demonstrates reachability analysis of linear sys-

tems only. Further, nonlinear systems can have discontinuous invariant conditions. Thus,

the use of Satisfiability Modulo Theory (SMT) is proposed to encode these conditions for

nonlinear hybrid systems [63]. However, the reachability analysis for these nonlinear sys-

tems with the encoded invariant is not specified. Thus, this research proposes a reachability

analysis algorithm for nonlinear systems using exponential box splines to reduce error of

linearization in reach set estimation.
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3.3 Techniques to Ensure Trustworthiness of MMA

The security violation of the apps can be caused by compromising health data by shar-

ing it with non-legitimate app. To combat this issue, Android uses sandboxing to secure

direct data access between apps. Recently, there have been efforts taken to assure data

security in mobile apps with companies such as Happtique [64], however most of these

approaches are subjective. Moreover, the proposed regulation system had failed to effec-

tively detect serious security flaws in apps such as password stored in plain text. Further,

there has been many efforts taken to secure data communication over wireless channel for

in body implanted sensors and smartphone [65, 10, 66, 67, 68]. The security algorithms

which use physiological parameters to encrypt the data are considered to be unbreachable

[10, 66]. However they can lead to possible threats by regenarating the parameters using

physiological models [69]. Mocana Atlas platform [70] supports password-based authen-

tication to data storage. It checks for app tampering through penetration checking which

might take long time or attack might happen in between checks. Thus runtime validation

of the apps requests is necessary to avoid security breaching.

The availability of the sensors can be jeopardized by low battery capacity. This issue

is mainly addressed by using schemes such as throttling, duty cycling, sustainable sensing

[71]. All these efforts to combat safety, security and sustainability issues focus indepen-

dently on each issue and try to find solution for it. However in case of MMAs, we need a

solution which should consider the inter-effect of safety, sustainability and security issues

on each other.

The current commercial app market approval interface also does not require the apps

to conform to any kind of safety, sustainability or security standards. While it is still un-

clear how safety and security in health apps, and sensor sustainability will be regulated or

otherwise overseen, it is clear that an objective means for assessing them before market
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approval is needed. It is hypothesized that the objective assessment of MMAs requires

standardization. It should focus on areas of causing issues such as interfacing sensors with

smartphones, inefficient sensor code implementation, insecure data storage in smartphone

and Personal Health Record (PHR), interactions of sensors and actuators with the human

body. This creates a need to have a MMA development framework which can ensure trust-

worthy properties while generating the evidences at every step of the development process.

Thus the proposed research focuses on building such framework which can specifically

focus on trustworthy properties in MMAs.
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Chapter 4

SYSTEM MODEL AND TRUSTWORTHY FRAMEWORK FOR MMA

4.1 System Model

There can be multiple mobile medical apps working in a smartphone as shown in Fig-

ure 4.1. They might be communicating with sensors, actuators, clouds and even with other

apps to share health data. If all the communication at interfaces is trustworthy, we can call

the MMA reliable. Figure 4.2 shows one instance of a mobile medical app. It communi-

cates with physiological sensors and actuators implanted on user’s body through wireless

channel. These apps use the sensor collected physiological data for further processing such

as diagnosis, controlling actuator operation, displaying data in user readable format and

uploading it to an PHR in cloud server.

4.2 Traditional Android App Architecture

Current state of the art operating model of Android smartphone employs application

sandboxing (shown in Figure 4.3). In this method, an application is assigned a Unique

1

Sensors

App 1 App 2 App3

Actuator
Cloud

Figure 4.1: System model for Mobile Medical Applications.
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Figure 4.2: Mobile Medical Application.

User ID similar to the Linux operating system policy of assuring data access security be-

tween two users. In such an execution model, an application A runs in a dedicated process

which is divided into a set of n threads. Each process has its own encrypted space in the

available pool of resources. Thus, the memory is divided amongst the total number of

applications and the memory addresses are encrypted using an ID, uuid, that is unique to

the process pA
i associated with application A. Also each thread instantiated by a process

is associated with the same uuid. The isolation of memory space and threads entails that

an application Ai cannot read or write in the memory allocated to a different application

A j. The only way two processes can communicate is via an Inter Process Communication

(IPC) call where an app can ask for specific permissions to read data from another app

using its own uuid. The advantage of such a sandboxing strategy is that all data access to

an app can be monitored and traced back to its source. Further, any access to the external

storage, sensors, actuators, smartphone peripherals, and the communication radio, has to

be initiated via IPC calls. Moreover, access permissions for these components have to be
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Figure 4.3: Traditional App Execution Model.

set while packaging the code into an encrypted executable. Thus, the mobile app develop-

ers are in charge of assuring privacy of the health data when communicated over wireless

channel or stored in cloud. They also have to check for tampering of MMAs frequently

to avoid their malfunctioning. However, developers may not be security experts. Further,

to develop MMAs which communication with sensors/actuators, developer has to learn the

programming language specific to the wearable devices.

4.3 Problem Statement

Given the definitions of trustworthy properties in MMAs and current app working

model, the following research problem has been addressed in this dissertation: how to ob-
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Figure 4.4: Conceptual Operating Model for MMAs.

jectively assure patient safety, wearables sustainability and data security in MMAs given

the divergent app development methodologies?

One possible approach to solve this problem is to use automated techniques. Such

techniques can be used, if the implementation follows a standard model. Thus an app

model is proposed as a standard operating model for MMAs, discussed in detail in Section

4.4.

4.4 Proposed Trustworthy Framework for Mobile Medical Apps

It is hypothesized that the trustworthy MMAs should have an operating model as shown

in Figure 4.4, where every instance of data communication to the sensor, actuator and cloud

occurs through a certification entity, Trustworthy Data Manager (TDM). It includes runtime

requirements validator to ensure trustworthiness of every request it processes.

App model requirements: The proposed app model should satisfy following require-

ments:

• Safety: Any form of control input from MMA should be tested for patient safety.
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Figure 4.5: Proposed App Execution with TDM.

• Sustainability: Any sensor communicating with TDM should support long term

availability with the sustainable design.

• Security: Any form of data communication should be privacy ensured by TDM.

• TDM overhead: Working of TDM app should not degrade performance of any MMA

or non-health app.

Assumption: Here the assumption is, all trustworthy MMAs follow app model.
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The app model enables the development of MMAs in the form of a suite, where partic-

ipating apps are certified by the regulatory agencies against trustworthy requirements. The

app model registry will provide guidelines to other apps to become a part of the application

suite e.g. the types of sensors being used by currently available apps in the application

suite, sensor sampling frequency, energy management algorithms. If any app does not fol-

low the registry guidelines of existing application suite and it utilizes sensor data from one

of the sensors being currently used in application suite, the new app should be able to mod-

ify its requirements or consider re-developing those. If any app can not follow the registry

guidelines due to its mandatory requirements, it can create new application suite.

With the app model, the smartphone software itself is in charge of only the graphical

and algorithmic aspects of the application. Any form of control input is tested for patient

safety, sensor configuration change is tested for sustainability and data communication is

privacy ensured by TDM using runtime validation models. These models include hybrid

automata based model checking for safety assurance, optimization algorithm for sensor

sustainability and finite state automata model for ensuring security. Further, data collected

by different applications are kept in secured databases (similar to application sandboxing).

4.4.1 Change in App Architecture

Traditional app architecture has explained in Chapter 4 using Figure 4.3. It is hypothe-

sized that safety and security risks can be mitigated if MMAs follow the high level model

shown in Figure 4.4. In this model all data storage and peripheral communication in a

MMA are handled by the Trustworthy Data Manager. The TDM is a separate app that runs

in background (Figure 4.5). Using such a standard model of operation of MMAs enable

runtime safety, sustainability and security checks. The TDM can match the outcomes of

vulnerable operations of a MMA with their expected behavior expressed using models.

This enables detection of code modification and runtime deviations in execution. Further,

31



as all the data communication from MMA occurs through TDM, developer does not need

to implement the security protocols. The runtime validation of MMA input is done us-

ing finite stet automata and reachability analysis techniques. The app model reduces app

development time significantly as developer does not need to implement communication

interfaces.

4.4.2 Runtime Validation of TDM

The TDM runtime process monitoring and validation functionality is not only agnostic

to user preferences but also has enough embedded intelligence so that it can detect anoma-

lous behavior of an app as shown in Figure 4.6. An app can register with a TDM by first

establishing a Binder IPC channel with the TDM. Through the Binder channel it passes

the UUID to TDM. The app can have its Multi-Tier Model encrypted using the UUID so

that no other app except the TDM can access its models. TDM has a broadcast listener

implemented which continuously listens for app requests. Once it receives a request from

MMA, it will invoke a message parser which separates the requests into two parts: ID and

Data. Corresponding to every ID there is an algorithm for runtime requirement check-

ing. The algorithm will load requirements for the specific ID from the database. These

requirements can be the safety regulations of mobile medical apps, the sensor sustainabil-

ity requirements and the HIPAA security requirements. Simultaneously a model simulator

will take the data as input and simulate a model for certain time to generate system pa-

rameter. Models may include Finite State Automata based representation of secure data

management schemes, hybrid automata models of safety assessment of control algorithms

and optimization algorithm to check sustainable sensor configuration. The TDM will be

equipped with simulators that can execute the models and estimate the expected operating

condition or state of the app for current phone context(CPC). Now if the output of the sim-

ulator which is a system parameter matches the requirements, the TDM will create new

32



AP MMA App

Broadcast Receiver

Message parser

App request 

Select algorithm for ID 

Load requirements 
for ID from 
database

Model Simulator (Data)

Requirements System parameters

Match (system 
parameters, 

Requirements)

(ID, Data)

Set off Alarm

Create new system 
call

Send request

ID Data

No

Yes

Figure 4.6: Manifestation of the TDM Runtime Environment for Validating the Apps Op-

eration Against Requirements.
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system call to issue the initial app request. If the requirement is not matched, the TDM will

set off an alarm.

The runtime validation functionality of the TDM can be expressed using functions

fsa f ety, fsustainability and fsecurity as shown in Equations 4.1, 4.2 anf 4.3.

fsa f ety =< MP
1 (CPC,Vh),Th > (4.1)

fsustainability =< MP
2 (CPC, P), Bmin > (4.2)

fsecurity =< MP
3 (CPC, τM3 ),True or False > (4.3)

Here, M1,M2 and M3 are models used by TDM to validate the app request against safety,

sustainability and security. Vh is the physiological parameter controlled by the app and Th

is the safety threshold value. P is the power required for the sensor for specified operation

in the system call whereas Bmin is the minimum threshold value for the sensor battery level.

Data access request τM3 , is checked against M3 to see if the request is valid or not for a

given CPC.

A more accurate estimation of the actual state of the app can be obtained by tracing

the system calls made by the app. The app makes different types of system calls such as

Broadcast Provider for radio transmission or Content Provider for accessing the sensors

and actuators. All these system calls goes through the TDM app in our proposed method.

and hence the TDM can trace the state of the app from these system calls. These two states

can be compared in runtime. If there is a match then the app behaves as the proposed model

and hence its system call is trustworthy and the TDM allows the requested operation. If the

app operation does not match the model then a default operation is performed. This default

operation has to be specified by the App and is kind of a fail safe mode of the application. If

this fail safe mode is ever reached an exception will be considered by the TDM and the app
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Figure 4.7: App Request Processing by TDM for Artificial Pancreas MMA.

user will be notified. Fail safe modes are also essential for handling false positives from

the TDM runtime monitor. This is an important problem in healthcare domain when an

useful action performed by the app is prevented because of false suspicion of vulnerability.

In such cases fail safe modes of apps or appropriate user intervention through alarms will

be considered.
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4.4.3 Artificial Pancreas MMA Working with TDM

Artificial pancreas MMA is a controller app to keep the blood sugar within desired limit

as explained in Example 3 from Chapter 2. The app sends request to change insulin con-

centration to infusion pump. Given new app working model, all MMA request pass through

TDM. Figure 4.7 shows the MMA request processing by TDM for artificial pancreas app.

Artificial Pancreas MMA sends the message of change in insulin concentration to TDM

using Intent message. Broadcast listener implemented in TDM receives this message and

invokes a message parser which separates the requests into two parts, ID and Data. For

artificial pancreas, the ID is infusion pump input and data is amount of insulin to be in-

fused. As for this example the request is for infusion pump to change drug concentration,

the algorithm for checking if the requested insulin amount is safe or not is called. The

algorithm loads requirements for the specific ID from the database i.e. glucose safe range.

Simultaneously a model simulator takes the data as input and simulate a model for certain

time to generate system parameter. For safety verification hybrid automata model for artifi-

cial pancreas is used (Figure 2.1 from Chapter 2). The simulator takes amount of insulin to

be infused as input, simulated hybrid automata for that input and outputs blood sugar level

after certain amount of time. Now this output matches the requirements i.e. the sugar level

within required range, the TDM creates new system call to issue the initial app request. If

the requirement is not matched, the TDM will set off an alarm.
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Chapter 5

EVIDENCE GENERATION: MMA SUSTAINABLE DESIGN

Sensors aesthetically embedded in accessories such as jewelry, piercings or contact lenses

are being used by MMAs to collect physiological data. These symbiotic wearable wireless

sensors are envisioned to operate on scarce harvested energy resources from the human

body. In addition to the hardware and software constraints arising from the form-factor and

low energy operations, there are safety requirements such as avoidance of physical injury.

The design implications of these requirements are non-intuitive and may involve estima-

tion of human physiological dynamics. The physical impact of a sensor operation can be

controlled by appropriate design of multiple sensor components such as processor, radio,

and optimization of data algorithm. For example, the risk of thermal injury to tissue can be

reduced by limiting the sensing frequency, the computation power, and the radio duty cycle

of body worn sensor. Hence, it is a challenging task to trace back a cause of a physical im-

pact to hardware and software design decisions in a sensor. This research proposes a novel

non-linear optimization framework to consider safety and sustainability requirements that

depend on the human physiology and derive system level design parameters of a sensor [7].

5.1 Safe and Sustainable MMA Configuration Optimization

5.1.1 Motivating Examples

Single sensor thermal safety: Thermal effects of a sensor on the human body follows a

complex pattern and varies with the location and placement of the sensor. Sensors worn on

the arm or on the chest, where the skin is not very sensitive to the heat energy, for short

periods of time does not cause severe heat related problems. Sensors such as Shimmer,
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Figure 5.1: Skin Temperature Rise Depending on Sensor Location.

TelosB, with power consumption around 50 mW, cause negligible temperature rise in the

human body (≈ 0.01 ◦C) for a prolong operating time of 24 - 48 hours [5]. Symbiotic

sensors on the other hand will have a power cap of 5 µW [72], but can have a higher

thermal effect due to their location. We conducted a simulation study that shows a non-

intuitive result as depicted in Figure 5.1. The skin temperature rise of a sensor with 1 mW

power dissipation installed on the cornea is greater than that of a sensor with 50 mW power

worn on the human arm for 24 hrs by almost 0.2 ◦C. Another interesting fact is that the

reduction of sensor power does not significantly change the temperature rise. As shown in

Figure 5.1, if power of the sensor is reduced to 5 µW [72] from 1 mW, the skin temperature

reduces only by 0.01 ◦C. This result is due to the fact that the average temperature rise of

the human tissue around a sensor is not only a function of the power consumption of the

sensor, the frequency of sensing, the data transmission rate but is also a function of the

blood perfusion rate and hence varies based on the location of installation.

Networked Infusion Pump: In a networked autonomous infusion pump, a wireless con-

troller samples the blood glucose levels from a glucose meter and computes the future

infusion rate to stabilize blood glucose concentration in the human body. The interaction
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between insulin and glucose can be modeled as the spatio-temporal [73],

∂d
∂t

= 5(D 5 d) + Γ(dB(t) − d) − λd, (5.1)

where d(x, t) is the tissue drug concentration at time t and distance x from the infusion site,

D is the diffusion coefficient of the blood, Γ is the blood to tissue drug transfer coefficient,

dB(t) is the prescribed infusion rate at time t, and λ is the drug decay coefficient. The design

of the controller involves finding five parameters, the optimal sampling rate of glucose sen-

sor, infusion change or increment step by which the controller increases infusion, allowable

bolus rate, the set point dB(t), and the delay in taking control decisions.

5.1.2 Problem Formulation

The principal research problem that we seek to answer in this paper is -

Given a set of design requirements expressed in the form of a set of favorable states, find a

sensor design that always keeps the system in one of the favorable states.

Optimization approach: We frame the problem of finding the sensor design that satis-

fies regulatory requirements in an optimization framework. Let us consider a contact lens

glucose sensor placed on the retina which consumes Ps power for sensing, Pc for data

transmission, Psec for executing security protocol. The sensor has an energy storage device

of capacity Bc and its stored power at time t is denoted by Pb(t). The energy available

from the scavenging source is denoted by E(t) at time t. There will be constraints on the

frequency at which the sensor can sense and communicate data. Let us consider that the

sensing frequency is fs and the communication frequency is fc. The aim is to determine

Ps, Pc, Psec, Bc, fs and fc from an optimization formulation that minimizes the temperature

rise of the human body part and also never depletes the storage device.

Let us consider that the specific absorption rate of the tissue is S AR, which is directly

proportional to the radio power and inversely proportional to the square of the distance

between the sensor and the point at which temperature is to be calculated. The change in
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temperature of the tissue is represented using Penne’s bioheat equation [74] as follows,

ρCp
dT
dt

= K 52 T − b(T − Tb) + ρSAR + Pavg, (5.2)

where ρ is the mass density, Cp is the specific heat, K is the thermal conductance, and T is

the temperature of the body part, A is the surface area of contact with the device, Tr is its

temperature, b is the blood perfusion constant, Tb is the blood temperature, and Pavg is the

average power required by the sensor.

The Penne’s bioheat equation [75] can be written as a temporal differential equation by

discretizing it over N × N space grid. It is discretized over time and space using the finite

difference time domain(FDTD) technique [74].

At grid points (i, j), the temperature T (i, j) is:

dT (i, j)
dt

=

[
−

(bδ2+4K)
ρCpδ2

]
T (i, j) + S AR

Cp
+ b

ρCp
Tb +

Pavg

ρCp
(5.3)

+ K
ρCpδ2 [T (i + 1, j) + T (i, j + 1) + T (i − 1, j)

+T (i, j − 1)].

If we consider T to be a vector consisting of the temperatures at each grid point, then

Equation 6.16 is analogous to Equation 6.17, which is in the form of linear time invariant

differential equation.

Ṫ = AT + B, (5.4)

where, matrix A will have dimensions N2 × N2 and its each row will be as,

A =

( ·· X1 X2 X3 X4 X5 X6 X7 ··

·· α ·· α β α ·· α ··

)
(5.5)

where, α = K
ρCpδ2 , β = −

(bδ2+4K)
ρCpδ2 , X1 = N( j − 1) + i, X2 = N − 2 zeros, X3 = N( j + 1) + i,

X4 = N j + i, X5 = N j + (i − 1), X6 = N − 2 zeros, X7 = N j + (i + 1). The dotted elements

of matrix A are all zero. The computed matrix B of dimension N2 × 1 is as follows,

B =



1

1 S AR
Cp

+ b
ρCp

Tb +
Pavg

ρCp

...
...

N2 S AR
Cp

+ b
ρCp

Tb +
Pavg

ρCp

. (5.6)
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The solution to Equation 6.17 is a non linear function of time given by,

T(t) = eA(t−t0)T(0) + eAtA−1(eAt − eAt0 )B, (5.7)

where t0 is the starting time.

The average power consumption of the sensor over a time τ can be obtained using

Equation 5.8,

Pavg = (Ps fs + (Pc + Psec) fc). (5.8)

A principal requirement of the sensor to operate is the energy neutrality constraint. A

system is energy neutral for a time τ if the storage device level remains unchanged after

the execution, i.e., Pb(0) = Pb(τ). Thus, effectively all the power required for computation

comes from scavenging sources (Equation 5.14),

(Ps fs + (Pc + Psec) fc)(τ − t0) ≤
∫ τ

t0
E(t)dt. (5.9)

The power from the scavenging sources are not directly provided to the sensor but has to be

stored in a storage device. The storage device should have a capacity greater than the peak

power consumption of the sensor. Also, the available charge at any time should be greater

than the power requirements of the sensor,

Pb(t) ≥ Pavg and Bc ≥ max{Ps, Pc, Psec} (5.10)

The aim of the optimization analysis is to find Ps, Pc, Psec, Bc, fs and fc such the tem-

perature rise is maximized without violating dangerous levels. In order to frame it as an

optimization problem as shown in Equation 5.15, we have to convert the above require-

ment into an objective function. Let us assume that T should not increase by more than

ε◦C. In such a case, the objective function can be framed as minimization of the quantity,

abs(ε − max(T(t) − T(0)))∀t ∈ [t0 . . . τ], where τ is the final time.

For the energy scavenging unit the energy E(t) can be given by the linear model E(t) =

α(max(T) − Tamb), where α is the thermal resistance of the human body and Tamb is the

ambient temperature.
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Find Ps, Pc, Psec, fs, fc, and Bc that minimizes

abs(ε − max(T(t) − T(0)))∀t ∈ [t0 . . . τ]

such that

[Penne’s Equation] ,∀t : T(t) = eA(t−t0)T(0) + eAtA−1(eAt − eAt0 )B,

[Energy Neutrality], (Ps fs + (Pc + Psec) fc)τ ≤
∫ τ

0 E(t)dt,

[Storage Constraint],∀t : Pb(t) ≥ Pavg,

[Capacity Constraint],∀t : Bc ≥ max{Ps, Pc, Psec}.

(5.11)

5.1.3 Validation

The optimization problem is solved in MATLAB using fmincon, which starts with ini-

tial values of variables and minimizes the scalar function within the specified constraints.

We show the usage of the optimization technique on three examples: a) single sensor oper-

ation, b) cluster head scheduling for implanted sensor networks, and c) designing infusion

control algorithm.

Single sensor example We use the problem formulation of Section 5.1.2. The objective

function of Equation 5.15 is used as a scalar function for fmincon. ε is considered as

0.1 ◦C. Energy sustainability of sensors are described by the battery constraints and energy

neutrality constraints.

We consider the initial values of design parameters as, sensing power Ps = 7.1µW, data

transmission power Pc = 50 mW, power for executing security protocol Psec = 12 mW,

sampling frequency fs = 100 Hz, and frequency of data transmission fc = 6/3600 Hz.

For forming the complete optimization problem, we set feasible design considerations for

aforementioned parameters as Ps = 5 µW, Pc = 1 mW, Psec = 5 mW, fs = 10 Hz, and fc =

0.001 Hz. These are minimum values of design parameters for currently available sensors.

Using these values, we solved the optimization problem and obtained the optimized design
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Table 5.1: Power Consumption of Sensor Query Task.

Platform Consumed Power Time

TelosB 5.46 mW 500 ms

Imote2 (13 MHz) 156.15 mW 286 ms

BSN v3 6.586 mW 235 ms

SHIMMER 2R 7.145 mW 452.8 ms

Table 5.2: Radio Power Consumption Results with

Plaintext Packets and Encrypted Packets.

Platform Consumed Power Consumed Power

Encrypted data(mW) Plain data(mW)

TelosB 58.2 47.6

Imote2 209.4 198.3

BSN v3 70.7 59.7

SHIMMER 2R 72.4 60.1

parameters as Ps = 8.3 µW, Pc = 61 mW, Psec = 13.3 mW, fs = 112 Hz, and fc = 1/360 Hz

which satisfied all the constraints.

To implement and experimentally validate our optimization design, we have bench-

marked commercially available sensing platforms TelosB, Shimmer, Imote2, and BSN v3.

Table 5.1 enlists the power consumption of respective platform for sensing once. We mea-

sured sensing power and radio power while both plain data and encrypted data are being

sent. Table 5.2 shows the bench-marking results for the radio power.

From Tables 5.1 and 5.2, the Shimmer platform is the best match for our optimized

power consumption constraint. Thus, we have used it for validation.

43



After obtaining optimal design for sensors and choosing testing platform as Shimmer,

we need to develop software code for it with our optimized design. For code develop-

ment, we have used the automated code generator, Health-Dev [6]. It takes requirements

of wearable sensors in the form of models in Advanced Architectural Description language

(AADL) and generates downloadable code for them. The automated code generation re-

duces manual implementation errors.

We input sampling frequency as 112 Hz, data transmission frequency of once every

6 mins, and choice of sensor as ECG sensor to Health-Dev [6]. Then, we have downloaded

the generated code into Shimmer platform and wore it to measure ECG signal continuously

for 12 hours. We conducted two sets of experiments: a) without any radio duty cycling and

b) with the optimize sensing frequency and duty cycle. At the end of the testing period, we

measured the energy required and rise in temperature of the body part. With no duty cycling

and at a sampling rate of 250 Hz, the energy consumption was 432 J and the temperature

rise was (≤ 0.167 ◦C) on the arm. With the optimized design, the sensor consumed 11 J of

energy and there was no measurable temperature rise. The power available from body heat

was 9 J and we considered an energy storage unit with initial energy 4 J.

Networked implanted sensors In this example, we consider a network of implanted sen-

sors, which communicate in a cluster protocol. The implanted sensors form a cluster, where

a cluster head collects all communication packets from the participating sensors and sends

it out to a base station. Here, for each sensor, the sensing power Ps is fixed to 3 µW, com-

munication power Pc is fixed at 5 µW and there is no security protocol, hence Psec = 0.

The sensing frequency is set at 10 Hz while the communication frequency is set at 0.5 Hz.

Since the cluster head has to collect data from all other sensors, it has the most power con-

sumption and the tissue around the cluster head is heated the most. To keep the temperature

of the surrounding tissue within limits, the cluster head has to be frequently rotated. In this
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example, we find out the optimal cluster head rotation scheme that can keep the temperature

within thresholds at different parts of the body.
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Figure 5.2: Cluster Scheduling Schemes for Implanted Sensors.

We observe that as the location within the body changes, different leader rotation

schemes are needed to keep the temperature within thresholds as shown in Figure 5.2.

In the arm where the blood perfusion is the lowest, the leader can be changed every 600

s to keep the temperature below 37.8 ◦C. However, for the same threshold a cluster in the

tongue will have to have its leader power reduced to half, every time the temperature is

greater than 37.6 ◦C in addition to changing its leader every 600 s. If the implant is in the

eye, the leader has to be changed every 300 s.

Designing infusion pump control algorithm For the infusion pump case study, we con-

sider a requirement that the drug concentration should not be above 1300 µg/min. Our aim

is to derive the design parameters discussed in Section 5.1.1 such that this requirement is

satisfied. In addition to the five design parameters, we also consider the packet delivery

ratio as a measure of the wireless channel characteristics. Equation 5.1 is of the same form

as the Penne’s bioheat equation and hence can be solved using FDTD. The form of the
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Figure 5.3: Infusion Pump Parameters for Avoiding Hypoglycemia.

objective function will thus be the same as that in Equation 5.15. Figure 5.3 shows the

results of 10000 optimization runs. Since several local minimums are possible, we get a set

of design parameters (within the gray bounded region) that satisfy the requirements.

5.2 Sustainable MMA Configuration Optimization

Wearable sensors typically scavenge energy from light or human body heat. The avail-

ability of scavenging sources is unpredictable. Thus, to have sustainable working of the

sensors, we form an optimization problem to achieve energy neutrality which satisfies

Equation 2.5. In this problem formulation, we optimize the data sending frequency of the

sensor depending on the availability of scavenging source. It mainly considers the energy

obtained from the solar or light and does not focus of battery design or its efficiency.
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Optimization approach: Let us consider a wearable sensor which consumes Ps power

while sensing and sending the data over wireless channel. Pb(t) denotes the number of

packets can be sent with available battery charge at time t. The energy available from the

scavenging source is denoted by E(t) at any time t. R represents the random sequence

to show the availability of scavenging source. Time slot allocated to each entry in R is

denoted by τ, e.g., if R = [1, 0, 0, 1], where, 1 denotes scavenging source is available and

0 as source is not available, each of the 1 and 0 will occur for τ time. The availability of

scavenging source puts constraints on the sensor sending frequency. Let us consider that

the sending frequency is fc when scavenging source is available and fd when scavenging

source is unavailable. The aim is to determine fc and fd that achieves energy neutrality.

We consider scavenging source as light for formulating the optimization problem. Mod-

els of solar traces are used to form the sequence R. For solar power, single diode equation to

simulate the available electrical power generated from a single PV (photo voltaic) panel[76]

is used, whose current-voltage characteristic is given by Equation 5.12,

I = Ipv − Io(e
ε(V+IRs)

nkTc − 1), (5.12)

where, I is the total current generated in PV panel, Ipv is the photo generated current, while

Io is the dark saturation current with respect to the ambient weather pattern. Further k

denotes Boltzmann’s gas constant, ε denotes the charge on one electron, Tc denotes PV

cell temperature in Kelvin, n denotes the number of solar cells in the PV, finally V and Rs

denote junction thermal voltage and series resistance of the PV panel.

The solar panel on sensor starts charging only when the sensor processor is awake for

computations. This infers that, the data sending frequency is directly related to charging or

discharging of the battery. Thus, fc can act as charging rate and the fd as discharging rate.

Given a solar light availability sequence R, we have derived the sequence R f , which

is the sequence of sensor sending frequencies while executing the sequence R. e.g., if

R = [1, 0, 0, 1], R f = [ fc, fd, fd, fc]. The scavenged energy obtained during this period is
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Find fc and fd that optimizes

(
∑

R)τ ∗ (I2r) −
∑

(Ps ∗ R f )

such that

[Solar Energy],∀t : E(t) = R ∗ τ ∗ (I2r),

[Energy Neutrality], Pb(k − 1)τ − τR f (kτ) ≥ 0,

[Storage Constraint],∀t : Pb(t) ≥ 0,

[Battery Capacity Constraint],∀t : Pb(t) ≤ PbMax.

(5.15)

given by Equation5.13,

E(t) = R ∗ τ ∗ (I2r) (5.13)

where, I is the current calculated using Equation 5.12 and r is the internal resistance of the

solar panel.

A principal requirement of the sensor operation is the energy neutrality constraint. A

system is energy neutral for a sequence R of scavenging source availability, if the storage

device level remains unchanged after the execution, i.e., Pb(0) = Pb(length(R)∗τ), where τ

is the time for which each element in R will execute. Also, battery capacity at any time t is

limited by PbMax which is the maximum number of packets to be sent when battery is fully

charged. Thus, effectively all the power required for computation should not exceed power

obtained from scavenging source given by Equation 5.14 which is similar to Equation 2.5,

(
∑

R)τ ∗ (I2r) >
∑

(Ps ∗ R f ), (5.14)

where, k is the time at which the data is sent.

The aim of the optimization analysis is to minimize fc and fd given energy constraints.

In order to frame it as an optimization problem as shown in Equation 5.15, we have to

consider an objective function. It can be framed as (
∑

R)τ ∗ (I2r) − (
∑

Ps ∗ R f ), such
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that the power consumption in sensor should not go above the scavenged power (Equation

5.15).

The optimizer algorithm gives a set of time constrained sustainable designs. Developer

can chose any design depending on available sensors and their configuration settings.

5.2.1 Validation

To validate the sustainable optimized sensor design obtained using the proposed op-

timizer, we used the MSP430 Solar Energy Harvesting Development toolkit (MSP430

SEH) [77]. It harvests energy from solar or ambient light and stores in the rechargeable

battery for use when harvesting source is not available. The fully charged battery can send

upto 400+ data samples. We emulate the general light source for the experimentation us-

ing a smartphone flash light. The light source variation allows the sensor to charge and

send signal to compute device. The data collected on the compute device includes the re-

maining packets the sensor can send in the existing energy state of the harvester. Using

the remaining packets data, the optimizer can set the frequency of packet sending for the

sensor.

The optimization problem from Section 5.2 is used to find sustainable design for MSP430

SEH. This sensor scavenge energy from light, thus we used random sequence for R to indi-

cate light availability. Matlab fmincon function is used to optimize the problem in Equation

5.15 with initial values for sending frequency when light is available, fc = 0.2Hz, send-

ing frequency when dark, fd = 0.2Hz, battery capacity in terms of number of packets

can be sent, Pb = 360, maximum number of packets sent when battery is fully charged,

PbMax = 400 and time step for each entry in R, τ = 20sec.

After optimizing Equation 5.14 using fmincon function, the minimal values of frequen-

cies are obtained, fc = 1.6Hz and fd = 0.76Hz. The sensor is programmed with these

optimal frequencies. The flash light sequence is set to R in smartphone application. The
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Figure 5.4: Experimental Results for Sustainable Sensor Design.

sensor harvests energy according to the flash light sequence and sends the data to compute

device. The variation in battery voltage due to on-off light sequence in R is as shown in

Figure 5.4. The results show that energy neutrality is achieved for a given light sequence R

and satisfy our sustainability requirement defined in Equation 2.5.
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Chapter 6

EVIDENCE GENERATION: HYBRID SIMULATION

The sensor configuration framework described in Section 5.1 uses hybrid simulator only to

simulate continuous dynamics of the human physiology. However, if we want to simulate

the MMA system design with controller app software, sensors and human physiology, we

need to consider events from both continuous dynamics of human physiology as well as

events from discrete system which is controller software. Thus, this research focuses on

how to accurately simulate the events from both continuous an discrete domains [78].

In MMAs, controller algorithm in smartphone which is a computing system and phys-

ical dynamics form a closed loop control system, which is a cyber-physical system. The

interactions between these two systems are guided by two types of events: a) random

discrete computing events, that arise from the interaction of a user with the MMA, and

b) physical events, that arise due to threshold crossing of continuous system variables of

human physiology system. These events reconfigure the computing and physical system

parameters. This research focuses on accurate simulation of cooperation between comput-

ing and physical systems, their interactions, through a unified hybrid simulation approach.

Simulations play an important role in: a) estimating resource requirements and de-

signing their organization, b) estimating cost, c) comparing strategies, and d) verifying

the design against requirements. While analytical techniques such as model checking and

formal requirements verification may provide more rigorous evaluation framework, they

often have limited solutions for complex systems including delayed differential dynamics.

For such cases, simulation provides a time efficient and scalable solution. Lack of accu-

rate simulation of MMA interactions with human physiology may result in sub-optimal
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design. This can cause significant hazards to the physical environment e.g., wrong infusion

of insulin can cause hypo or hyper-glycemia problems [40], burning of the skin due to over-

heating of the wearable sensors. Simulation of MMA interactions with human physiology

are challenging and traditional approaches of interfacing domain specific simulators may

have simplifying assumptions that adversely affect efficient MMA design.

Traditionally there are two different paradigms of simulation: a) event driven (ED), that

progresses by processing events that can change system variables and generate new events,

and b) finite horizon time stepped (FHT), that progresses by increasing time by a small

fixed amount and evaluating the dynamics of system variables. ED simulators operate in

discrete time and hence cannot simulate continuous dynamics of human physiology while

FHT operate in continuous time and can only process events at the start of a time slot. For
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Table 6.1: Summary of Existing CPS Simulation Tools.

Existing CPS simulation

tools

Discrete

computing

events

Physical

system

Physical events &

time adjustment to

reduce error

Event

time pre-

diction

Omnet++ [79], Situation

Calculus based simula-

tor [80]

X × × ×

GISOO [45], Picc-

SIM [44], iSEE [81],

Matlab+EPANET [82]

X X × ×

NCSWT [43], Model-

ica [83], WCPS [41],

Truetime[42]

X X X ×

HyrefSim X X X X

MMAs, a hybrid approach is the most optimal where computing events are handled by ED

at exact event times while continuous physical system is handled by FHT.

6.1 Challenges of Hybrid Simulation

Co-simulation of computing and physical events: In MMAs, random discrete computing

events originating from the networked computing systems may result in change in con-

troller configuration or may also induce mode transition for a given controller. Events in

computing domain can be efficiently handled by discrete event simulators such as ns2 or

OMNET++ [79] (first row in Table 6.1). Changes in the physical system variables due to

a random discrete computing event in control algorithms is a property unique to MMAs.

For cyber-physical systems (CPS), researchers have tackled this problem by interfacing a

discrete event simulator such as ns2 with a physical simulator such as Matlab, second row

in Table 6.1). These techniques can be applied to MMAs as they also form a CPS.
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Time step adjustment problem: Simulating MMAs require accurate estimation of: a) solu-

tions of differential equations using a time stepped approach, and b) physical event timings.

Existing hybrid simulators (third row Table 6.1) use tools such as Simulink to estimate

physical dynamics and state change in controllers due to physical events. Such simulators

dynamically adjust simulation time step in order to reduce error in estimation of differential

dynamics. However, they have an inherent assumption that a time step that ensures accu-

racy in differential dynamics can also accurately estimate physical event timings, which is

often not the case as shown in Section 6.2. A slight difference in event processing times

can have long lasting impact in MMA simulation, by progressively increasing error in esti-

mating the physical system variables.

Artifacts of wrong time step adjustment: Wrong estimation of physical event timings may

lead to: a) event delays, when an event scheduled to be processed within a time slot of

an FHT is pushed towards the end of a time slot, b) event loss, when events scheduled to

occur within a time slot of an FHT is lost at the end of a time slot since the differential

dynamics fails to satisfy threshold crossing conditions, and c) false clustering of events,

when multiple events scheduled to occur at different times within a time slot of an FHT are

grouped at the end of a time slot, often resulting in conflicting control requests. Examples

of such effects are shown in Section 6.2.

A way to avoid such errors is to have an arbitrarily small time step, however, that

will drastically increase the simulation time. Hence, simulation approaches that combine

physical simulators such as Simulink and discrete event simulators such as ns2, are either

limited in their capabilities to process events at accurate times or take a prohibitively long

processing time. This is due to a lack of a method for refining simulation time step to

reduce error in predicting physical event timings. An associated side-effect of this gap

is that a time efficient unified simulator that can process random events from computing

domain and physical events from continuous domain is difficult to develop.
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Figure 6.2: Difference in Temperature Profile for FixSim Type Simulation and AccuSim

with Exact Event Times.

6.2 Practical Need for Processing Events at Accurate Time

Let us consider a example of network of implanted sensors 4 MMA, from Chapter 4

that sense physiological signals from different parts of the human body and send it back to

the smartphone outside the body for storage, processing and diagnosis. The sensors form a

cluster where a cluster head is randomly chosen to communicate with the smartphone. All

other sensors are slaves and they only communicate with the cluster head. Communication

of sensors with the cluster head leads to power consumption. Since the cluster head is the

most power hungry sensor, it has to be periodically re-selected or rotated i.e., some other

slave sensor takes up the task of a cluster head.

As these sensors operate inside the human body, power dissipation causes temperature

rise of the tissue. This can be modeled using the Penne’s bioheat equation [74]. The

rotation of cluster head can also be triggered by tissue temperature rise. This is an example

of physical event triggered action in the computing domain. Let us further assume that
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the implanted network has to be designed such that it lasts at least a year without the need

for recharging. Hence, another strategy is employed such that a cluster head with energy

less than 30% of initial energy has to be rotated (low energy events). We need to design

a cluster head rotation scheme that never causes a temperature rise of 0.15 ◦C above the

normal body temperature and can have at most one sensor that is not capable of being

a cluster head after an year of operation. The design parameters are placement, power

consumption, and energy storage size of the sensors.

Our aim is to consider the simulation paradigm of existing CPS simulators and evaluate

if event loss, delay, and false clustering can cause any significant difference in design cost

or operation of the system. Existing CPS simulators interface physical simulator with com-

puting or network simulators, which use fix time step. Here, we refer to existing simulators

as FixSim. We compare FixSim with a hypothetical simulator that has infinitesimally small

time step and can process physical events at their exact times of occurrence.

Event Delay

FixSim results in a different temperature profile with a higher temperature rise on an aver-

age and also predicts 10% higher energy consumption of the sensors (Figures 6.2 and 6.3).

FixSim will always process a physical event at the end of a time slot. Hence cluster head ro-

tations due to temperature rise above a certain threshold are always delayed. Hence, FixSim

estimates that sensors remain cluster head for a longer period of time. This error in estima-

tion leads to an error in computing the thermal profile of the sensors and also their energy

consumption. Hence, if we design the sensor network using the estimations of FixSim, we

have to: a) over provision energy storage for the sensors, and b) reduce the power con-

sumption of sensors to prevent higher temperature rise. Based on fuel cell cost [84], we

will have to spend $ 3 extra on sensors to accommodate for 10 % more fuel cell capacity,
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Figure 6.3: Difference in Energy Consumption of Sensors for FixSim Type Simulation and

AccuSim with Exact Event Times.

and also have to reduce the power consumption to keep the temperature within the safety

threshold of 37.15 ◦C.

Event Loss

FixSim fails to process three critical low energy events over a period of 24 hours. Error due

to event delay accumulates over time, which eventually leads to loss of events in FixSim.

From our experiments we found that for a period of 1 day FixSim missed three times more

low energy events and predicted that only one cluster head will be out of energy. However,

if we process the events at the exact time of occurrence, AccuSim predicts that three cluster

heads will be out of energy and non-operational. Hence, if we design using the estimation

given by FixSim then it can jeopardize the system performance.

False Clustering of Events

False Clustering of events in FixSim induces loss of events or renders events meaningless.
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A case of event clustering is as shown in Figure 6.4, where within a time slot first the

cluster head C1 has to be rotated due to temperature rise then C2 is selected, which had to

be rotated due to a low energy event. In FixSim, these two events will occur at the same

time slot. The simulator will consider the events in the order that they arrived at the event

queue. Hence, rotation of C1 will be handled first. However, the low energy event for C2

will not make sense to the simulator since C2 has not yet served as cluster head and hence

its energy is not reduced yet. Thus, the low energy event will not be processed and hence

for the next slot cluster head C2 will be drained of energy. If the energy drain occurs within

a time slot then FixSim will have an in-feasible solution.

A case for further concern is that the errors from the above-mentioned artifacts are

unbounded. Figure 6.5 plots the difference between the energy estimation by FixSim and

that by AccuSim that has exact event times. The error increases with respect to simulation

steps t without bounds and at a rate of O(t5) (determined experimentally).
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6.3 HyrefSim Simulation Approach

The proposed HyrefSim employs a time refinement approach towards hybrid simulation

of MMAs. The primary simulator is ED and it processes events from both computing and

physical operation (Figure 6.6). After an event is processed, the ED passes control to the

FHT until the next event is generated. For each time step in FHT, it not only evaluates

the continuous system variables but also uses sophisticated predictive models of physical

systems to determine the exact time of occurrence of physical events within one step in

the future. The time step is then dynamically adjusted to account for the predicted phys-

ical event at the correct time within an user specified error margin. This time refinement

strategy not only minimizes event delay, event loss, and false clustering of events, but also
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ensures that the simulation progresses over time. However, before going to the details of

the simulator, let us first consider an example and determine whether simulation errors re-

lated to event loss, event delay and false clustering can cause significant sub-optimality in

the MMA design.

6.4 System Model

The discrete operation of a DCPS is expressed by a set of nd discrete variables D =

{d1, d2 . . . dnd} ∈ Z
nd , while the continuous operation is represented by a set of nc continuous

variables S = {s1, s2 . . . snc} ∈ R
nc . Thus, at any time t the system is described by the

evaluations of discrete and continuous variablesD
⋃
S.

Events in a DCPS can occur from two sources (Figure 6.1): a) events generated by

the computing unit at random times, and b) events generated due to threshold crossing of

continuous system variables. In the proposed simulator, we consider the physical system

to be represented by a set of linear delay differential equations. We define an event as -

Definition 1 Event: An event is a tuple {te, fe, fv},

• Event time: te at which the event occurs,

• Discrete reset function fe : D→ Znd that changes discrete variables,

• Continuous reset function fv : S× fe(D)→ Rnc that assigns values to the continuous

variables at the event time te.

Definition of hybrid simulator: The proposed hybrid simulator evaluates continuous vari-

ables by simulating a set of DDEs. At each event, the simulation of DDEs are halted and

the discrete and continuous reset functions are executed to reconfigure the DDE.

Definition 2 Hybrid Simulator:

A hybrid simulator is a tuple {E,V,I, {As,A
τ1
s . . .},Bs, tsim, {Gc,Cc},Es, ε, εr},
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• Event set E: where each event is expressed by the tuple in Definition 1, the event set

has m different types of events,

• Variable setV = D
⋃
S, with n = nd + nc variables,

• Discrete event generator I : tsim → E takes the current time as input and generates

a discrete event as output in some future time.

• Physical dynamics: The continuous variables vary according to a DDE Equation

6.1,
dS(t)

dt
= AsS(t) +Aτ1

s S(t − τ1) . . . + Bs, (6.1)

whereAτi
s is an nc × nc matrix ∀i and Bs is an nc × 1 vector,

• Current simulation time: tsim,

• Physical event generation function set Gc : 2S → R is a set of m event generation

functions, each function combines different continuous variables and evaluates to a

single real variable that can be compared to a threshold. Cc ⊂ R
m is a vector of m

real threshold values corresponding to each unique event,

• Physical event labeling function Es : (Gc,Cc,S(tsim)) → E is a function that eval-

uates an event generation function gk ∈ Gc and generates an event ek if ck+1 >

gk(S(t)) > ck.

• Simulation resolution ε

• Continuous state error margin εr

For the network of implanted sensor example in Section 6.2, Definition 1 can be in-

stantiated as, Event(event time, Cluster Rotation Algorithm, Power Estimation Algorithm).

Cluster Rotation Algorithm sets one sensor as the cluster head and all others as slaves and
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accordingly adjusts their power levels. Power Estimation Algorithm uses the power level

settings from ClusterRotation and set appropriate power consumption estimates to the sen-

sors.

Definition 2 can be instantiated for sensor network example as described in Table 6.2.

6.4.1 HyrefSim Execution Model and Implementation

The execution of HyrefSim is a specific logic for progression of time. We have imple-

mented HyrefSim in MATLAB and the implementation logic is shown in Figure 6.6.

HyrefSim combines simulation paradigms from both event driven (ED) and Finite Hori-

zon Time (FHT) simulation. Events generated from both of computing and physical domain

are simulated in event-based simulator, ED. Continuous dynamics of the physical system

is simulated using time-stepped simulator, FHT, with variable time step. The time step is

either calculated by simulator depending on the given error bound on simulation results, a

technique used by existing simulators such as Simulink, or obtained from the time refine-

ment strategy proposed in this paper. With the defined time step, FHT simulator simulates:

(i) DCPS continuous dynamics, (ii) interactions between and cyber and physical systems

of the DCPS, and (iii) threshold conditions on continuous variables of the DCPS. The ED

simulator processes events from both discrete and continuous simulators.

The simulator starts with an initial set of events en-queued in the event queue of ED.

These events are generated by the discrete event generator in Definition 2. Examples in-

clude Markov chain models of random events. All events in the event queue are sorted

according to their execution time and processed by the ED in order. The initial control

is given to the ED. It processes an event by computing the discrete and continuous reset

functions fe and fv and then determines the next event time from the queue. Then the ED

transfers control to the FHT. The FHT simulates the physical dynamics until the next event

time using a time step that reduces DDE estimation error below εr.
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Table 6.2: Instance of Hybrid Simulator Definition for Sensor Network.

HyrefSim definition

components

Sensor network example parameter

E (set of events) cluster head change or reduce cluster power level

V (variable set) Discrete variables: radio power level, sampling rate and Continuous

variables: human body temperature T , energy consumption in sen-

sors

I (Discrete event gen-

erator)

Sensor turn ON turn OFF

Physical dynamics The change in temperature of the human body tissue is represented

using Penne’s bioheat equation [74] as follows,

ρCp
dT (t)

dt = K 52 T (t) (6.2)

−b(T (t − τ) − Tb) + ρSAR + Pc,

where ρ: mass density, Cp: specific heat, K: thermal conductance,

T : temperature of the body part, Pc: power generated by the sensor

processor, b: blood perfusion constant, Tb: blood temperature, τ :

delay in propagating the temperature from the human blood to the

sensor, and SAR: specific absorption rate of the body

t simulation time

Physical event genera-

tion function

The body temperature (T ) goes beyond threshold (37.07◦C), T >

37.07. Thus, here the function Gc is a single valued identity function,

Gc(T ) = T ◦C.

Es (Physical event la-

beling function)

When the condition T > 37.07 becomes true, continuous state simu-

lator generates a cluster head change event
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Figure 6.6: The HyrefSim Execution Model.

The FHT increments simulation time and keeps track of the current system state. For

each step it employs a predictor to check for any physical event one step in the future. If

there is a physical event occurring within a simulation time step, the FHT employs the time

refinement technique to compute the exact time of the event. This is done by numerically

solving the DDE with proper boundary conditions. The FHT then resets the simulation

time step to the computed time.

If the FHT generates an event, it pushes the event to the event queue and passes control

to the ED simulator. The ED simulator processes the event and again calls the FHT to

simulate for a time duration until the next event in the queue. The simulation time step is

also reset to the previous value.

6.5 Estimation of Physical Event Time

We present a mathematical discussion on how to configure HyrefSim simulation time

step such that: a) it minimizes loss of events and delay, b) it avoids false clustering of events,

c) minimizes physical system dynamics estimation error, and d) ensures that simulation

progresses even if the physical dynamics are ill-formed resulting in Zeno behavior.
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6.5.1 Loss of Events

Figure 6.7 shows two cases, a) the behavior of AccuSim that processes events at exact

time of occurrence, and b) the behavior of FixSim. As shown in Figure 6.7 (Case a), due to

a large time step of the simulator, two events can occur within a time step. In this case, the

system variable v1 increases at time t and crosses the threshold C1. At this time a physical

event is triggered that causes v1 to decrease at a rate proportional to v1 following Equation

6.1. AccuSim processes this event and v1 falls below C1 and eventually reaches a stable

value. However, a FixSim simulator due to its large time step misses this event. In such a

case, v1 continues to increase and reaches C2. A physical event is triggered which reduces

v1 by an even greater value proportional to its magnitude. FixSim might process this last

event and start reducing v1 with a larger value. This might lead to instability in the variation

of v1 which is not observed by the AccuSim. To avoid this scenario HyrefSim predicts the

occurrence of such events and re-adjusts simulation time step to process such events.

The event can only be lost if the event generator function gk(S(t)) is approaching to-

wards a constraint ck ∈ Cc for the current simulation state S(t) and within the next time

step t + ∆t, gk(S(t + ∆t)) crosses the constraint.

||gk(S(t + ∆t)) − gk(S(t))|| ≤ ||ck − gk(S(t))||. (6.3)

where, ||A|| denotes the magnitude of A if A is a real number, or it denotes a vector with

magnitudes of each element in A if A is a vector. If we consider that the event generator

functions are linear in nature i.e., gk(S(t)) = Ak
cS(t) + Bk

c, where Ak
c is an nc × nc matrix

while Bk
c is an nc × 1 vector then we the time refinement to capture the lost event is given

by the following theorem,

Theorem 6.5.1 Time step to prevent event loss:

Given a simulator {E,V,I, {As,A
τ1
s . . .},Bs, tsim, {Gc,Cc},Es, ε, εr}, there will be no

event loss iff, the simulation time step ∆t is the minimum of all threshold crossing inter-
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vals ∆kt -

∆kt ∈ Ak
c
−1

(
∑
∀i

Aτi
s S(tsim − τi) + Bs)

−1
[||ck ± εr − Bk

c ||]. (6.4)

Proof: Let us rewrite Equation 6.3 as follows -

gk(S(t + ∆t)) − gk(S(t)) ≤ ck − gk(S(t)). (6.5)

Let us consider that we have an error margin of εr in determining the thresholds. Further,

let us focus on just one function gk then we can obtain ∆kt such that no event generated by

that function is missed. We can rewrite Equation 6.5 as follows,

gk(S(t + ∆t)) − gk(S(t)) ≤ ck − gk(S(t)) ± εr (6.6)

gk(
∑
∀i Aτi

s S(tsim − τi) + Bs) ≤ ck ± εr

Ak
c(
∑
∀i Aτi

s S(tsim − τi) + Bs)∆kt + Bk
c ≤ ck ± εr

∆kt ∈ (Ak
c)−1(

∑
∀i Aτi

s S(tsim − τi) + Bs)
−1[ck ± εr − Bk

c]

If we consider the other two operator in OP then we can derive the same equation as

Equation 6.6. Finally, if we want to ensure that no events are lost for any condition function

then we can take the minimum ∆kt that will ensure that we are always within the error

margin εr of the threshold. This proves the if part of the theorem. The only if part of the

theorem can be easily proven by evaluating the difference gk(S(t + ∆t)) − gk(S(t)) by using

Equation 6.4 for ∆t.

Main insight:

∆t ∝ difference in event threshold
change in event generating function X change in continuous state

6.5.2 Clustering of Events

Case b in Figure 6.7, shows that a big time step can cause false clustering of events,

when the event causing thresholds of two events are crossed within the simulation time

step. Two events may occur at the same time due to two main causes: a) true clustering:

when two events are not distinguishable in time within the specified simulation resolution
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Small Time Step. The Bottom Row is Fixsim with a Finite Time Step.

of ε, and b) false clustering: the event causing conditions of two events are satisfied within

the simulation time step. For the first condition HyrefSim uses the following theorem to

detect whether events are distinguishable.

Theorem 6.5.2 Evaluate true clustering of events: Two events ei and e j occurring due

to satisfaction of event generation thresholds gi(S(tsim + ∆t)) > ci and g j(S(tsim + ∆t)) > c j

occur within ε time difference iff Ai
c = A j

c and ||ci − c j|| = ||Bi
c − B j

c|| ± εr.

Proof: Let us consider that at the current simulation time tsim of the simulator the con-

tinuous state variables of the system are S(tsim). If the simulation is executed with a time

step of ∆t then two constraints gi(S(tsim + ∆t))OPci and g j(S(tsim + ∆t))OPc j are satisfied

for any time step ∆t. This can only happen if the rate of change of functions gi and g j are

equal with respect to changes in S, i.e., Ai
c = A j

c. Further, the amount of change required
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to satisfy the constraints also have to be equal. Hence, we get the following equations -

||c j − g j(S(tsim))|| = ||ci − gi(S(tsim))|| ± εr (6.7)

||c j − ci|| = ||A
j
cS(tsim) + B j

c − Ai
cS(tsim) − Bi

c|| ± εr

||c j − ci|| = ||B
j
c − Bi

c|| ± εr

The only if part is an easy extension since Ai
c = A j

c.

Main insight: Two events are truly clustered in time if the event generation functions have

same derivatives, and the difference in event thresholds are within error margin εr.

To distinguish between two events in time, HyrefSim derives the time step as follows-

Theorem 6.5.3 Temporal distinction of falsely clustered events: Consider two physical

events ei and e j occurring due to satisfaction of thresholds by event generating functions

gi(S(tsim + ∆t)) > ci and g j(S(tsim + ∆t)) > c j. If these events are apart in time by at least ε

then they can be distinguished using a simulation time step given by,

∆t < (A j
c − Ai

c)
−1

(
dS (t)

dt
)
−1

||c j − ci − (B j
c − Bi

c)||. (6.8)

Proof: If two events are distinguishable by at least ε time then there exists a time δt such

that,

||c j − g j(S(tsim))|| > ||g j(S(tsim + δt)) − g j(S(tsim))|| (6.9)

||ci − gi(S(tsim))|| < ||gi(S(tsim + δt)) − gi(S(tsim))|| (6.10)

for some events ei and e j. Let us consider the ≥ and > operators and replace g j(S(tsim +

δt)) = A j
c(AsS(tsim) + Bs)δt + B j

c. If we add both sides of the equations in Equation 6.9 and

consider that event j occurs after event i then we get, -

c j + Ai
c(
∑
∀i

Aτi
s S(tsim − τi) + Bs)δt + Bi

c (6.11)

> ci + A j
c(
∑
∀i

Aτi
s S(tsim − τi) + Bs)δt + B j

c

δt <
c j − ci − (B j

c − Bi
c)

(A j
c − Ai

c)(
∑
∀i Aτi

s S(tsim − τi) + Bs)
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We arrive at the same type of equation if we consider the ≤ and < operator in OP. Thus,

any δt satisfying Equation 6.8, will separate the events ei and e j in time.

Main insight:

∆t ∝ difference in event threshold÷(difference in the change in event generating func-

tion × change in continuous state)

6.5.3 Simulator Progress

In a malformed hybrid simulation, there may exist two events e1 ∈ E and e2 ∈ E, which

have conflicting control decisions. That is e1 increases the rate of increase of a variable v1

and e2 decreases it by a large value. Let us also consider that the threshold conditions for

these events c1 and c2 respectively are such that c1 − c2 ≤ ˙S(tsim) × δt, for a very small

δt. Then there can be infinitely many events occurring within a very small time as shown

in Case c of Figure 6.7. This is an artifact of time refined simulation since for an FHT

simulator the time steps are fixed and even if infinite events occur theoretically they are

rejected. HyrefSim tackles this problem by limiting the smallest simulation time step to a

chosen value.

6.5.4 Error Bound of Simulation

The continuous variables in HyrefSim are evaluated at every time step. Time refining

ensures that the simulator does not miss any events. Discretization into time steps can

lead to errors in estimating the values of the continuous variables. The time refinement in

HyrefSim is done on top of the simulation time step computation used by traditional FHT

simulators such as Simulink. The time step of the simulator is selected such that the error

in differential dynamics estimation is less than the error margin εr.

For linear time invariant systems of the form,

Ṡ = AsS + Bs, (6.12)
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where S is the nc dimensional vector obtained from the transient model, the simulation

time step is given by,

∆t ≤
εr

||As||∞||S(t)||∞ + ||Bs||∞
, (6.13)

where ||A||∞ is the maximum element in A. The value of ∆t depends on the maximum

value of the elements in S(t). The maximum value of S(t) can be determined from the

simulation settings and is a user specified parameter. Since the time step of HyrefSim is

less than the ∆t it has similar error bound as traditional simulators. However, we will see

in the examples that HyrefSim actually reduces the error due to accurate reduced time steps

for handling events.

6.6 Simulation Algorithm

In this section, we derive the simulator algorithm from the properties discussed in the

previous section. At the most basic level the simulator maintains an event queue, which

is populated initially with random discrete computing events generated using the discrete

event generator function. The simulator executes a loop where it first de-queues an event,

processes its operation on the discrete and continuous variables, and updates the event

queue according to future events. It then finds out the next event time and calls the contin-

uous function simulator, FHT, to execute from the current simulation time to the next event

time. The recurring steps taken by FHT are as follows:

a) It computes the time step ∆t based on the simulation resolution εr according to Equation

6.13. This is a standard step taken by most physical system simulator.

b) The FHT then employs the time refinement method to determine whether it has lost any

events or not. It first computes the threshold crossing intervals ∆kt for all event generating

functions gk ∈ Gc and thresholds ck using Equation 6.4. If the minimum threshold crossing

interval min(∆kt)∀gk ∈ Gc is greater than the current time step ∆t determined by the FHT

then we can conclude that no event occurs within the time step. HyrefSim keeps the simu-
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lation time step as ∆t. Otherwise it uses the minimum threshold crossing interval min(∆kt)

as the time step to process the nearest event.

c) It then computes the continuous variables S(t + ∆t).

d) The condition generation functions Gc is then evaluated. The condition generation can

lead to generation of multiple events at the same time.

e) In such a scenario, the time refining methodology is called again to distinguish between

events. The simulator first checks the equality constraint in Theorem 6.5.2. If the equality

constraint is satisfied within the simulation resolution ε then it uses a random priority for

the events. Else it uses Equation 6.8 to further refine the time step. It goes back in time

by ∆t and uses a finer time discretization with step size determined from Equation 6.8,

which distinguishes the two events. Note that the simulator only re-simulates from current

time t to time t + ∆t with the finer time step and then reverts back to the coarser time step

determined from Equation 6.13.

f) On each event generation, the FHT pushes the event into the event queue and passes the

control back to the ED immediately to process the events.

6.6.1 Simulator Speedup

HyrefSim uses time refinement as opposed to FixSim. FixSim is expected to operate

faster than HyrefSim since it does not reduce the time step to account for events at their

correct time of occurrence. The degradation in execution time is given by the following

theorem:

Theorem 6.6.1 Simulator execution time degradation: The degradation of execution

time of HyrefSim with respect to FixSim is bounded and does not increase with simula-

tion time, number of control modes, or number of continuous variables. The degra-

dation is bounded by a factor directly proportional to the square of the error margin εr,

and maximum difference in the rate at which any two constraints in Gc are approached for
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unit change in S and inversely proportional to the smallest difference in event generating

thresholds.

Proof: FixSim computes the time step of simulation ∆t following Equation 6.13. It then

increments simulation time by ∆t and finishes the simulation when current time is equal to

Tsim, the total simulation time.

On the other hand, the hybrid simulator can start iterations using a time step ∆t from

Equation 6.13. It has the capability to do time refining so that if p is the total number of

times there is a possibility of lost event, it can refine just one time step ∆t by δc. Thus, it

runs a total of Tsim
∆t +

p∆t
δc

number of iterations. If the HyrefSim is poorly configured then

it might have zeno behavior. However, to eliminate zeno behavior we need to distinguish

events in time by a finite temporal interval. Thus, we can consider that in the worst case

HyrefSim has events that are separated by the minimum time δt obtained from Equation

6.8. Thus, the execution time degradation of HyrefSim is given by -

dx ≤
Tsim/∆t +

Tsim
δt

∆t
δc

Tsim/∆t
(6.14)

≤ 1 +
∆t2

δtδc

< 1 +
ε2

r max∀i, j(||A
j
c − Ai

c||∞)

min∀i, j(c j − ci)min∀k(cx − ||Bk
c ||∞)

Main insight: The degradation in speed up is directly proportional to the maximum dif-

ference in rate at which two thresholds are approached and inversely proportional to the

minimum difference in thresholds and the minimum state change needed to cross a thresh-

old.

Theorem 6.6.1 is intuitively true since larger the error margin larger can be the time dis-

cretization and hence the simulation executes faster. Further, if constraints are approached

faster then after the time refining process potentially lost events will be captured earlier and

the hybrid simulator can stop the time refining process and continue executing with larger

time steps.
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6.7 Usage and Performance Analysis of HyrefSim

In this paper, we show two examples, network controlled infusion pump, and body

implanted sensor networks. Three different simulation settings were considered for com-

parison:

• FixSim: This simulator has fixed time step and can adjust the time step to reduce

error in estimating the differential equations. It resembles traditional simulators such

as Simulink that have the capability to dynamically change the simulation time step.

However, this simulator is agnostic of the error in the timing of events.

• HyrefSim: This is the proposed simulator that has the time adjustment based on esti-

mation error of continuous dynamics as well as accurate prediction of event timings.

The initial simulation time step of this simulator is kept to be same as FixSim.

• AccuSim, FixSim with fine time step: This simulator is similar to FixSim but the time

step is much lower than FixSim. The assumption is that for a very small time step, the

FixSim can estimate event timings accurately and can also reduce the estimation error

in the differential equations. Hence, we can consider FixSim with high resolution as

an optimal simulator.

To evaluate HyrefSim we define the following metrics: a) accuracy or error in predicting

continuous variables, b) average event delay, c) average event queue size, d) event loss:

average number of events processed by HyrefSim that are not processed by FixSim but

processed by AccuSim, and average number of events processed by FixSim that are not

processed by HyrefSim and AccuSim, and e) execution time of simulator and speedup with

respect to AccuSim and FixSim. In this section, we show two examples: 1) infusion pump

controller and b)sensor network.
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6.7.1 Example 1: Blood Glucose Control using Infusion Pump

Automated control of blood glucose levels in human are often obtained using artificial

pancreas. Artificial pancreas are distributed systems consisting of an infusion pump, glu-

cosemeter, and a controller implemented in a mobile device such as smartphone. These

distributed components are networked through the wireless communication channel and

operate in a close loop to keep the drug concentration in the human blood within recom-

mended limits. The different components of the automated control system may have skews

in the clock rates as well as data transfer rates. This results in transport delays in the sensed

values of glucosemeter and actuation delay in infusion. Thus, the continuous dynamic

equation that represents the blood glucose level in the blood sensed by the glucosemeter

due to infusion from the pump is of the form of a DDE (Equation 6.15).

ẏ1 = Apy1 + BpQ̇z2 + Bpu(t − Ti), (6.15)

z1 = Cpy1(t − Tp),

ẏ2 = Asy2 + BsQ̇z1,

z2 = Csy2(t − Tr).

Here y1 and y2 are the state space variables of the equation. y1 consists of vectors of

left heart, lung blood, lung tissue and right heart compartments through which infused

drug passes. Newly infused drug merges with recirculated drug from Vessel Rich Group,

Muscle, Fat and Residual drug which is represented by y2 state space variable vectors. Ap,

As, Bp, Q̇, Cs, and Cp are constants. z1 is the drug concentration in the blood while z2 is the

arterial drug concentration. The initial infusion rate u = x0 is the input to the model and

the output is the drug concentration in the blood. The time delays related to the infusion

input (Ti) is due to the delay in actuation, the cardio-pulmonary transport delay Tp and the
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arterial, capillary and venous transport delays Tr manifest the delay in sensing the blood

glucose level by the glucosemeter.

The discrete controller of the infusion pump has five states: a) basal, where infusion

rate is I0 and the blood glucose rate is between 120 ug/dl and 70 ug/dl, b) braking, where

infusion rate is a fraction f of I0, and blood glucose level goes below 70 ug/dl but is still

above 20 ug/dl, c) correction bolus, where infusion rate is incremented by Icb, and the

blood glucose level is between 120 ug/dl and 180 ug/dl, d) bolus, where the infusion rate is

incremented by Ib > Icb, and the blood glucose level is above 180 ug/dl, and e) stop, when

the infusion is stopped i.e., Ib = 0, since the blood glucose level drops below 20 ug/dl.

In addition to these states there can be discrete random events related to consumption

of meal. The user may opt to take in a bolus shot of insulin 30 mins before taking a meal.

According to recent research, food intake behavior of human users have Markovian proper-

ties. Hence, the food intake event generator was modeled using a Markov chain. There are

three different levels of meal: small typically signifying breakfast, medium corresponding

to dinner, and large corresponds to a midday lunch. The corresponding Markov chain rep-

resentation has three states: a) small, b) medium, and c) large. The transition probabilities

are given by the matrix A =


0.1 0.2 0.7

0.5 0.4 0.1

0.6 0.3 0.1

 .
The assumption is that a small meal is more likely to be succeeded by a large meal. A

large meal is more likely to be succeeded by a small meal. Medium meals are less likely

to be succeeded by a large meal. The time between successive meals is obtained from an

exponential distribution with a mean time between meals of 8 hrs. For each meal size the

user requests a bolus dosage of insulin proportionate to the size of the meal.

Using the automated infusion control system we compare the performance and execu-

tion time of HyrefSim and FixSim. The initial simulation time step of FixSim is kept at
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Figure 6.8: Blood Glucose Level Estimation using HyrefSim and FixSim.

2 mins, which guarantees an error less than 10% in estimating the continuous dynamics

of Equation 6.15. The time step of AccuSim is kept at 0.5 seconds. The purpose of the

first experiment was to show conditions when there are event losses, delays, and wrong

event processing. Figure 6.8 shows a snippet of a simulation of two days worth of infusion

control.

Event delay: The snippet shows a case where a meal bolus has been administered and

the blood glucose level starts to fall. Initially there is a short delay corresponding to the

normal insulin action delay of around 10 mins. As seen from Figure 6.8, FixSim with high

resolution is the first one to detect the drop in blood glucose level as expected. HyrefSim

predicts the drop closer to the actual time than FixSim. This is attributed to the event

detection algorithm in HyrefSim. Figure 6.9 shows the average event delay for HyrefSim

and FixSim with respect to AccuSim. FixSim always has higher delays.
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Event loss: More interesting cases are observed when the blood glucose level falls below

the bolus state condition and reaches the correction bolus level. The HyrefSim captures this

event earlier than the FixSim, and hence reduces the bolus level and decelerates the drop

in blood glucose level. However, FixSim detects this event much later and hence even if

it reduces the bolus during the correction bolus level the fall rate of blood glucose level is

much higher. Due to this higher fall rate, in the next time steps the glucose level falls higher

in FixSim than HyrefSim. Thus, when HyrefSim capture the transition from correction

bolus to braking state, FixSim fails to capture such transition and goes straight to stopping

state. Since HyrefSim captures the braking state transition, it reduces the bolus amount and

further decelerates the glucose fall. Therefore, HyrefSim predicts a higher blood glucose

concentration than FixSim and does not process the stopping state. As seen from Figure

6.8, HyrefSim simulation is closer to FixSim with higher resolution. The average number

of events lost for different lengths of run is shown in Figure 6.10. We see that HyrefSim

does not loose events while FixSim on an average looses 35% of the events.
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Figure 6.10: Number of Events that are Processed by Accusim but Lost by Hyrefsim and

Fixsim Over Time.

Accuracy: Since HyrefSim simulator predicts events much earlier than FixSim, it predicts

65mL lower insulin infusion over the period of 2 days (Figure 6.11). The amount of insulin

infused by a control system is a metric of safety for the insulin pump. Insulin control

systems that achieve the same control outcomes with lesser amount of insulin delivery are

preferred. Thus, a control configuration can be deemed un-preferable by FixSim while it

is in practice a good design. Further, error of FixSim increases nonlinearly with respect

to HyrefSim (Figure 6.11). The error in simulation i.e., the difference in total amount of

insulin delivery with respect to AccuSim for HyrefSim and FixSim is shown in Figure 6.12.

Average event queue length: In presence of discrete random meal events, multiple events

can occur within a simulation time step of FixSim. HyrefSim has the capability of tem-

porally distinguishing such events even if they occur within one time step. The average

event queue length is a good indicator of false clustering of events. Figure 6.13, shows the

average length of the event queue for FixSim and HyrefSim simulation cases. The solid line

for HyrefSim coincides with the dashed line in FixSim for most of the cases, however, in
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Figure 6.11: Variation of Simulation Error of FixSim with Respect to HyrefSim v.s. Simu-

lation Length.

some cases FixSim has higher queue size than HyrefSim. This gives a clear indication of

false clustering of events.

Speedup: Figure 6.14, shows the execution time of HyrefSim and FixSim for different

lengths of infusion delivery. The maximum degradation of speedup for HyrefSim is 15%,

which is due to the fact that HyrefSim spends time in computing refined time steps for the

simulator and also processes more events than FixSim. This is in accordance with Equation

6.14.

6.7.2 Example 2: Body Sensor Networks

We simulated various routing algorithms for the example discussed in Section 7.1, for

example computing minimum temperature, scheduling workloads, moving cluster head,

reducing radio power level. The interaction of implanted sensors with human body causes

temperature in tissues surrounding the sensors. The temperature rise in the human tissues is

governed by the following heat transfer processes: 1) heat transfer due to radiation from the

sensors which depends on the operating temperature of the processor, 2) conductive heat

transfer from the processor, 3) electro-magnetic radiation absorption by the body part, and
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Figure 6.12: Simulation Error i.e., Difference in Total Amount of Insulin Delivery with

Respect to AccuSim v.s. Simulation Length for HyrefSim and FixSim.

4) convective heat extraction by blood. These physical processes are combined in a single

partial differential equation known as Penne’s equation [74] which gives the temperature

variation of the human body part over space and time as in equation 6.2 .

To simulate Penne’s bioheat equation using FHT simulator, we have discretized it over

N×N grid. It is discretized over time and space using electromagnetic modeling technique,

finite difference time domain(FDTD) [75],

˙T m(i, j) =

[
−

(bδ2+4K)
ρCpδ2

]
T m(i, j) + S AR

Cp
+ b

ρCp
Tb (6.16)

+ Pc
ρCp

+ K
ρCpδ2 [T m(i + 1, j) + T m(i, j + 1)

+T m(i − 1, j) + T m(i, j − 1)],

Equation 6.16 is analogous to Equation 6.17 which is in the form of linear time invariant

differential equation.

Ṫm = ATm + B, (6.17)
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Figure 6.13: Variation in Event Queue Length with Respect to Time for HyrefSim and

FixSim.

where, matrix A will have dimensions N2XN2 and its each row will be as, A =

( ·· X1 X2 X3 X4 X5 X6 X7 ··

·· α ·· α β α ·· α ··

)
where, α = K

ρCpδ2 , β = −
(bδ2+4K)
ρCpδ2 , X1 = N( j − 1) + i,

X2 = N −2, X3 = N( j + 1) + i, X4 = N j + i, X5 = N j + (i−1), X6 = N −2, X7 = N j + (i + 1).

The dotted elements of matrix A are all zero. The computed matrix B of dimension N2X1

is as follows, B =



1

1 S AR
Cp

+ b
ρCp

Tb + Pc
ρCp

...
...

N2 S AR
Cp

+ b
ρCp

Tb + Pc
ρCp


By simulating Equation 6.16, the events such as skin temperature increased beyond

threshold can be detected. The networking decisions made using events generated by con-

tinuous dynamics of the human body ensure safety of the overall system. All the events

generated from discrete and fluid-flow workload as well as from continuous dynamics of
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Figure 6.14: Simulation Execution Time of HyrefSim and FixSim for Different Real Time

Simulation Lengths.

the human body are used in making network decisions using networking algorithms. Using

this example, we studied various networking algorithms for the example BSN setting such

as: (i)Thermal map of the BSN for a given leader sequence (ii)Thermal map of the BSN

for defined tissue temperature threshold limit (iii)Thermal map of the BSN to reduce radio

power by half Figure 6.15 shows the simulation results for these algorithms simulated using

proposed hybrid simulator.

Event Loss: Figure 6.16 shows the number of events lost by both HyrefSim and FixSim.

The figure shows that HyrefSim processes all the events while FixSim ignores many.
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Figure 6.15: BSN Simulation Results with Different Networking Algorithms.

Event delay: Figure 6.17 shows the average delay in processing events for both HyrefSim

and FixSim with respect to AccuSim. On an average HyrefSim processes events at times

more close to times processed by AccuSim.

Average false event clustering: The number of events falsely clustered by a simulator can

be found out by monitoring the average size of event queue. From the event loss results

we see that HyrefSim computes all events that AccuSim would have processed. Figure 6.18

shows that the average length of the event queue for HyrefSim is much lower than that of

FixSim. This shows that HyrefSim avoid false clustering of events.

6.8 Hardware Assisted MMA Physical System Emulation

Hardware implementation of physical systems in MMA will help to test the physical

behavior of the overall system to ensure safety. Physical systems e.g. human physiology

models are represented in the form of differential equations. In order to verify working

of MMA before its actual implementation, these differential equations are required to be
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Figure 6.16: Number of Events Lost by HyrefSim and FixSim.
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Figure 6.17: Average Delay in Event Processing for HyrefSim and FixSim.
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Figure 6.18: Average Number of Events in the Event Queue for HyrefSim and FixSim Over

Different Simulation Runtimes.

simulated. Hardware implementation of such systems speeds up the process of simulation

by order of magnitude as compared to software.

Pennes bioheat equation [74] is discretized over time and space using electromagnetic

modeling technique, finite difference time domain(FDTD) [75] as,

T m+1(i, j) =

[
1 − δtb

ρCp
−

4δtK
ρCpδ2

]
T m(i, j) (6.18)

+ δt
Cp

S AR + δtb
ρCp

Tb + δ
ρCp

Pc

+ δtK
ρCpδ2

[
T m(i + 1, j) + T m(i, j + 1) + T m(i − 1, j) + T m(i, j − 1)

]

Diffusor network can be implemented in field programmable analog arrays (FPAA) to

represent physiscal system using differential equations [85, 86, 87, 88]. Diffusor network

circuit can be simplified in resistor grid circuit as shown in Figure 6.19.
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Figure 6.19: Resistor Grid and Diffusor Network Circuits for Representing Analog Behav-

ior of Physical System.

By applying Kirchoff’s Current law to resistor grid circuit (Figure 6.19 a), we get fol-

lowing equation,

V0 = rr1
R(4r1+r)e

−t
RC V0 (6.19)

+ r
4r1+r Vconst

+ r1
4r1+r (V1 + V2 + V3 + V4)

For establishing equivalence between equations (6.19) and (6.18), we need to consider

voltage and temperature as equivalent quantities. By putting the appropriate values of

physiological parameters in equation (6.18) and comparing the terms with equation (6.19),

we can calculate values of components in the resistor gird circuit.

We have simulated the 50X50 resistor grid circuit in Cadence ICFB environment to get

values of voltages at each node in the circuit. Figure 6.20 shows the MATLAB plot of these

values.

86



10
20

30
40

50

10
20

30
40

50
25

30

35

40

45

50

55

Figure 6.20: 50X50 Resistor Grid Circuit Output Plot

The plot verifies the simulation result with the actual physical behavior of human phys-

iology according to Penne’s Bio Heat equation.
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Chapter 7

EVIDENCE GENERATION: MMA DESIGN VERIFICATION - THEORETICAL

APPROACH

7.1 Introduction

Mobile medical apps (MMAs) work closely with human physiology which might lead

to safety hazards such as heating of human skin or hypoglycemia due to low insulin dose

in case of infusion pump app. To avoid these issues, the design of the MMA should be

verified before its actual implementation. Typically a model based approach is taken to

verify safety of a MMA design. In this regard, this research considers verification of MMA

design using formal methods which incorporates models of human physiology and MMA

control algorithms [89]. This method is based on theoretical safety verification of the MMA

controller software. It is more rigorous and time consuming than simulation method for

system design verification, however it provides eternal safety guarantees.

7.2 Model Checking using Reachability Analysis

When the smartphone acts as a controller to an actuator device, it obtains feedback

from physiological signals to determine the control inputs to the actuator. Thus, it directly

interacts with the human physiology typically in a complex non-linear manner. In this

regard, poor controller design can cause instabilities in the human physiology leading to

hazardous conditions such as hypoglycemia. Thus the combined analysis should be done

on continuous dynamics of human physiology and discrete dynamics of controller soft-

ware. Hybrid Automata(HA) is able to represent both continuous and discrete dynamics of

the system. Reachability analysis on hybrid automata computes the values of continuous
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variables of the system with a given controller at any point in time. These values are further

used to check instability in controller design. However, a hybrid automata representation

of the interaction between smartphone and physiology will be non-linear and have multiple

independent dimensions. Current hybrid system research have given limited focus on non-

linear hybrid automata (discussed in Related works). The proposed research will perform

reachability analysis of non-linear hybrid automata and use it to perform safety checks of

MMAs.

Hybrid systems are important modeling abstractions for analyzing continuous evolution

of a system under supervision of a discrete decision algorithm. Typically they are useful for

checking system evolution against safety requirements of cyber-physical control systems.

Reachability analysis of hybrid systems estimates the reach set, which comprises of all

possible valuation of the system variables for a set of initial conditions. Although the

problem of finding the reach set is undecidable, for linear dynamics there are efficient over-

approximation techniques [90]. However, most of the mission critical cyber-physical (CP)

control systems such as artificial pancreas [91], ventilators [92] have non-linear continuous

dynamics. Research efforts are invested in estimating nonlinear dynamics using piecewise

linearization. In some cases such as diffusion dynamics, the solution may not be efficiently

interpolated using linear interpolants [93]. In such cases a shape preserving interpolation

such as exponential splines [94] appears to be a better choice. In this paper, we present

a reachability analysis technique for non-linear hybrid automata using exponential box

splines and show their usage for the artificial pancreas CP control system example.

The biggest problem in estimating the reach set is to represent the initial set and com-

pute the image of the continuous dynamics for each of the points in the initial set. This prob-

lem is mitigated for linear hybrid systems in a computationally efficient manner through

the use of zonotopes, which are sets of vectors representing directions in a co-ordinate sys-

tem [90]. A subset of the set of “n-dimensional” vectors of real numbers can be expressed
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as a linear combination of vectors in a zonotope i.e., if Z = {−→z1,
−→z2 . . .

−→zm} is a zonotope then

a vector in the linear span of Z can be expressed as −→v =
∑m

i=1 ti
−→zi such that 0 ≤ ti < 1,∀ti.

Zonotopes are further closed under linear transformation. If A is a real valued matrix then

A−→v =
∑m

i=1 tiA−→zi . Thus the image of the vector v under linear transformation can be ex-

pressed as a linear combination of the vectors in zonotope ZA = {A−→z1, A−→z2, . . . A−→zm}. This

property is utilized by the reachability analysis technique to efficiently compute the image

of a set I in each step under linear dynamics of the form −̇→v = A−→v + B, where B is a real

valued vector. The method expresses the set I as a collection of zonotopes, finds the image

of the corner points of the polygon spanned by the zonotope vectors with respect to the

linear transformation, and then takes the convex hull of the image of the corners.

Zonotope based solution is not applicable for non-linear hybrid automata since the

zonotopes are not closed under non-linear transformation. Driven by the simplicity and

computational efficiency of such a solution researchers have considered piece-wise lin-

earization of the non-linear continuous dynamics. To find the image of a set I it is first

divided into regions corresponding to the linear pieces of the nonlinear dynamics and for

each region the zonotope based solution is applied. Several methods have been proposed

for piece-wise approximation based reachability analysis [55, 56, 57]. The error in esti-

mating reach set using these methods often increases in a nonlinear fashion with respect

to the simulation time and reducing the error magnitude requires larger number of pieces

resulting in higher simulation time. To use the computationally efficient solution yet not

loose on accuracy we have to find a non-linear counterpart of zonotopes.

In this regard, we propose a novel methodology using exponential box splines to com-

pute image of a set of vectors with real numbers under a non-linear transformation. Expo-

nential splines are traditionally used for curve fitting in geometric modeling [95, 96]. An

important property of exponential splines in curve fitting is there shape preserving nature

that is useful for estimating complex curves. In this paper, we will apply the exponential
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box (EB) spline based reachability analysis technique to medical control system of artifi-

cial pancreas. The artificial pancreas involve non-linear diffusion dynamics and exponential

splines have been shown to work well for such dynamics [93]. In this paper, we use their

curve fitting property to estimate nonlinear dynamics. Exponential box splines are distribu-

tions on smooth and continuous functions that map a continuous function to a real number.

In its simplest form an exponential spline is an exponential weight function: e
−→
θ

⊙−→v

k , where

θ is a constant vector, and k is a real constant.

An advanced property of exponential box splines that is somewhat similar to zonotopes

is that any smooth and continuous function f (−→v ) can be specified as a summation of lin-

early shifted exponential box splines: f (−→v ) =
∑
−→αi

f (−→αi) e
−→
θ

⊙
(−→v−−→αi)

k . The −→αi are chosen is such a

manner that −→v can be expressed as their linear combination. Once the initial choice of
−→
θ , k

and −→αis are made, the next image can be expressed as: f ( f (v)) =
∑

f (−→αi) f ( f (−→αi)) e
−→
θ

⊙
( f (−→v )− f (−→αi))

k .

Here the exponential box spline function remains unchanged. In a sense it can be con-

sidered as a weight function similar to the ti values for zonotopes. The −→αis are similar to

the zonotopes that represent the initial set I in the linear case. This enables us to use an

approach similar to the linear case for the reachability analysis of non-linear systems.

Before we go into the details of the EB spline based reachability analysis technique,

let us first see the usefulness of this technique in reducing image estimation error and

computation time by applying it to the classical non-linear system example of a Brusselator.

Example 6 A brusselator is the model of auto-catalytic reactions and is a very common

example of non-linear system used by many researchers [97]. The model of the brusselator

has two variables v1 and v2 and an example dynamics is expressed using Equation 7.1.

v̇1 = 1 + v2
1v2 − 2.5v1 (7.1)

v̇2 = 1.5v1 − v1
2v2
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The initial set of the brusselator is a zonotope Z = {(0, 2), (2, 0)}. The time was discretized

with an interval of 0.5s. We computed the image of the initial set for t = h following

two approaches: a) linear interpolation of the non-linear function in Equation 7.1, and

b) exponential box spline based representation of the non-linear function in Equation 7.1.

Note that Equation 7.1 is only non-linear with respect to v1. We represented the non-linear

variation with respect to v1 using four linear segments: {(0 − 0.75), (0.75 − 1.5), (1.5 −

2.25), (2.25 − 3)}. We then divided the initial set zonotope into four parts corresponding

to the linear segments as shown in Figure 7.1, and then applied the corresponding linear

transformation on these zonotopes. The resultant image is shown with solid lines with star

shaped corners. For the exponential box spline based implementation we assumed α =

{(0, 0), (0, 1.5), (0, 1), (0.25, 0.75), (1, 1), (1.5, 1), (2, 1.25), (1, 0), (1.5, 0)}. We computed

image of the corners of the zonotope using the exponential box spline based representation

and took the convex hull. The resultant image is shown using dashed lines with square

shaped corners.

In terms of computation complexity both the linear interpolation as well as EB spline

technique required 9 computations of the non-linear function. From this simple analysis we

see that EB spline based technique does not increase the computation complexity. In terms

of accuracy we compare the amount of over approximation by both the techniques. The

linear interpolation technique covers 25% more area while the EB spline based technique

covers 13% more area.

There have been several efforts in computing reach set for nonlinear hybrid systems.

These techniques can be classified based on their estimated error bounds on reach set as

techniques where: a) approximation error is nonlinear in terms of discretization of the

initial set [57], b)approximation error is exponential with respect to simulation time [56],

c)approximation error depends on initial set size [60], and d) approximation error linearly

depends on the size of the approximated domain i.e. size of each piece [58]. Our proposed
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Figure 7.1: Comparison of Linear Interpolation and EB Spline based Image Computation

Techniques.

methodology has error bound of O(τ + h), where τ is time discretization step and h is set

discretization step. The error bound is linear and does not depend on size on the initial set.

Also, the error does not increase with increase in simulation time.

Practical Purpose: Reachability analysis of hybrid systems are used for verifying safety

properties of a CP control system. A subset of the set of real numbers can be denotes as

an unsafe set as shown in Figure 7.1. If the image set intersects with the unsafe set then

the system is considered to be unsafe for the given initial conditions. The initial conditions

are reflective of the design of the CP control system. If the reach set is over approximated

to a large extent then control system designs that are apparently safe will be considered

93



unsafe. Such false negatives drastically reduce the design space and hence can potentially

increase the cost of the design. Hence, a technique with a tighter approximation on the

reach set is essential especially for designing cost effective mission critical systems. In our

approach, we make use of the shape preserving property of exponential splines to tightly

approximate non-linear dynamics such as diffusion processes. We show that EB spline

technique can have a better approximation than piecewise linearization approach using the

classical Brusselator example. We also show the usage of our EB spline based reachability

analysis technique in the artificial pancreas example.

7.3 Artificial Pancreas Cyber Physical Control System

To validate our approach of reachability analysis using exponential box splines, we

have applied the technique to a realistic system artificial pancreas (AP). It is a medical

device, which is used for maintaining blood glucose level by inducing controlled amount

of insulin in the blood. AP uses glucose sensor to sense the glucose level in the blood and

accordingly computes the insulin concentration level. The nonlinear dynamics of the AP

are represented using nonlinear equations 7.2, 7.3 and 7.4.

dX(t)
dt

= −k2.X(t) + k3.(I(t) − Ib), (7.2)

dG(t)
dt

= −X(t).G(t) + k1.(Gb −G(t)), (7.3)

dI(t)
dt

= −k4.I(t) + k5.(G(t) − k6)+.t, (7.4)

Here, dX(t)
dt gives the rate of the variation in the interstitial insulin concentration, dG(t)

dt is

the rate of change of blood glucose concentration for the infused insulin concentration X

and dI(t)
dt is the variation in plasma insulin concentration. Inaccurate infusion of insulin can

harm the patient severely, e.g. if the glucose concentration G goes above 180mg/dl, it can

lead to hyperglycemia while low glucose level i.e. below 60mg/dl can cause hypoglycemia.
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reach set 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 8.3 Figure 7.2: Approach for Reach Set Computation of Nonlinear Hybrid System.

7.4 Related Works

Table 7.1 classifies the research on computing reachable set for nonlinear system.

7.5 Our Approach

Any approach to reachability analysis of non-linear systems requires an approximation

of the solution to the differential equation that expresses the continuous dynamics of the

hybrid system. Our aim is to perform reachability analysis of mission critical systems such

as artificial pancreas and ventilators. These systems have dynamics that require shape pre-

serving interpolants for accurate representation [93]. Further, reachability analysis requires

estimation of the image of a set and not merely a single point. In a set there can be infinite

number of points and hence the problem of finding the exact reach set is intractable. The

typical approach towards estimation of the image of a set is to approximate the set using

a polytope defined by a set of zonotopes. The next step is to compute the image of the

corners of the polytope. For linear dynamics it is sufficient to take the convex hull of the

images of the corners of the polytope to over-approximate the image. For non-linear differ-

ential dynamics we have to find an approximation that allows us to compute the image in a
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Table 7.1: Summary of Related Work on Reachability Analysis for Nonlinear Systems.

Technique Type of nonlinearity Error bound Example used for model-

ing

Zero order hold

approximation

[55]

Linear dynamics O(τ2), τ is time dis-

cretization step

Drug Infusion Pump

Partitioning of

state space

[56]

Second order differential equation O(h2), h is partition

size

Van der Pol oscillator, Bi-

quad lowpass filter

Piecewise

linear [57]

Lipschitz continuous O(h2), h is mesh size Van der Pol oscillator

Linear interpo-

lation [58]

Lipschitz continuous O(h2), h is mesh size Biochemical network

Interval numer-

ical method

[60]

All types of nonlinear dynamics Error varies with

different nonlinear

functions

Thermostat with delay,

two-tank system, Air

traffic conflict resolution

Use of Polyno-

mial zonotopes

[61]

Differential equations which can be

represented as polynomials

O(h2) Van der Pol oscillator,, Bi-

ological aging model

Verifying Hy-

brid systems

with parame-

ters using first

order logic [62]

Linear dynamics, No reachability for

non-linear

Not applicable Train Control System

Encoding hy-

brid systems

[63]

Polynomial dynamics with discontin-

uous invariant

Not applicable Braking control system of

trains

Proposed Ap-

proach with EB

Splines

Compactly supported continuous

and smooth functions such as diffu-

sion dynamics

O(τ+h), τ is time dis-

cretization step and

h is set discretization

step

Brusselator, Artificial Pan-

creas
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similar way by computing image of specific points in the set and representing other points

as a combination of these specific images. Hence, we need an interpolant that satisfies the

following properties:

• Property 1: The interpolant should have shape preserving property [94].

• Property 2: Any image of a point can be represented as a weighted combination of

shifted interpolants (Lemma 2).

• Property 3: There exists real number h > 0 such that an image of a set can be

expressed as a summation of interpolants whose domains are shifted by integer mul-

tiples of h. (Lemma 2 and Theorem 7.9.1).

Property 1 ensures that the error in approximating the image of a fixed point is low and

property 2 ensures that we can take an approach similar to linear systems for computing

the image of a set for non-linear functions. Based on these two properties we now consider

our approach to derive the image of a set as shown in Figure 7.2.

Given an initial set V0 the first step is to over-approximate the set using a polytope

(square as shown in Figure 7.2). We then select a set of points −→αi such that all the corners

of the polytope {−→v0,
−→v1, . . .

−→vn} can be expressed as linear combinations of these −→αi values.

Utilizing the property 2 of the interpolant we express the image of the corner points F(V0)

as a weighted sum of the images of the −→α values. If −→αi s are further integer shifts then

this amounts to representing the image using linearly independent interpolants (property 3

similar to piece-wise linearization).

Since we are only computing the image of the corners there can be cases especially

for non-convex dynamics that a point inside the polytope has an image that lies outside the

convex hull created by the image of the corners. In our approach, we tackle such conditions

for a restricted class of non-linear dynamics whose first derivatives are bounded. In such

cases we give a simple solution in Theorem 7.9.1. The solution is to enclose the images
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of the corners of the polytope by a polygon with sides dmax given by the bound on the first

derivative and the maximum distance between the −→α values i.e., the set discretization factor

h (Lemma 4). The convex hull of the resulting polytope encloses the image of the initial

set V0.

There may be several interpolants that have the above-mentioned properties. For ex-

ample Bezier curves of higher dimensions meet the above three properties [98]. In our

example, the dynamics are diffusion dynamics expressed using error functions [91]. Expo-

nential splines have been shown to work well with such dynamics [93] and hence we show

our reachability analysis approach using exponential box splines and use it for the artificial

pancreas case study. Finding other splines that fit these properties or which can be used

with our technique is a question for future research.

7.6 Preliminaries

In this section, we discuss some of the preliminary concepts needed to understand our

approach. Let us consider a co-ordinate space of dimension n, denoted by Rn. We define

a variate as V, which is an ordered collection of n real variables vi or an n − tuple. Thus,

a valuation of the variateV, is a member of the set Rn, denoted using the vector−→x symbol

over any letter. A subset of Rn is denoted by capital letters X. The variation of each

variable in the variate over time is defined by a non-linear differential equation of the form

dvi
dt = g(V, t) where the multivariate function g(V, t) = g(v1, v2, . . . , vn, t) is continuous

and smooth within a domain P ⊂ Rn. Continuous and smooth functions are defines as

Definition 3.

Definition 3 A multi-variate function g(v1, v2, . . . , vn, t) is called continuous and smooth if

it is infinitely differentiable within the domain P.
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Note that if g(V, t) is continuous and smooth within a domain P then the solution to the

differential equation expressing each variable in V is also smooth and continuous within

that same domain. We further restrict the class of functions to compactly supported smooth

and continuous multivariate functions defined as follows:

Definition 4 A multi-variate function g(V, t) is called compactly supported if and only if

it is smooth and continuous and it is identically zero beyond a certain compact set in Rn

i.e., there exists a subset X ⊂ Rn, also called the support, such that -

g(−→y , t) , 0,∀−→y : −→y =
∑

j=1...|X|

t j
−→x j, 0 ≤ t j < 1 (7.5)

= 0, otherwise .

Here |X| denotes the number of elements in the set X. Also the vector −→y as defined in

Equation 7.5 is said to lie in the linear span 〈X〉 of the vectors in the set X.

Compactly supported smooth and continuous functions are rapidly decreasing and in-

finitely differentiable. The set of such functions with domain Rn is denoted as D(Rn). We

define the distribution on a function inD(Rn) as a linear mapping fromD(Rn) to real num-

bers. For example, a simple distribution can take the function g(V, t) as input and return

g({0, . . . , 0}, 0).

For a vector with n real numbers, we divide the set Rn into mutually exclusive cells

H ⊂ Rn :
⋃
∀HH = Rn. We define H� as the boundary of the cell H and H� as the interior

of the cell H such that H�
⋃
H� = H. Further, for two cells Hi and Hk, H�i

⋂
H�k = ∅ and Hi

and Hk are connected if H�i
⋂
H�k = n − 1. In the simplest case we can envision a cell as an

n dimensional hypercube.

7.7 The Exponential Box Spline and its Properties

An exponential box spline is a distribution on the setD(Rs). For every exponential box

(EB) spline, we associate a defining set Γ. An element γ ∈ Γ consists of two parts: a) an n-
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tuple −→xγ and b) a real number λγ. The set XΓ = {−→xγ : γ ∈ Γ} is the support of the EB spline

while the set ΛΓ = {λγ : γ ∈ Γ} defines a scaling factor the EB spline distribution. For

simplicity of symbols we also consider X as a matrix and ΛΓ as a vector. An EB spline [95]

over the defining set Γ is defined as follows:

Definition 5 The n-dimensional exponential box spline B(Γ) over a set Γ ⊂ Rn × R is a

distribution on the setD(Rn) such that -∫
Rn

B(Γ|−→x )φ(−→x )d−→x =

∫
(0,1)|Γ|

φ(XΓ
−→t )eΛΓ

⊙−→t d−→t , (7.6)

∀φ ∈ D(Rn),

where −→t ∈ R|Γ| and
⊙

is the dot product of two vectors.

Note that |Γ| can be greater than n. In such cases |Γ| will have at least n directional vectors

that are orthogonal and the others can be used to span polygonal spaces. Let us consider

that |Γ| = n and if its linear span is equal to the coordinate space, 〈Γ〉 = Rn, then each

element within XΓ should point to unique orthogonal directions in the co-ordinate space.

This means that the dot product of any two elements, −→xγ1

⊙−→xγ2 = 0. In such a case the EB

spline can be represented using Lemma 1 [95].

Lemma 1 If |Γ| = n and 〈Γ〉 = Rn then the EB spline B(Γ|−→x ) is given by -

B(Γ|−→x ) = e
−→
θ

⊙−→x

|det(XΓ)| , if −→x =
∑
γ∈Γ tγ−→xγ, 0 ≤ tγ < 1 (7.7)

= 0, otherwise . (7.8)

Here
−→
θ

⊙−→xγ = λγ,∀γ ∈ Γ.

Proof: The proof can be simply obtained by replacing B(Γ|−→x ) from Equation 7.7 to Equa-

tion 7.6 and doing a change of variables by replacing −→x with XΓ
−→t .

Thus, we see that the EB spline is a compactly supported function whose support is the

zonotope formed by the vectors in XΓ. In the following we give an example of EB spline

and discuss its properties:
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Figure 7.3: Support Zonotopes for Integer Translates of Exponential Box Splines

Example 7 Figures (a) and (b) show support zonotopes for integer translates of exponen-

tial box splines with Γ = [{(0, 2), 0.5}, {(3, 0), 1.5}], Figure (c) shows support zonotopes for

integer translates of exponential box splines with Γ = [{(0, 1), 0.5}, {(1, 0), 1.5}] and Figure

(d) shows support zonotopes for exponential box splines with Γ = {(0, 1), (1, 0), (1, 1)}. Let

us consider that the defining set of the EB spline be Γ = [{(0, 2), 0.5}, {(3, 0), 1.5}]. Here,

|Γ| = 2, and 〈Γ〉 = R2. The support of the EB spline is shown in Figure 7.3(a). Note that

det(XΓ) = −6,
−→
θ = {0.5, 0.25} and the value of the function B(Γ|−→x ) is non-zero within the

zonotope formed by the elements in XΓ and zero outside.

An important characteristic of the EB spline is that integer shift operation on an EB spline

leads to a linearly independent EB spline. Let us choose an −→α ∈ Rn such that there exists

an h > 0 : h−1−→α ∈ Zn, i.e, the set of n-tuple of integers. This method of generating α

is equivalent to discretizing a set with an interval h. The EB spline B(Γ|−→x − −→α ) is called

an integer shift of the EB spline B(Γ|−→x ). In Example 7 if we consider −→α = {1, 1} then

we get the EB spline shown in Figure 7.3(b) marked B. Note that B(Γ|−→x ) marked A and

B(Γ|−→x − −→α ) have overlapping support zonotopes which means that they are not linearly

independent. This is because 1, 1 is not an integer shift for both −→xγ ∈ XΓ. Now let us

consider a Γ = [{(0, 1), 0.5}, {(1, 0), 1.5}] such that det(XΓ) = 1. Now the α = {1, 1} is an

integer shift for both the vectors in the defining set. As shown in Figure 7.3 (c), the support

zonotopes of B(Γ|−→x ) and B(Γ|−→x − −→α ) do not overlap, which means that they are linearly

independent.
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Thus, exponential box splines are quite similar to sinusoids whose harmonics are lin-

early independent. Just as Fourier series representation decomposes a function into a series

of sinusoids, EB splines also have a similar property that any continuous function can be

approximated as a linear combination of integer shifts of EB splines [95].

We first consider the representation of an exponential function using EB splines.

Corollary 1 For any defining set Γ, such that |Γ| > n, and for any J ∈ Γ which consists of

only directional vectors, we can select integer shifts of EB spline α ∈ Zn
h such that -

e
−→
θJ

⊙−→x =
∑
∀
−→α

CΓ
h (J)−1e

−→
θJ

⊙−→αB(Γ|−→x − −→α ), (7.9)

where, CΓ
h (J) = h−nΠγ∈Γ

∫ h

0
e(λγ−

−→
θJ

⊙−→xγ)−→t d−→t .

Proof: We prove this through induction. Let us consider that {γ′ ∈ Γ′|Γ′ = Γ\γ} such

that X�
′ = X�\

−→xγ consists of only directional vectors and |Γ′| = n. From Equation 7.9,

CΓ′

h J = 1, since λγ′ −
−→
θJ

⊙−→xγ′ = {0, 0, . . . n zeros }. Further, if X�
′ only has orthogonal and

directional vectors then det(X�
′) = 1. Further, since αs are integer shifts then the shifted

EB splines are all linearly independent and hence for each −→x there is only one EB spline

that is non-zero. Using Equation 7.7 for Γ′, we see that Equation 7.9 holds. Now let us

consider Γ with one −→xγ that is not orthogonal to at least one vectors in XΓ′ . We can express

the summation as -

∑
∀
−→α

e
−→
θJ

⊙−→αB(Γ|−→x − −→α ) (7.10)

=
∑
∀
−→α

∫ 1

0
eλγte

−→
θJ

⊙−→αB(Γ′|−→x − −→α − t−→x γ)dt using Equation 7.6

= CΓ′

h (J)
∫ 1

0
eλγte

−→
θJ

⊙
(−→x−t−→xγ)dt since Equation 7.9 holds for Γ′

= CΓ′

h (J)
∫ 1

0
eλγt−

−→
θJ

⊙−→xγtdte
−→
θJ

⊙−→x

= CΓ
h (J)e

−→
θJ

⊙−→x
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Using this corollary we prove the following lemma for continuous smooth functions -

Lemma 2 Consider a defining set Γ : 〈Γ〉 = Rn, and XΓ ⊂ Z
n. The defining set has s

elements i.e., |Γ| = s. Let us also consider the setZn
h = {−→α : ∃h > 0, h−1−→α ∈ Zn}. Then for

any continuous compactly supported smooth multivariate function f (−→x ) with bounded first

derivatives and a set A ⊂ Rn,

| f (−→x ) −CΓ
h (J)−1

∑
−→α∈Zn

h

f (−→α )Bh(Γ|−→x − −→α )| = O(h), (7.11)

∀
−→x ∈ A where J ⊂ Γ : 〈J〉 = Rn&|J| = n.

Proof: Before we go into the proof we need to define J ⊂ Γ as a set of n basis vectors or

directions in the coordinate space that can span the entire co-ordinate space. However,

Γ can have other vectors as well which gives different shapes to the support zonotope and

hence helps to map the domain of the function f (−→x ). Figure 7.3 (d) shows one such support

if XΓ = {(0, 1), (1, 0), (1, 1)}. Then XJ = {(0, 1), (1, 0)}. Here
−→
θJ

⊙−→xγ = λγ.

Let −→x ∈ A, since −→αi s have to span −→x , we get -

−→x =
∑

i

ti
−→αi (7.12)

||
−→x − −→α || ≤ h

∑
i

tih−1−→αi

≤ h
∑

i

ti
−→zi ,
−→zi ∈ Z

n ≤ O(h).
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Utilizing this result we get -

||
f (−→x )

e
−→
θJ

⊙−→x
−

f (−→α )

e
−→
θJ

⊙−→α
|| (7.13)

= ||
1

e
−→
θJ

⊙−→x
[ f (−→x ) − e

−→
θJ

⊙
(−→x−−→α ) f (−→α )]||

≤ ||
1

e
−→
θJ

⊙−→x
[ f (−→x ) − eO(h) f (−→α )]||

from Equation 7.12

≤ ||
1

e
−→
θJ

⊙−→x
[ f (−→x ) − (1 + O(h)) f (−→α )]||

for a small enough h

≤ ||
1

e
−→
θJ

⊙−→x
[ f (−→x ) − f (−→α ) − O(h) f (−→α )]||

≤ ||
1

e
−→
θJ

⊙−→x
[dmax(−→x − −→α ) − O(h) f (−→α )]||

where dmax is the upper bound on the derivative

≤
1

e
−→
θJ

⊙−→x
O(h) from Equation 7.12.

From Corollary 1 we have -

e
−→
θJ

⊙−→x =
∑
∀
−→α

e
−→
θ

⊙−→αCΓ
h (J)−1B(Γ|−→x − −→α ). (7.14)

Now let us consider the function f (−→x ) as follows -

|| f (−→x ) −CΓ
h (J)−1

∑
∀
−→α

f (−→α )B(Γ|−→x − −→α )|| (7.15)

= ||
∑
∀
−→α

f (−→x )

e
−→
θJ

⊙−→x
e
−→
θJ

⊙−→αCΓ
h (J)−1B(Γ|−→x − −→α )

−
∑
∀
−→α

f (−→α )

e
−→
θJ

⊙−→α
e
−→
θJ

⊙−→αCΓ
h (J)−1B(Γ|−→x − −→α )||

≤ max||
f (−→x )

e
−→
θJ

⊙−→x
−

f (−→α )

e
−→
θJ

⊙−→α
||
∑
∀
−→α

e
−→
θJ

⊙−→α B(Γ|−→x − −→α )
CΓ

h (J)

≤
1

e
−→
θJ

⊙−→x
O(h)e

−→
θJ

⊙−→x from Equation 7.13 and 7.14,

≤ O(h).
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The lemma allows us to approximate the function f (−→x ) over a set A. Ideally to obtain

f (A) we have to compute countably infinite number of points. The Lemma 2 allows us

to divide the set A into a grid with grid size h and then compute f (−→x ) at each grid point

and approximate the value of f (−→x ) in between each grid point using an exponential box

spline. The most important result is that if f (−→x ) has bounded first derivatives then the error

of this approximation linearly increases with h the discretization factor. We use this result

to obtain a tight approximation of the reach set of a non-linear hybrid automata. We next

discuss the definition of non-linear hybrid automata and its reachability analysis.

7.8 Smooth and Compactly Supported Non-Linear Hybrid Automata

Non-linearities in hybrid automata can arise in several manners. However, we restrict

our hybrid automata such that the continuous dynamics is expressed using compactly sup-

ported continuous and smooth functions. Thus, we define a Smooth and Compactly Sup-

ported Non-Linear Hybrid Automata (SCHA), as follows -

Definition 6 A Smooth and Compactly Supported Non-Linear Hybrid Automata (SCHA)

is a tuple {V, n,L,m, Inv,F ,Re} such that -

• V is a variate consisting of n number of real valued variables vi ∈ R.

• L is a set of m modes {l1 . . . lm}.

• Inv : L → 2R, is a mapping from a mode to a set of subsets of the real set R such

that -

– Inv(li)
⋂

Inv(l j) = ∅, ∀li, l j ∈ L, and li , l j.

–
⋃
∀li∈L Inv(li) = Rn

– ∀li ∈ L the cells in the invariant set Inv(li) are all connected (Section 7.6).
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• F : L×V → D(Rn) is a mapping that associates a smooth and continuous compactly

supported multi-variate function gli : V×R → R to each variable v j ∈ V in mode li

such that -
dv j

dt
= g j

li
(v1 . . . vn, t). (7.16)

• Re : L ×V → Rn is a reset function that sets initial conditions of the real variables

inV at each mode li ∈ L.

The definition 6 only defines the components of an SCHA. But for an SCHA to be

executed we need to define three entities: a) trajectory at a given location, b) execution

over a given time, and c) discrete state transition.

Definition 7 Trajectory: The trajectory of an SCHA for a location li, from an initial vector

−→v0 ∈ Inv(li) for a duration t f > 0 ∈ R is the set of maps η : V × [0, t f ]→ Rn such that -

1. η j(−→v0, τ) is a solution to the Equation 7.16 ∀τ ∈ [0, t] and ∀ j ∈ {1 . . . n}, i.e, dv j

dt =

dη j(−→v0,τ)
dτ = g j

li
(v0

1 . . . v
0
n, τ) ∀η j ∈ η. And

2. η(V0, τ) ∈ Inv(li) ∀τ ∈ [0, t].

We denote the duration of a trajectory as η.dur.

Definition 8 Execution: The execution β of an SCHA from an initial state (l0,
−→v0) ∈ L×Rn

for a duration t is a concatenation of finite or infinite number of trajectories η0η1η2 . . . such

that -

• η0(−→v0, 0) = −→v0,

• ηk+1(., 0) = Re(ηk(., ηk.dur)) for k ≥ 1, and

• β.dur =
∑
∀k η

k.dur,
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where β.dur is the duration of the execution. Re(.) is a reset function, which allows reseting

the values of the system variables after an execution (Definition 6).

Definition 9 Discrete mode transition: For two modes (li, l j) ∈ L, and the initial vector

−→vli for the mode li a discrete transition takes place from li to l j at a state (li, η
li(−→vli , τ)) ∈

L × Rn and at time τ if ηli(−→vli , τ) ∈ Inv(li)
⋂

Inv(l j) and ηli(−→vli , τ) = Limτ′→τη
li(−→vli , τ

′) where

ηli(−→vli , τ
′) ∈ Inv(li)o for some δ > 0 such that τ′ ∈ [τ − δ, τ].

7.9 Reachability Analysis

Reachability analysis of a hybrid automata concerns with the computation of an execu-

tion of the SCHA from an initial set of continuous states V0 at time t=0 to a final time t

= t f . In an execution the SCHA undergoes discrete mode transitions. Thus, the reachabil-

ity analysis requires to compute two parameters: a) the trajectory, and b) a discrete mode

transition. We discus these two aspects in the following sections.

7.9.1 Estimation of Trajectory

The estimation of the trajectory requires solution of the differential equation 7.16. All

forms of non-linear differential equation may not have closed form solutions. However,

we do not need closed form solutions for the equations. We propose to discretize time

into intervals of δt and consider that the differential is independent of time within this δt

interval. With such an assumption the non-linear image of an initial vectorV0 is given by

Lemma 3.

Lemma 3 Consider an initial mode of the SCHA as l0 and an initial vector −→v0. Let δt > 0 be

a small real number which is the interval by which time increases i,e. tk+1 = tk + δt ∀k ∈ Z.

Let the vectors −→vk and −−→vk+1 be the valuation of the system parameters at a time tk and tk+1

respectively. For any component v j of −→vk, we estimate v j(tk+1), value of the component v j at
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Figure 7.4: Approach for Estimation of the Trajectory of SCHA.

time tk+1 as -

v j(tk+1) = g j
l0

(v1 . . . vn, tk)δt + v j(tk). (7.17)

An initial set A ∈ Inv(l0) ⊂ Rn consists of vectors V. The image of a set A is defined as

follows -

Definition 10 The image of a set of vectors A for a mode li of the SCHA at time tk is the

set of vectors Img(A) such that for any variate V whose valuation lies in A there exits a

vector
−−−−−−→
F(li,V) ∈ Img(A). The jth component v f

j of the vector
−−−−−−→
F(li,V) is given by -

v f
j = g j

li
(v1 . . . vn, tk)δt + v j, (7.18)

where v j is the jth component ofV.

According to the definition of SCHA the function g j
li

has finite upper and lower bounds

since F is required to have bounded first derivatives. Thus, we can theoretically limit the

image
−−−−−−→
F(li,V) of a variateV using the following lemma.
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Lemma 4 Given aV (v j is the jth component ofV) the image
−−−−−−→
F(li,V) for a given mode li

lies inside a polytope with its center atVc and side length along a dimension i is given by

di such that:

• the ith component vc
i ofVC is given by Equation 7.18

• di is given by

di = (ḡ j
li
− g j

li
)τ, (7.19)

where, ḡ j
li

and g j
li

are the upper and lower bounds of the function g j
li

respectively.

According to the definition of image of a set, we should consider every point −→x in

the set A and compute Equation 7.18 to obtain the image −→x f . Then over-approximate the

image by surrounding with a polytope whose sides are given in Equation 7.19. However,

this process is not tractable since there are countably infinite points inside the setA. Lemma

2 allows us to discretize A into a uniform mesh and use the image of only the mesh points

to estimate the image of the set A. The following theorem helps us to device an algorithm:

Theorem 7.9.1 Given a continuous compactly supported smooth function f : Rn → Rn

with bounded first derivatives and a set A ⊂ Rn, there exists a set of points ψ = {−→α :

h−1−→α ∈ Zn, h > 0} such that the image of the set A over the function f , f (A) lies within the

h neighborhood of the convex hull of the set of points ψ f = { f (−→α ) : −→α ∈ ψ}.

Proof: We know from Lemma 2 that any continuous compactly supported smooth func-

tion with bounded first derivatives can be represented using a linear combination of expo-

nential box splines as shown in Equation 7.11, where |Γ| = n, 〈Γ〉 = Rn, and XΓ ⊂ Z
n. Let

us consider that XΓ =



n 0 · · · 0

0 n · · · 0
...

...
. . .

...

0 0 · · · n


. Let us consider a point −→x ∈ A. Since |det(XΓ)| > 1,
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the integer translates of the exponential box spline B(Γ|−→x ) are not independent. This means

that at the point −→x the support of more than one integer translates overlap. Let us consider

that there are q such integer translates of EB spline B(Γ|−→x −−→αi) : i ∈ 1 . . . q, whose support

zonotopes overlap at the point −→x . Note that −→αi’s can be easily obtained from the knowledge

of −→x and iteratively examining overlap of the support zonotopes of integer translates of the

EB spline. Further, XΓ contains the set of all directions in the co-ordinate space and hence

J = XΓ the value of CΓ
h (J) = 1,∀J. Thus, using Lemma 2 and 7.7 we can write for any point

−→x ∈ A,

f (−→x ) ≤
q∑

i=1

f (−→αi)B(Γ|−→x − −→αi) + O(h), (7.20)

≤

q∑
i=1

f (−→αi)
e
−→
θΓ

⊙
(−→x−−→αi)

|det(XΓ)|
+ O(h),

If we can find
−→
θΓ such that -

q∑
i=1

e
−→
θΓ

⊙
(−→x−−→αi)

|det(XΓ)|
= 1, (7.21)

then f (−→x ) lies in the O(h) neighborhood of the convex hull of the points f (−→αi). Further,

since the dimension of the co-ordinate space is n, there will be at least n integer translates

whose support zonotopes must overlap at any point −→x ∈ A. Thus, we can derive a system

of n linear equations of the form -

n∑
j=1

θ j(v j − α
j
i ) = ln(

|det(XΓ)|
n

), ∀i ∈ {1 . . . n}, (7.22)

such that its solution will satisfy Equation 7.21. Here θ j, v j, and α j
i are components of

−→
θ ,

−→x , and −→αi. Since, any solution to the linear system of Equations 7.22 satisfies Equation

7.21, any −→x ∈ A lies within the h neighborhood of the convex sum of the points f (−→αi).

Lemma 4 and 2 and Theorem 7.9.1 can be used to estimate the image of a set of vectors

A. The basic idea for the estimation is to employ two types of dicretization: a) discretize
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time to approximate the solution of the differential equations in Equation 7.16, and b)

discretization of the set A into integer points in A and estimate the Img(A) using Lemma

2. We next discuss an algorithm to progressively compute the trajectory of a given mode li

in SCHA.

Algorithm for Estimation of a Trajectory

The basic idea is depicted using the Figure 7.4. Given a set A ⊂ Rn, we first over-

approximate the set A using a polytope specified as a linear combination of a set of zono-

topes, XΓ. We define exponential box splines with Γ = {XΓ,ΛΓ} as the defining set for the

EB splines. For each point −→xp on the corners of the polytope that over approximates A, we

find unique set of −→αs such that −→xp falls in the linear span of the chosen −→αs. We then use

Equation 7.22 to determine
−−−→
theta for each corner point. We then compute the image of a

corner vector −→xp, using the EB spline representation of Equation 7.11. The function f in the

EB spline representation is the time discretization of Equation 7.17. We build a polytope

around Img(−→xp) following Lemma 4. We then build hyper-rectangles of side length h with

each vertex of the polytopes as their center. The reach set is the convex hull of the vertices

of the hyper-rectangles. We continue this process until the final time t f is reached or there

is a state transition.

Algorithm 1 shows the pseudocode of this algorithm using exact steps in order to prove

properties on the error of such estimation. The input to the algorithm is a SCHA, and

invariant set Inv related to a mode l, an initial set A, a final time t f , a time discretization τ,

and an h > 0.

In the following theorem we prove that the Algorithm 1 indeed obtains the reach set

within a given approximation bound.
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Algorithm 1 (Rset, t) = CalcTraj(SCHA,Inv(l),A,t f ,τ,h)
1: for each i ∈ {1 . . . n} do

2: Find int j = max(v j) − min(v j) for each variable in the variateV

3: end for

4: Over-approximate the set A as set Ad using a set of zonotopes −→zk .

5: Rset = A

6: t = 0

7: For each element in Ad, derive −→αs that span the element. There can be at most 2n −→α .

8: For each element in Ad compute the
−→
θ values using Equation 7.22.

9: while t ≤ t f & Rset 1 Inv(l) do

10: ∀
−→v ∈ Ad compute Img(−→v , τ) using Equation 7.11 and 7.18,

11: Build polytopes with each point in Img(V, τ) as center and of lengths given in Lemma 4.

12: Let Vert(Img(V), τ) be the set of vertices of the polytopes

13: For each vertex in Vert(Img(V), τ) build a hyper-rectangle of side h with the vertex at the center

14: Chull = convex hull of the vertices of the hyper-rectangles.

15: Rset = Rset
⋃

Chull

16: t = t + τ

17: end while

18: return(Rset, t)

Theorem 7.9.2 Given an SCHA, and mode l, an initial set of continuous states A, a final

time t f , a time discretization τ, and a number h > 0, the Algorithm 1 outputs the reach set

with an over approximation error of O(τ + h).

Proof: The proof is a direct consequence of the Theorem 7.9.1 and the Lemma 4. The

Algorithm 1 first approximates the image of a point using Lemma 4, thus guaranteeing that

the actual image lies within the polytope of side length given in Equation 7.19. Then it

considers the h-neighborhood of each vertex of the polytope, and takes the convex hull of

the resultant vertices of the neighborhood. According to Theorem 7.9.1, the image of the

set of point in A is contained by the h-neighborhood of the convex hull of the actual images
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of the point. Since the polytopes over approximate the actual image, the image of the

set A should also lie within the h-neighborhood of the vertices of the over approximating

polytopes. Thus, the Algorithm 1 returns a reach set with an approximation error O(h + τ).

7.9.2 Estimating Discrete Transitions

The invariant set of the SCHA can be specified as a collection of cells. Thus, estimating

when the reach set crosses an invariant set can be determined by intersection of a convex

hull with a polygon. We assume that all the invariant sets are compact sets. In such a sce-

nario the intersection of a polygon and convex hull can be computed in O(plog(p)) time,

where p is the number of facets of the convex hull, using several algorithms in existing re-

search [99]. The intersections will result in division of the convex hull into several subsets.

We can use Algorithm 1 to obtain the reach set of multi-mode SCHA. The algorithm for

tackling transitions is straightforward and similar to the linear zonotope based reachability

analysis case.

In this regard, we consider Algorithm 2 to compute the reachability of multi-mode

SCHA.

7.10 Case-study: Artificial Pancreas

We apply Definition 6 to Artificial Pancreas (AP) which is used to control blood glucose

level for diabetics patients. We instantiated the definition 6 is as follows:

-V = {X,G, I, t} is a vector with {X,G, I, t} as real valued variables. X represents the vari-

ation in the interstitial insulin concentration, G is the blood glucose concentration and I is

the plasma insulin concentration.

- L = {Basal, Breaking,Correction} are the discrete modes of the AP hybrid automata.

Basal is the initial state. It infuses insulin with a specified constant rate. It predicts the

blood glucose concentration G one hour ahead. If the prediction shows that glucose con-
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Algorithm 2 Rset = CalcReach(SCHA,l0,A,t f ,τ,h)
1: CurrentS tate = l0

2: t = 0, timeLe f t = t f , t j = 0;

3: InitS et(l0) = A

4: while t < t f do

5: for each element l in CurrentS tate do

6: timeLe f t = timeLe f t − t j

7: CurrentS tate = CurrentS tate l

8: (Tra jS et, t j) = CalcTra j(S CHA, Inv(l), InitS et(l), timeLe f t, τ, h)

9: for each mode m in SCHA do

10: if ( thenTra jS et
⋂

Inv(m) , φ)

11: CurrentS tate = CurrentS tate
⋃

m

12: InitS et(m) = InitS et(m)
⋃

(Tra jS et
⋂

Inv(m))

13: end if

14: end for

15: Rset = Rset
⋃

Tra jS et

16: t = t + t j

17: end for

18: end while

19: return(Rset)

centration will become very low, the system goes in Braking mode otherwise remain in

basal mode only. In Braking mode, the risk factor is calculated using nonlinear function

of G given in equation 7.3. Based on the risk factor, the insulin dosage, I reduces. If G

remains in the range of 60mg/dl to 120mg/dl, system goes back to Basal mode, otherwise

if G becomes more than 180mg/dl, system goes in Correction mode. Similar to Basal

model, Correction mode also predicts G one hour ahead. It calculates the bolus and adds it

with Basal rate. In this mode, if G goes below 20mg/dl, system goes in Braking mode and

if G is in safe rage i.e. in between 60mg/dl to 120mg/dl, it goes in Basal mode.

- Different invariant conditions are defined for each of the mode of AP hybrid automata.
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The system continues remaining in the same mode until its invariant condition is satis-

fied. The Inv set is mapping from a mode to R subset as: {Inv(Basal) = ([60/k, 120/k])},

{Inv(Braking) = ([0, 60])}, and {Inv(Correction) = ([120/k,∞])}.

- The variables {X,G, I, t} in vector V vary over smooth and compactly supported mul-

tivariate functions expressed using Equations 7.2, 7.3, and 7.4. These functions contain

patient specific constants, k1, k2, k3, k4, k5, and k6. Ib represents the basal plasma insulin

concentration while Gb is the basal glucose concentration in the blood.

- Reset function is defined for each mode in L to set the initial conditions as: {Re(Basal) =

([I = I0])}, {Re(Braking) = ([I = Ireduced])}, and {Re(Correction) = ([I = Iincreased])}. For

the Basal mode, the insulin rate I is set to the constant rate, I0. Braking mode reduces the

insulin rate considering the predicted risk factor. This reduced insulin rate Ireduced is set as

new I. In Correction mode, Bolus is added with the basal rate which increases the current

I value. It acts as reset condition for Correction mode.

We apply our proposed reachability analysis technique to the artificial pancreas SCHA,

using MATLAB. We consider an initial set of states where the glucose concentration varies

from 20 mg/dl to 180 mg/dl, the infusion rate varies from 200 units/min to 400 units/min,

and the interstitial glucose concentration varies from 0.1 g/dl to 1 g/dl. The evolution of

the reach set is shown in Figure 7.5. The hyperglycemia threshold is shown by the grey

plane. Any image on the right of the plane is unsafe. As we see that in several cases the

image crosses to the right side of the unsafe planes leading to hyper-glycemia however,

there were no hypoglycemic stages of the patient. In our previous research [55], we have

performed reachability analysis of artificial pancreas with piecewise linearization. The

reach set diverged as simulation time increased as opposed to the converging as seen in

Figure 7.5.

We have proposed a methodology of reachability analysis for nonlinear hybrid systems

using exponential box splines. The continuous dynamics of nonlinear hybrid automata
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Figure 7.5: The Evolution of Images of Reach Set Over Time for the Artificial Pancreas

SCHA.

considered in this paper is represented using compactly supported continuous and smooth

functions and have bounded first derivatives. We have proposed an algorithm for computing

reach set of such systems with an approximation error O(τ+ h), where τ is time discretiza-

tion step and h is set discretization step. Application of our reachability analysis algorithm

to the Brusselator example, shows that we can approximate the non-linear images more ac-

curately than other commonly used piecewise linearization techniques. We further applied

this algorithm to Artificial Pancreas, a nonlinear hybrid system with non-linear diffusion

dynamics.

In our previous work, we had proposed a reachability analysis of spatio-temporal hybrid

automata (STHA) [54]. The dynamics involved partial differential equation but they were

linear in nature. An important future work is to consider the non-linear partial differential

equations in STHA and employ exponential box spline based approximations. The main
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advantage of our approach is the approximation order is linear with respect to discretization

factor.
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Chapter 8

IMPLEMENTATION - AUTOMATED CODE GENERATION FOR MMAS

8.1 Health-Dev β Tool Architecture

Health-Dev β framework is proposed in this research [100] to allow the developer to

implement MMAs following the app model in Figure 4.4 and automatically ensuring safety

from interactions, sustainability in sensor and security of health data. It uses an automatic

MMA Development

App Software Interfaces

Health-Dev ẞ

Safety Sustainability Security

Model (Hybrid Automata)

Sensor/
Actuator Specs

Communication 
Interface

+
Graphical 

User Interface

Control 
Algorithm+

Formal 
Methods

Static Analysis

Multi object 
Optimization

Encryption 
Algorithms

Trustworthy App Configuration

Code Generator

Developer 
Written Code

Safety and Static 
Analysis Reports

Sensor Code Interface Code

Trustworthy Health App Software

Figure 8.1: Health-Dev β Tool.
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code generator to generate critical parts of the MMAs such as interfacing code, sensor or

actuator code etc.

The Health-Dev β tool for trustworthy development of health apps has the architecture

as shown in Figure 8.1. A developer can use such an architecture to either verify whether

the developed MMA satisfies trustworthiness requirements or automatically generate crit-

ical parts of the code that can impose safety, sustainability or security vulnerabilities. As

an input, Health-Dev β requires a high level specification of the MMA. The high level

specification language used in the proposed framework is Architectural Analysis and De-

scription Language (AADL). The high level design can be further optimized and tested

using following tools:

a) sustainable sensor design optimization module: The specified sensor configuration

can be optimized for energy neutrality. It is assumed that sensor operates on battery as well

as scavenges energy from sources such as sunlight, body heat etc. The energy neutrality

problem is modeled as a multi-objective optimization problem as discussed in Chapter 5.

The proposed hybrid simulator can be used to estimate resource requirements and designing

their organization for MMAs.

b) MMA system verification: For the verification of the controller of MMA, the proposed

research uses (discussed in Chapter 7)model checking using rechability analysis. It is a the-

oretical safety verification technique which represents MMA system using hybrid automata

and uses reachability analysis to determine patient safety.

c) security-enabled for sensor code and TDM app generation module:The interface

specification can be used by the automatic code generator to generate sensor interface and

communication code for the health app. In our previous work, we have developed Health-

Dev [6], which can convert an AADL design into sensor and smartphone implementations.

In addition to using the standard software primitives, Health-Dev is extended to have secu-

rity plug-in, which contains pre-verified code for data communication security algorithms
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such as physiology value based security [66], AES encryption [101] and private-public key

infrastructure [102].

The generated sensor and smartphone code can then be also passed through perfor-

mance analyzers to validate the code against type and memory related errors. The per-

formance analyzer, the MMA simulation, the reachability analysis, sustainable optimized

sensor design and the security primitives generate a certification report stating their find-

ings. The code and the certification report can then be reviewed by an expert personnel in

the field to certify the application which can then be uploaded to a dedicated medical app

store. If the MMA fails certification, the developer can redesign and again use the same

architecture. The key feature of this architecture is that it will be implemented in a modular

fashion so that the user can use different modules individually and generate only partial

reports.

8.2 Security-enabled MMA Implementation and TDM Generation

MMA security vulnerabilities arise from three main sources: a) poor configuration

management of APIs when developing smartphone applications, b) poor sensor code with

common software errors such as unreachable code, array overflow, and inadequate input

validation, and c) insecure wireless communication between smartphone and sensor. The

problem is not in the technique since there are robust algorithms to avoid these security

vulnerabilities. The problem as explained in [103], is an implementation problem arising

from two aspects: a) misconfiguration of APIs in smartphone, and b) scarcity of resources

in a sensors. These two factors coupled with the real time requirements of MMAs make it

extremely non-intuitive to implement a secure MMA.

It is hypothesized that models of health apps can be optimized to obtain the correct

configurations of implementation modules and then an automatic code generator can be

used to reduce software errors. There are two parts of the Health-Dev β code generator:
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sensor code generator and the TDM app generator. Both the code generators consist of

three parts: a) high level specification module, b) a meta model consisting of code frames

that can be filled by functions with appropriate attributes, and c) a database of template

code with attributes that can be appropriately parameterized to fit the security needs of the

application.

High-level specification: The high-level specification allows user to specify sensor and

TDM app specification and translate it to respective models. In this regard, Health-Dev β

tool uses Architecture Analysis and Design Language (AADL). It has been shown that the

usage of AADL to specify a sensor construct defined with input and output ports [104]. The

instance of that sensor consists of identifier, algorithm and communication components. It

also allows to specify routing of the data through algorithms.

Meta-Model: Meta-model highlights the information content in a model. It is an abstrac-

tion of a model which is itself an abstraction of real-life system. Meta-modeling provides

method to analyze, create constructs, frames, rules to model a given set of problems. The

high-level specification is written under such regulation that allows parser to create a meta-

model of a given model. The parser extracts out all the relevant information from the

model which is further used in code generation. e.g. meta model for sensor includes plat-

form, communication protocol, sensor type, sensing and sending frequency, sampling size

etc. Meta model for smartphone can include platform, communication protocol, inbuilt

sensor type etc.

Template code with attribute: Template codes are platform specific code which are used

as a base to generate required code. It contains reference entities or attributes which helps

parser to inject required frame (piece of a code) and brings modularity in generation. This

also makes template code light-weight and generic by storing the functionalities away from

it. Based upon the information obtained from meta-model, generator calls an appropriate
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template code and replaces its attributes by respective frames. The frame can be an algo-

rithm or a function.

Code frame: Code frames are generic implementation of a function which could be used

by generator after it is instantiated and parameterized. They are used for specifying and

sequencing of algorithms. The generator injects the frame into the specific location mak-

ing the generation more modular. e.g. the code generator has a repository of algorithm

frames namely, peak detection, Fast Fourier Transform (FFT) and Mean. These frames are

declared and sequenced in a copy of a template code by generator.

Code generator: The high level specification adheres to meta-model is parsed to create an

instance of meta-model and is fed to generator as an input. Based upon the given meta-

model generator pulls a copy of a platform specific template code with attributes. It applies

preprocessing technique to template file, defining and expanding the required expressions.

Appropriate code frames are instantiated and parameterized before getting injected into a

specific location in template file.

8.2.1 TDM App Generation

The code generator also generates a TDM app which ensures the secure wireless com-

munication. It includes the security algorithm specified by the user in the input. The code

generator maintains a code template for generating TDM app. On getting the specification

of the security algorithm, it pulls the algorithm from database and inserts in the code. It

contains encryption-decryption algorithms such as PEES [66], Advanced Encryption Al-

gorithm (AES) to secure the physiological data over vulnerable wireless channel. In TDM

code generation, code generator uses the Application Programming Interfaces (APIs) to al-

low communication between external wireless mote and an Android smartphone via Blue-

tooth. It consists of two components, Bluetooth API and sensor handler. Bluetooth API

ensures connection establishment and data communication between mote and smartphone
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while sensor handler acts as a manager and registers all user assigned sensor, different algo-

rithms associated with each sensor and handling of data received from the particular sensor.

For each of the wireless communication calls the generator appends the security protocol.

8.3 Performance Analysis

The performance of the MMAs can be decided by two factors: a)quality of the code

and b)latency in serving the app request. To check the quality of the smartphone and sensor

code in the health app, static analysis tools are used to check software errors in generated

code. I proposed to perform interference analysis on MMAs in the proposed app model to

check the latency in serving requests from the apps.

8.3.1 Quality of the Generated Code

As software plays a major role in safer operation of Mobile Medical apps, there is a

need to have a metric to measure the quality and efficiency of the generated code for sensor

and smart phone for a personalized health monitoring system. In this regard, to validate the

software of mobile medical apps, I have used static analysis tools for both smartphone and

sensors code.

Static analysis for smartphone: The software for the smartphone apps typically use high

level languages such as java, C#, objective C. The compilers for these languages include

advanced features to find bugs or errors in the code as compared compilation features pro-

vided by low level languages such as C, nesC. However, the complexity involved in high

level languages such as multithreading, methods, classes, various design types make avail-

able compilers inefficient to capture all the bugs. Thus, static analysis tools are recom-

mended to use along with the usual compiler feedback to make code more robust.

There are many static analysis tools available such as Dexter [105], FlowDroid [106],

Lint [107], Find Bugs [108], CodePro Analytics [109], PMD [110] for Android. These
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tools are plugins with the Android framework, which makes them easy to use. Dexter [105]

and FlowDroid [106] mainly deals with security issues in Android apps such as information

leakage. Lint [107] is a inbuilt static analysis tool for Eclipse which captures layout per-

formance problems, manifest and icon problems, translation issues etc. Find Bugs [108],

CodePro Analytics [109] and PMD [110] report duplicate code, generate unit test cases,

computes code metrics, dead code, well explained defect reports, misunderstood API meth-

ods etc.

As an example we are show casing the results from CodePro Analytics used with our

Health-Dev generated smartphone code. Figure 8.2 shows the audit report generated using

CodePro Analytix tool. The report includes typecast errors, efficient ways to copy arrays as

well as all the unnecessary parts added in the code such as imports, variables, return state-

ments etc. The report also puts flags in front of each reported bug to show its severity. The

audit report helps developers to reduce these errors to improve code quality and efficiency.

The tool also points out the dead code sections and their exact location in all the classes

using tree hierarchy.

Static analysis for sensors: The wearable sensors used in health apps typically do not

have a good runtime exception capture support. For example, in TinyOS which is used

by most commercially available sensors there is absolutely no support to capture array out

of bound errors, null pointer errors, or race conditions in runtime. Hence safety of sensor

code from runtime errors has to be ensured during the implementation and compilation

phase. To avoid these errors, static analysis should be done on the developed code. There

are number of such tools available for sensor code validation. Since TinyOS is a popular

operating system designed for low-power wireless sensor networks, we are considering it

as an example to perform static analysis in this paper. We have used TinyOS Compiler,

cXprop, Safe TinyOS, Frama-c tools to do static analysis on Health-Dev [6] generated

TinyOS-based sensor code. We observed that, in each case there is an increase in the code
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Figure 8.2: CodePro Analytix Audit Report.

size when Safe TinyOS is applied. This is because it uses safety annotation and stores

error messages in ROM (stores code) of a micro-controller. However, cXprop used in Safe

TinyOS reduces average code size cost. In order to include safety checks code size is

increased and can be seen as a trade-off between safety and code size. Whereas cXprop

only performs optimization without safety checks and hence the code size is found to be

reduced.

Most of the embedded micro-controllers in the sensors lack memory protection and it

makes the use of dynamic memory allocation risky as it may incur race conditions. The

code generator ensures that the variables in the generated code don’t incur race condition

and makes the code safe from incurring overlap of heap and stack segment of a memory.

To further evaluate the generated code, static code analyzer Frama-c [111] was used on

a TinyOS application. It was observed that no error related to array (out-of-bounds) and

pointers (bad pointer access) were found ensuring safety and optimal use of memory of the

micro-controller.
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8.3.2 Overhead Analysis of the Proposed App Model

For the proposed app model (Section 4.4), inter-app communication, sensor access and

memory access occur through the TDM using IPC. It leads to large payloads on IPC calls.

In Android, IPC calls are scheduled using the weighted fair scheduling policy [112], where

bandwidth is assigned to each request in proportion to the payload as per Equation 8.1,

where R is the total bandwidth in the system and wi is the payload size of the request.

Bandwidth =
R ∗ wi

N∑
i=1

wi

(8.1)

If an app does not receive the required amount of bandwidth then it may be stalled

and if these access requests are not served within 10 sec of their initialization, they will

be prompted for killing. Such canceling of requests or un-responsiveness is unacceptable

for safety critical health apps. Thus, to determine if the proposed framework, is scalable,

the response time of the TDM is evaluated, which is defined to be the difference in time

between a IPC request being sent and processed by the TDM. Bearing payload size in mind

and considering the working of CFS, we have defined the response time model as:

ResponseT ime =

N∑
i=1

payload sizei + overhead

R
(8.2)

Overhead in smart phone can be created from events such as user interactions, incoming

SMS, network connectivity, or phone calls. To validate the model, following experiments

were performed to collect latency data due to TDM:

1. Varying number of requests processed by the TDM.

2. Varying the payload size of requests processed by TDM while keeping number of

requests constant.

3. Effect of TDM processing on performance of the other apps on smartphone.
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Figure 8.3: Experimental Setup for TDM Scalability.

Experimental Setup Two apps are developed, App1 and TDM for scalability analysis (Fig-

ure 8.3). App1 has broadcast service implemented and TDM receives the request through

broadcast receiver. With each service request to TDM, App1 sends {tgeneration, App1}, where

tgeneration is the time at which the service is generated. When TDM receives and processes

the request, the current system time, tprocessing, is noted. Equation 8.3 gives the response

time of the TDM to serve that particular request. The response time is then written to the

text file on SD card. These experiments are performed on Samsung Galaxy Blaze android

smartphone.

Response T ime = tgeneration + tprocessing (8.3)

Experiment 1: Varying number of requests: For the experimental purpose the number of

requests generated by App 1 are varied as 10, 100, 500 and 10000. For each variation, the

response time of requests are noted in the file on smartphone SD card. Total 12 experiments

are performed in random order to reduce the error of repeating the experiments in sequential

order. After calculating the average response time for a given request size, the averages are

plotted as shown in Figure 8.4.

The response time approximately increases with increase in number of requests. This

can be due to the request generation time is less than request transfer time over the available

bandwidth. Also, the request is then processed at TDM end. Thus every time new request
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Figure 8.4: Response Time of TDM with Increased Requests.

is generated by App1 has to wait until previous request is processed. As per Equation 8.1,

the bandwidth is allocated is dependent on payload size. In these experiments, payload size

was constant. Thus every time same bandwidth is allocated to requests irrespective of the

number of requests generated, the transfer time is constant in this case. Thus the increase

in response time w.r.t. increase in requests is due to processing time at TDM end.

Experiment 2: Varying payload size of the requests: The request payload is varied as

128 bytes, 512 bytes, 1 KB, 4 KB, 16 KB and 256 KB. Number of requests generated was

kept constant to 50. The payload size variation is achieved by sending array size equal

to desired payload size with the request. Total 12 experiments are performed for these

payload sizes with random order and then average response time is calculated. The result

is as shown in Figure 8.5. The response time for payload sizes 128 bytes, 512 bytes, 1

KB, 4 KB and 16 KB is approximately in same range. However, it suddenly increases for

payload size 256KB. It is due to at 256KB payload, heap memory gets filled up for each

request, thus before serving the next request garbage collector runs and clears the memory.
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Figure 8.5: Response Time of TDM with Increased Request Payload Size.

For every request this garbage collector time has added. It led to increase in TDM response

time.

Experiment 3: Effect on response time of other app: In this experiment along with App1

and TDM, one more app is implemented, non-health app which does not communicate with

TDM (Figure 8.6). However this third app also accesses SD card location and write to text

file.

During the experiment, the non-health app first ran without TDM processing requests and

noted its response time. Then TDM has started to serve 10000 requests and again non-

health app has started. It has been observed that, there is no impact of TDM working on

non-health app performance (Figure 8.7). Effect of non-health app on response time of

TDM: As smartphone is not a dedicated medical device, it might have multiple applications

working such as games, phone calls, texting, internet etc.

Overhead analysis for TDM runtime validation: To check the overhead of runtime vali-

dation in TDM app, we have implemented the safety and sustainability models to get their
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Figure 8.6: Experimental Setup to Check Impact of TDM on Performance of Other App.

Figure 8.7: Impact of TDM on Performance of Non-health App.
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execution time. Runtime security validation uses FSM which checks for the program flow

with no complex computation involved thus it is assumed to no time. For safety analy-

sis, pharmacokinetic model[113] for the analgesic infusion pump discussed in Example 3

from Chapter 4 is implemented as Android service. It took 10.894 seconds to check for the

given drug concentration value if the blood glucose level will remain within safety thresh-

olds. For sustainability, the objective function in the optimization problem formulation

(Equation 5.15) is implemented as Android service to check for the given sensor configu-

ration change if the sensor will satisfy energy neutrality constraint. The execution time for

the sustainability model was 0.03 seconds.

8.3.3 MMA Development Effort Reduction using Health-Dev β

Developing trustworthy health apps while considering its interactions with the environ-

ment might increase burden on developer. Thus to validate that Health-Dev β tool doesn’t

hinder the development process but accelerates it by automated code generation, efforts

required are estimated using Constructive Cost Model (COCOMO) [114], a cost-effort

estimation tool and compared with manual implementation. As an example, we consid-

ered development of PetPeeves [37] app which requires developing user interface, ECG

sensor code and communication interface between smartphone and ECG sensor. Man-

ual implementation of PetPeeves app required 2553 lines of code (LOC) without any S3

assurance. With Health-Dev β, the communication and sensor code is automatically gener-

ated with TDM, leaving developer to write only 1678 LOC including sensor specifications.

COCOMO estimated the effort required with Health-Dev β tool as 6.9 developer-month,

whereas for manual implementation it came out as 12.1 developer-month which is almost

1.8 times more. The developer cost is also increased by 1.8 times for manual implementa-

tion. This shows that the proposed tool not only saves the development efforts but guaran-

tees correct software working.
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Chapter 9

CONCLUSION AND FUTURE RESEARCH DIRECTIONS

This research has focused on developing tools and techniques to enable evidence-based

development of mobile medical apps. It hypothesizes that MMA should follow a standard

operating model to objectively assure patient safety, wearables sustainability and health

data security given the divergent app development methodologies. In this app model, every

request from MMA such as sensor or actuator data access, cloud communication, data from

other app, should pass through a trustworthy data manager which can ensure whether the

request satisfies MMA trustworthy properties. Given such a standard operating model, the

Health-Dev β can use automatic techniques to develop and generate evidences for trust-

worthy MMAs. It uses an optimization framework to get safe and sustainable sensor and

actuator configuration. Evidence for correctness of these configurations in terms of re-

source allocation requirements, assuring safety and long term operation can be generated

using hybrid simulator which modifies the time step of the simulation to accurately simulate

system events. Further better evidence for MMA design can be hatched using reachability

analysis of hybrid automata model of the app using exponential box splines approach to

take into account non-linearity of the human physiological dynamics. Such dependable

MMA design is then implemented using automated code generator to reduce manual im-

plementation errors. Overhead analysis of the app model is performed in order to ensure

that the model does not degrade the performance of MMA or any other non-health app in

the smartphone. The current app model has considered Android architecture, however it

can be easily extended to iOS.

Future research directions for trustworthy development of MMAs are described as fol-

lowing:
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• Extensions in TDM:

a) As smartphone is not a dedicated medical device, it might have multiple appli-

cations working such as games, phone calls, texting, internet etc. The bandwidth

allocated to each request in smartphone is proportional to the payload size of the re-

quest as per Equation 8.1. If IPC calls for the non-health app has very large payload,

it might take most of the available bandwidth. Also the proposed app model can in-

crease the number of IPC calls since it requires that all memory access, sensor access,

and communication radio access occurs through the TDM. This might limit the the

availability of bandwidth to process critical MMA requests. If Android scheduler is

modified to consider request priorities with highest priority given to TDM, there will

be no degradation in the response time for TDM requests. The immediate extension

to the TDM approach can be to explore solutions such as priority based scheduler for

medical apps to reduce response or stall times of MMAs.

b) Assuming TDM as the most trustworthy entity in the smartphone for MMAs,

all the requests for memory access, sensor access, and communication radio access

occurs through it. However, it can act as a single point of failure problem. Any

malicious app can modify the code for TDM to affect its functionality. Current TDM

design does not check for security attack on it. One possible solution can be to have

replicas of TDM in a smartphone. It can allow to check the behavior of the TDM for

every request by processing it on multiple TDM replicas. depending on the majority

of the same output, failed or compromised TDM can be detected. However this

method can lead to overhead of TDM replicas in smartphone. Thus it is necessary to

find a solution to avoid overhead of TDM replicas and single point of failure of the

proposed approach.
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• Controller Synthesis to obtain safe controller design: The proposed reachability

analysis technique uses non-linear continuous dynamics and by that it reduces error

in estimating controller safety properties. However, the proposed technique assumes

sensors and actuators with no delay, zero sensing error, zero precision error of the dis-

play devices and estimate the safety of the controller design. In practice, the obtained

safe controller design may not be implementable or even may not be safe when these

delays and errors are considered. Thus the immediate extension to this technique can

be to come up with a mathematical model (variation of hybrid automata) which can

consider these delays and errors so that the non-linear reachability analysis technique

can be applied to it to get implementable controller design.

• Reachability Analysis of Non-linear spatio-temporal hybrid systems: The unin-

tentional interactions in human physiology and controller in medical app are usually

spatio-temporal and non-linear in nature. This research has focused on developing

a technique to consider non-linearity in physical dynamics in reachability analysis.

However, it fails to capture the spatial nature of the system dynamics while consider-

ing only temporal factors. Spatial dynamics play an crucial role in physical systems,

e.g. in case multi-drug infusion system, spatial parameter can predict the blood glu-

cose concentration at different locations in human body accurately. Thus to get more

accurate evidence for MMA design safety, the reachability analysis of nonlinear sys-

tems should be extended to include spatial dynamics.

• Clinical Study: Clinical study on Health-Dev [6] generator code for ECG app has

been performed by IMPACT lab in St. Luke’s hospital. Similar study can be per-

formed on Health-Dev β generated code with TDM for controller MMAs such as

infusion pump apps. This study will act as a validation to the trustworthy MMA

development approach proposed in this research, e.g. check if the sensor works for
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the specified time without recharging the battery for a given optimized sensor design

obtained from the proposed framework or whether the safe controller as certified by

the Health-Dev β does not lead to hypoglycemia ever in clinical settings.
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